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Abstract: Understanding the driving forces of land use/cover change (LUCC) is a requisite to 
mitigate and manage effects and consequences of LUCC. This study aims to analyze drivers of 
LUCC in New England, USA. It combines meta-study, GIS, and machine learning to identify the 
important factors of LUCC in the area. Firstly, we conducted a meta-study of the research on LUCC 
in the New England area and specifically focused on the driving forces analysis. The meta-analysis 
revealed that the LUCC studies in the research area were highly related with many other research 
topics, and population and economic factors were the most mentioned drivers of the LUCC. The 
drivers of LUCC in this study area for the past several decades were relatively well analyzed. 
However, the study of the main driving forces of recent LUCC is lacking. Then, the determinants of 
LUCC for the recent years were quantitatively assessed using the random forests (RF) model along 
with geospatial data processing. Two planning regions in Connecticut and one planning region in 
Massachusetts were selected to serve as the case study areas. Investigated variables included 
environmental and biophysical variables, location measures of infrastructure and existing land use, 
political variables, and demographic and social variables. These drivers were examined for their 
relations with LUCC processes. Their importance as driving forces was ranked by the RF method. 
The results show both consistency and inconsistency between the meta-analysis and the RF method. 
We found that this mixed method can enhance our understanding of driving forces of LUCC and 
improve the selection quality of important drivers for modeling LUCC. With more solid 
information, better land management advices for sustainable development may also be provided. 
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1. Introduction 

Land use/cover change (LUCC) is a main component of global environmental change, which is 
mainly an intended or unintended outcome of human activities. LUCC has profound effects on 
climate, biodiversity, soil condition, water flows, and ecosystem services at local, regional, and global 
scales [1–4], which in turn affect land-use decisions. A better understanding of processes, trends, 
causes, and consequences of LUCC is of crucial importance to land planners, ecologists, and others 
[5,6]. Moreover, identification of driving forces that cause the dominant LUCC is essential for 
establishing management strategies and policies to mitigate or prevent negative effects of LUCC or 
for predicting future changes using models [7]. Identification of driving forces that cause the 



ISPRS Int. J. Geo-Inf. 2020, 9, 350 2 of 14 

 

dominant land use and land cover transitions will further help managers to establish policies that 
mitigate or prevent negative effects of LUCC.  

The driving forces of LUCC are usually a mix of anthropogenic (e.g., demographic, political, 
economic, technological, and cultural) and biophysical factors (e.g., climate, soil, and topography) 
with direct or indirect impacts. The anthropogenic drivers may include well-defined factors, such as 
population growth [8], and the complex interactions as a result of institutional or cultural influences 
[9]. Biophysical drivers of LUCC, such as elevation and slope [10], have been primarily studied due 
to availability of data. Comparatively, climate as one of the important drivers of LUCC is difficult to 
detect and quantify in a short-term or in a local research, because of its long-term consequences and 
low resolution of climate data. Although the drivers of LUCC are recognized as important, the 
complex and diverse interactions among nature, economy, and social systems make them difficult to 
be identified and quantified.  

With development of remote sensing (RS) and geographic information system (GIS) 
technologies and the reliable sources of data for assessing spatial-temporal LUCC, the research on 
the driving forces based on the biophysical factors and socio-economic factors has been improved. 
Previous research often investigated the driving forces of LUCC through a form of descriptive 
analysis [11,12], or most recently correlation or multiple regression analysis [13,14]. However, these 
studies either did not integrate both socio-economic and biophysical factors to examine their effects 
on LUCC or were not able to identify which drivers play important roles in LUCC. Thus, the driver 
forces of LUCC are still contentious issues and further research is necessary [15].  

The understanding of the drivers behind landscape changes has been at the center of recent 
landscape research, which had been used as a framework for understanding the causes, processes, 
and outcomes of landscape change [16]. Due to the strong variation of existing research over diverse 
spatial and temporal scales, the understanding of driving forces of landscape changes is still limited 
[17]. As the promising approaches that can synthesize and upscale local-level studies to a more 
general insight, systematic review and meta-analysis techniques have raised attention. A meta-study 
in land use science is a valuable tool, which can synthesize knowledge and extract broader scale 
drivers of change from various publications and various individual case studies [18]. In recent years, 
meta-analyses have provided valuable insights into drivers of land use change; for example, a study 
identified the proximate and underlying drivers of land change across the whole Europe based on a 
systematic synthesis of 144 studies [16]. On the other hand, given the complexity of LUCC, measuring 
correlations between driving forces and LUCC is difficult, and there is no agreement on optimal tools 
yet. RF, a technique based on bootstrap aggregation, has great potential in this area, due to its 
capability of identifying complex interactive and non-linear relationships and deriving importance 
of the predictors [19]. RF has been used widely in land cover classification [20,21]; however, there 
were few applications in studying driving forces.  

The set of “new directions” to tackle the challenges of landscape change studies was defined by 
[17]. One of the new directions is the integrative approach, which requires quantitative data to be 
used together with qualitative information and narrative elements for studying the cause and effect 
relation between driving forces and landscape change to find the general patterns of change. Here in 
this study, with the guidance of this direction, a mixed method for detecting drivers of LUCC was 
suggested. This study combined meta-study, GIS, and machine learning to detect drivers of LUCC in 
the New England area. It started with a meta-study to obtain preliminary insight into LUCC and the 
drivers of LUCC in the study area. Remote sensing and geospatial data, the reliable data sources for 
understanding LUCC and determining the drivers of change, were then used for modeling and data 
analyses. In addition, we applied the random forests (RF) method to extract importance of the drivers 
for the study area. To the best of our knowledge, the integration of meta-study, GIS, and RF for 
seeking a deep understanding of the driving forces of landscape change has been barely carried out 
in early studies. The research area, New England, USA, has a well-documented land use history. 
Until around 1650, the region was almost completely covered with forest and under the non-
anthropogenic disturbances and successional dynamics [22]. Since the Europeans settled in early 
1700, more than half of the land was cleared to create croplands and pastures and remaining forest 
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areas were cut extensively for timber harvest for construction [23]. The forest clearance and 
agricultural expansion reached a peak, with up to 60%–80% of the land being cleared, in the mid-
1800s. Around the same time, farming began to decrease and regrowth of secondary forests on 
abandoned agricultural land started. As quickly as the land was cleared, much of the land reverted 
to forest in the early 1990s. New England has been regarded as a primary example of forest transition, 
which refers to expansion of forest areas. However, New England is facing forest lose and more 
complex land cover change in recent years [24,25]. The recent land cover change and forest change in 
New England are not completely unknown. What remain uncertain though are the driving forces of 
land change during the last two decades.  

The objectives of our study are to identify and characterize the most relevant factors responsible 
for LUCC, especially for recent years, in the New England area, through a new framework that 
involves a meta-study, GIS, and machine learning. The New England area is an important region for 
land transition with a diverse landscape. We tried to answer the following questions: (1) How and 
why is land use/cover changing in the New England area based on the previous studies? (2) What 
are the parameters that drive LUCC? Which ones are the most relevant driving forces of LUCC? (3) 
What are the main drivers for recent LUCC in the New England area? How is the consistency between 
the meta-study result and the RF method result? (4) What are the advantages and disadvantages of 
the mixed method in our case study? 

2. Methods 

2.1. Study Area 

The study area, the New England region ranges from 41°50 N to 47°290 N latitude and 66°540 
W to 73°450 W longitude, is located in the Northeastern United States and includes the states of 
Connecticut (CT), Rhode Island (RI), Massachusetts (MA), New Hampshire (NH), Vermont (VT), and 
Maine (ME) (Figure 1). On the one hand, New England is heavily forested, and New Hampshire is 
the second most forested state of the United States. On the other hand, New England includes some 
states with high population density, such as Rhode Island and Massachusetts. The meta-study 
focused on the land use/cover change studies in which the study areas are located in the New England 
area, cover the whole New England area, or contain parts of the New England area. At the meantime, 
two planning regions in Connecticut (Northeastern and Southcentral) and one planning region in 
Massachusetts (Metrowest) were selected for our case study for quantifying the determinants of 
recent LUCC using the random forests approach (Figure 2). These three planning regions can provide 
comparison between the relatively rural area (Northeastern) and urban area (Southcentral) within 
the same state (CT) and comparison between two relatively urban areas (Southcentral and 
Metrowest) in the two different states (CT and MA). The planning regions are the focus of the RF 
approach because they can provide a convenient scale for examining important land transition 
processes, and yet represent a feasible area for data collection and analysis, which ensure evaluation 
of most available drivers. 
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Figure 1. The New England. 

 

Figure 2. The three planning regions in Massachusetts (MA) and Connecticut (CT). 

2.2. Meta-Study 

As a study mentioned, “the term meta-studies includes meta-analyses, systematic reviews, and 
other secondary studies that aim to synthesize case-study findings [18].” The meta-study in this 
research does not include rigorous statistical treatment of case studies. The robust statistical 
treatment is usually not possible in land use study due to the differences of case studies in spatial 
scale, time period and design, complexity of empirical case studies, diversity in data and methods, 
and different perspectives of researchers from different disciplines [18]. Meta-studies have been used 
to assess, for instance, long-term urbanization across the globe [26], wetland conversion [27], drivers 
of typical deforestation [28], causes of desertification [29], and tropical agriculture intensification [30]. 
However, the meta-studies of LUCC processes and driving forces are still limited. 

In our meta-study, we collected case study information on land use/cover change from peer-
reviewed articles, reports, book chapters, proceedings of conferences, and PhD theses. We conducted 
comprehensive search of Elsevier Scopus databases and Google Scholar databases using word 
combinations of “land use change”, “land cover change”, “land use/cover change”, “New England”, 
“Northeastern”, “Maine”, “Vermont”, “Massachusetts”, “Rhode Island”, “Connecticut”, and “New 
Hampshire” in English. These studies were first examined to ensure that the location of study site is 
in, is part of, or contains New England area. Around 100 papers were collected. We further restricted 
ourselves to studies that are within a suitable time interval, at least including LUCC after 1980s. Then 
we excluded the studies just about impact of LUCC (e.g.,[31]), composition change of forest (e.g., 
[22]), and methodology studies (e.g., [32,33]). Thus, totally 54 papers were selected finally, which are 
all included in Supplementary. 

2.3. The Random Forests (RF) Approach 

The RF approach is one of the ensemble methods and was classified as one of machine learning 
approaches at the end of the nineties [34]. It is a popular and efficient algorithm to handle both 
classification and regression problems. It is based on bootstrap aggregation, which can overcome the 
overfitting problem of the decision tree model and can rank the explanatory variables using the 
random forests score of importance [19]. Recently, the RF approach is receiving highlighted interest 
in land-cover classification using multispectral and hyperspectral satellite sensor imagery [35,36], and 
lidar and radar data [37–40]. Meanwhile, its power on detecting variable importance has also received 
a growing attention. For example, [41] applied the RF approach to identify drivers of cropland and 
urban land changes in Jiangxi province, China, and confirmed its capability for assessing of the 
complex drivers of LUCC. Despite its popularity and efficiency, the application of RF to the analysis 
of the spatial driving forces of LUCC data is rare.  

The RF method was chosen for evaluating the driving forces of LUCC in the research area for 
several reasons. First, it has been proved to be able to deal with complex nonlinear problems and 
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address different types of response variables, such as numerical data (e.g., population density) and 
categorical data (e.g., soil types). Second, it can also make faithful data descriptions without strong 
model assumptions. It does not require the normal distribution of the dependent variable and is 
insensitive to collinearity issues. Another advantage of RF is that it can be trained in parallel. 
Therefore, in a large LUCC dataset, training of the RF model can be fast. In addition, the RF method 
can gain good prediction accuracy. Finally, the results of the RF method can be easily interpreted, 
especially for the feature importance. The feature importance generated by the RF method is 
normalized to a value between 0 and 1 by dividing the sum of all feature importance values. A higher 
value indicates a larger impact on the LUCC. The sum of all feature importance values is equal to 
one. 

2.4. Driver Classification and Data 

Based on previous studies, proximate causes and underlying driving forces are the factors that 
affect LUCC processes. Proximate causes are the actual process of LUCC, such as deforestation or 
urbanization, and underlying driving forces are basic societal or environmental factors that cause 
these changes, such as income or elevation variation (for more information, see [28,42,43]). 
Sometimes, the proximate causes and underlying driving forces were mixed together; therefore, 
generalization of driving factors is not easy. In fact, proximate causes may represent the outcomes of 
human decisions, which may be affected by the underlying driving factors. For example, a study 
summarized the worldwide urban expansion studies and found that the observed urban land 
expansion mainly depended on the interaction with demographic and economic drivers, such as 
population and GDP growth [26]. Hence, the focus of our study is the underlying driving forces, 
which has been divided into economic, demographic, political, biophysical, and location drivers 
(Table 1). 

Table 1. Category, descriptions, and examples of the underlying driving forces. 

Category Descriptions  Examples 
Demographic 

drivers 
Demographic factors that affect size and composition of 

population and households. 
Emigration/immigration, 

population 
Economic 

drivers 
Economic factors that are the components of economic 

developments and determinants. Incomes/households 

Political 
drivers 

Diverse policies that affect land use/cover change at 
various government levels. Owners/planning polices 

Biophysical 
drivers 

Natural factors including topography and climatic 
conditions that affect land use/cover change. 

Elevation/slope 
Climate 

Location 
drivers 

Drivers that focus on location, which may include human 
activities or immediate actions at the local level.  

Distance to road 
Distance to water 

Site-specific studies are needed in order to comprehensively assess the driving forces in New 
England areas. Three planning regions in CT and MA are selected in this study. To ensure the best 
data quality, we used different data sources. The thematically-consistent land use/land cover (LULC) 
datasets of the years 1990 and 2010 for MetroWest, MA were created using post-classification 
processing of the original LULC maps from the MassGIS [https://www.mass.gov/orgs/massgis-
bureau-of-geographic-information], and the thematically-consistent LULC datasets for Northeastern, 
CT and SouthCentral, CT were created using post-classification processing of the original LULC 
maps from the CLEAR [https://clear.uconn.edu/index.htm] (Figure 3). The explanatory variables 
used in the importance assessment of drivers by the RF approach are listed in Table 2. The 
explanatory variables used in this study were also collected from the MassGIS (for MetroWest, MA) 
and CLEAR (for Northeastern, CT and SouthCentral, CT) with the same spatial resolution 30 m × 30 
m as the LULC maps. 
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Figure 3. The land use/land cover data of the three planning regions, top: MetroWest, MA; middle: 
SouthCentral, CT; bottom: Northeastern, CT. 

Table 2. Acronyms, names, and descriptions of the driving forces used in this study. 

Acronyms Drivers Descriptions 
DEM Elevation Elevation in m 

SL Slope Slope in degrees 
AS Aspect Aspect in degrees 
ST Soil typea Categorical soil type data  

POPE Population density earlierb Population density of earlier year 
POPL Population density Laterc Population density of later year 

POPC Population density change 
Changes in population density from the earlier year to the later 

year  
MDA Median aged Median age of the population at census block level in 1990 
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PCI Per capital income Averaged income earned per person in 1990 
MHI Median house incomee Median household income at census block level in 1990 
MHV Median house value Median house value at census block level in 1990 

PA Protected area Reserved area, no development allowed  
DW Distance to water Euclidean distance from water  
DR Distance to roads Euclidean distance from roads 
DD Distance to development Euclidean distance from existed developed area 
RD Roads Binary roads data 
RI Rivers Binary rivers data 

HUSE House density earlierb House density of the earlier year 
HUSL House density Laterc House density of the later year 
HUSC House density change Changes in House density from the earlier year to the later year  

a No soil type data of MetroWest. b The earlier year of three planning regions is 1990. c The later year 
of MetroWest is 2000 and the later year of Northeastern and SouthCentral is 2010. d No median age 
data of Northeastern and SouthCentral. e No median house income data of Northeastern and 
SouthCentral. 

3. Results 

3.1. Meta-Study Results 

The analysis was limited to LUCC reported in case study areas ranging from small towns to 
large multi-state regions within or involving the New England (NE) area. Following the study areas 
of different cases, we found that 14 (i.e., 26%) of all cases occur at the whole NE level (including study 
areas slightly larger than NE; for example, a study includes NE and New York state [44]); 16 (i.e., 
30%) include more than one state in NE but does not cover the entire NE; 7 (13%) are located in MA; 
6 (11%) are located in CT; 4 (7%) are located in ME; 3 (6%) are located in RI; 3 (5%) are located in NH; 
and 1 (2%) is located in VT (Figure 4). More than half of the cases (54%) are at regional scales. 24 (i.e., 
44%) of all cases occur at the state level and among the six states, MA and CT have larger numbers of 
cases. In order to test whether there are differences among case locations, the information on LUCC 
and its underlying drivers were analyzed based on the case study locations. Totally four location 
sections were grouped, the NE, the partial NE, the south three states (CT, MA, and RI) of NE, and the 
rest three states of NE. 

 
Figure 4. Study areas of the 54 cases. 

After reviewing all the 54 papers, we summarized the information on the land cover types 
involved in each paper, the proportion of the LUCC analysis, and the magnitude of drivers included 
(Table 3). The cases involving all land cover types tend to be equally widespread (50% to 55%) among 
regional cases, except for north NE. The cases analyzing all land cover types in north NE hold a higher 
proportion (88%) than the other regional cases. The cases that only analyzed forest land (30% of all) 
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and other land cover types (15% of all, such as urban land and protect area) occupy nearly half of all 
the cases. Meanwhile, regional variations across the cases are significant. The forest-only study is 
more common in the NE and partial NE cases, while the cases with other land types just occur in 
partial NE and south NE; this situation is reasonable since the south NE is more developed than the 
north NE and the other land types are mainly urban land and impervious landscape. Papers with less 
than 50% content and more than 50% content focusing on LUCC hold similar shares except for south 
NE, where a higher proportion of cases contain more than 50% content related to LUCC. Papers with 
less than 50% content for LUCC mainly focus on the research aspects highly related to LUCC, such 
as forest composition, nonnative species, and ecosystem. In addition, not all the study cases include 
the driving forces analysis, and nearly one fourth of all cases (24%) do not mention any explanatory 
factors of LUCC. At the same time, the study cases just including a simple analysis of driving forces 
of LUCC (e.g., some contain only several sentences about one or two explanatory factors) exist among 
the four location sections in the range of 25% to 50%. Only 43% of all the study cases involve a 
relatively comprehensive driver analysis. They do not vary to a considerable degree across the four 
location sections. 

Table 3. Land cover types involved, proportion of land use/cover change (LUCC) analysis, and 
magnitude of drivers included in all the 54 cases. 

1)  
All cases 
(N = 54) 

NE 
(N = 14) 

Partial NE 
(N = 16)  

South NE 
(N = 16) 

North NE 
(N = 8) 

No. pct No. pct No. pct No. pct No. pct 
Land cover type 

All types 30 55% 7 50% 8 50% 8 50% 7 88% 
Forest-only 16 30% 7 50% 5 31% 3 19% 1 12% 

Other 8 15% 0 0% 3 19% 5 31% 0 0% 
Proportion of the LUCC study 

<50% content 26 48% 8 57% 7 44% 6 38% 4 50% 
>50% content 28 52% 6 43% 9 56% 10 62% 4 50% 

Driver included 
Comprehensive 

drivers 23 43% 8 57% 6 38% 6 38% 3 38% 

Simple drivers 18 33% 5 36% 4 25% 5 31% 4 50% 
No driver 13 24% 1 7% 6 37% 5 31% 1 12% 

Among all the study cases, we selected the cases that include driver analysis and then 
summarized these 41 cases based on the driver study methods and the occurrence of specific 
underlying driving forces in these cases (Table 4). The driver study methods are generally grouped 
into two types: the descriptive methods and the quantitative methods. The papers with descriptive 
methods are the papers studying possible driving forces of LUCC based on their observations, 
reviewing related materials, or personal experiences, and the papers with quantitative methods are 
the papers quantifying the associations between LUCC (or land cover classes) and driving factors. 
The cases with descriptive methods (30 or 73%) are more common, about three times more than the 
cases with quantitative methods (11 or 27%), and the cases with descriptive methods show 
comparatively low location variations. The top three most commonly mentioned drivers are 
population, economics, and topography. The population here includes all its similar expressions, 
such as population density, population growth, and population change. The economics includes 
some vague words, such as economic activity and social-economic drivers in the descriptive cases, 
and some distinct words, such as per capita income and median household income in the quantitative 
cases. The topography mainly includes elevation and slope. Population is considered in 85% of all 
cases and it is the most pronounced driver in partial NE cases (90%). Economics is considered in 
slightly more than three fifths of all cases (63%). More cases that demonstrate economic drivers 
leading to LUCC are researches for NE and partial NE compared with the single state cases. 
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Topography is less reported than the former two drivers, accounting for 39% of all cases. It appears 
that cases with topography driven LUCC are the least widespread in North NE (14%). 

Table 4. Driver study methods and occurrence of specific underlying driving forces in 41 cases. 

2)  

All cases including 
drivers  
(N = 41) 

NE 
(N = 13) 

Partial 
NE 

(N = 10)  

South NE 
(N = 11) 

North NE 
(N = 7) 

No. pct No. pct No. pct No. pct No. pct 
Study Methods 

Descriptive 
methods 30 73% 11 85% 6 60% 8 73% 5 71% 

Quantitative 
methods 

11 27% 2 15% 4 40% 3 27% 2 29% 

Specific drivers 
Population 35 85% 11 85% 9 90% 9 82% 6 86% 
Economics 26 63% 10 77% 8 80% 5 45% 3 43% 

Topography 16 39% 5 38% 4 40% 6 55% 1 14% 

3.2. Results of the Random Forest Approach 

The RF approach was employed to assess the driving forces of LUCC in terms of the importance 
of individual explanatory variables, that is, the predictive power for capturing the changes (Figure 
4). The driver “Distance to developed area (DD)” was consistently ranked as the most important 
explanatory variable for all the three sample sites. Its contributions to LUCC were 20.44% for 
MetroWest, MA, 14.00% for SouthCentral, CT, and 23.61% for Northeastern, CT. In contrast, the 
driver “Protected area (PA)” was ranked as the least important variable for the two sample sites in 
CT with relative importance lower than 0.3%, and the driver “Aspect (AS)” was ranked as the least 
important variable (0.29%) for the MetroWest, MA. Obviously, the drivers of two sites in CT have 
more similar importance compared with those of the site in MA. Besides DD, distance to water (DW) 
and distance to roads (DR) also play an important role in explaining the land change in the two sites 
of CT. The location drivers in the two sites of CT explain more land change than social-economic 
drivers, such as house density change (HUSC) and population density change (POPC). In contrast, 
the social-economic factors, including HUSC, population density (POPL), and POPC, show strong 
relationship with land change in Metrowest, MA, with the percentages of variance explained by them 
being 15.78%, 15.28%, and 7.41%, respectively (Figure 5). Hence, the variation of driver importance 
among different locations does exist. 

   
Figure 5. Results of the random forests (RF) approach for assessing the driving forces of LUCC. 

The results show that the RF method may serve as an effective tool for evaluating the 
relationships between land changes and explanatory variables. The RF can predict whether there is a 
change of the land type at each pixel over this study period using different drivers that could affect 
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this change, such as population density and distance to the road. The model evaluation method, 
cross-validation, has been widely accepted to be able to offer a robust measure of predictive power 
[45]. In order to utilize all the data, 10-fold cross-validation was adopted here to evaluate the 
performance of the RF method. Using the 10-fold cross-validation method, we split all the data to ten 
folds evenly, and each time we trained the random forest model based on nine folds and tested the 
model performance against the rest one-fold. This process was repeated ten times such that every 
fold served as the rest one-fold once to test the model. The averaged evaluation metric was used as 
the indicator of the overall model performance. We calculated the prediction of land use change for 
the three research areas, Northeastern, Southcentral, and Metrowest, and the accuracies from the 10-
fold cross-validation are 96.20%, 95.33%, and 95.10%, respectively. Hence, the random forest model, 
with all the available explanatory variables, can explain over 95% of the land changes for all of the 
three planning regions. 

4. Discussion 

4.1. Land Use/Cover Change Studies in New England Area From the Meta-Study 

Understanding land use/cover change, which is not a new topic of concern, plays an important 
role in the study of global environmental change. Past works show that land use/cover change study 
is closely associated with multiple other research areas, such as urbanization, vegetation dynamics, 
nonnative species, and climate change in the New England area. LUCC study is not only an important 
research area for its own, but also serves as the foundation for multidisciplinary studies or the 
connection between multiple research topics. For example, a study assessed the water quality 
variability in Sebago Lake, Maine, with the climatic factors and land use change, and indicated an 
influential role of land use change in determining water quality [1]. Most of the past LUCC studies 
in the study area are multi-disciplinary studies, and nearly half of them (48% of all studies) have less 
than 50% content focusing on LUCC analysis based mainly on the LUCC information from pervious 
LUCC studies. Even the rest studies, which have more than 50% content for LUCC analysis, hardly 
have comprehensive LUCC analysis. In addition, many studies (30% of all studies) considered only 
forest land. This was determined by the characteristics of the research area where the major land class 
is forest. Therefore, a comprehensive LUCC study in the research area is still in demand and, 
moreover, it could also provide supportive information for related multi-disciplinary studies. 

To better understand LUCC, an in-depth analysis of the relationships between the changes and 
the causes (the driving forces) is needed. The knowledge of the relationships between the changes 
and the causes may greatly improve modeling and projection of various kinds of LUCC and prevent 
the possible negative influence. Analysis of the driving forces for the research area is still limited. 
Nearly one fourth of the previous studies (24%) did not mention the drivers of LUCC and one third 
of all the studies (33%) simply discussed the drivers with only a few sentences. Even the remaining 
43% of all the studies barely had a real comprehensive driving forces analysis. For those studies that 
mentioned the drivers of LUCC, the descriptive method (73%) was their major research technique. In 
the research area, an association is evident between LUCC and population growth over the long term. 
The associations between LUCC and economy and topography can also be found with variations. 
However, the association between LUCC and population growth is not a simple linear relationship. 
For example, urban sprawl and deforestation in the past several decades were directly associated 
with population growth, while they are recently more related to the low-density residential 
development. Yet these important contributions from the past studies only mapped the broad 
relationships between LUCC and its driving forces. Moreover, the studies that focused on LUCC and 
included a relatively comprehensive driver analysis only account for 30% of all the studies. 

4.2. Consistency and Difference of the Meta-Study and the RF Method 

RF explained over 95% of the LUCC for all three planning regions in our case study. Driver 
importance of LUCC in the three planning regions within the research area was evaluated and 
compared. In general, the RF model results show that LUCC is the aggregated effect of anthropogenic 
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and biophysical drivers, which is identical to the findings from the meta-study. On the other hand, 
the importance of anthropogenic and biophysical drivers in the three planning regions varies to some 
extent, which was hardly detected by the meta-study. The RF feature importance reported that 
socioeconomic factors including population density and house density were predominant 
determinants of LUCC in the relatively developed regions such as the SouthCentral and the 
MetroWest, and the biophysical factors were relatively more important in explaining LUCC in the 
Northeastern, CT. The consistent finding from both meta-study and the RF method is that the location 
factors, such as distance to developed area and distance to road, were important drivers for all the 
three planning regions. However, the location drivers were barely mentioned in the previous 
qualitative studies in this research area. In summary, both consistency and inconsistency between the 
findings from meta-study and the RF method exist. 

4.3. Model Suitability and Reliability 

Identification of the driving forces of LUCC is a challenging task, due to the complexity and 
nonlinearity of LUCC, diversity of drivers at different temporal and spatial scales, and interactions 
and feedbacks among drivers. A mixed-method approach may provide more comprehensive 
information. In our study, the meta-study provided an initial idea about the research content. The 
strength of the meta-study lies in its capability to pool results from individual studies for 
generalization of the driving forces of LUCC in the research area. However, related LUCC studies in 
the New England area were rare and at different temporal and spatial scales. Moreover, differences 
in the research focus and methods could lead to bias. However, the geospatial analysis in the meta-
study may provide information about rates of LUCC and spatial distributions of drivers, which may 
be combined with the RF model results to quantify associations between LULC and driving factors. 
The quantitative method of the RF model may reduce the subjectivity weakness in the meta-study. 
In general, quantitative methods are often seen as more reliable than qualitative methods since 
objective quality criteria are provided by quantitative methods [46,47]. However, many qualitative 
spatial data as indirect drivers are needed for the quantitative study of LUCC. Therefore, a mixed-
method approach that combines qualitative and quantitative analyses should benefit the research 
through including both direct and indirect driving forces, which may increase the probability of 
discovering important drivers of LUCC. In addition, it may complement the methodological 
shortcoming of one method through the advantage of another method [48]. Furthermore, the mixed-
method approach allows comparison of different methods about the discordance and consistency of 
findings. In summary, information provided by multiple sources may be more powerful than that 
from the single source. 

5. Conclusion 

The study started with a meta-study to reveal the general information of LUCC in New England 
and then focused on the driving forces analysis. Through combing geospatial analysis results from 
the meta-study and the RF model, this mixed method provides a condensed analysis of driving forces 
of LUCC from both qualitative and quantitative data in the study area. Our study revealed that the 
population and economic factors are important drivers of LUCC in the research area, with a complex 
nonlinear relationship. The value of the mixed method is that it provides a more comprehensive 
identification of the drivers by complementing the findings of one method through the advantage of 
another method. For instance, in our study the RF model indicated the importance of the location 
factors, which was barely noticed in the meta-study. Hence, this mixed method may be meaningful 
to the LUCC study by enhancing understanding of the driving forces and providing the drivers’ 
selection criteria for modeling the changes. Moreover, better land management advice for sustainable 
development could be made based on more solid information using the mixed method. However, 
the mixed method is not feasible for all studies. It highly depends on previous studies, which should 
have a decent amount to support a systematic review. On the other hand, to conduct a quantitative 
analysis of driving forces, the availability of important data, such as population and economic 
datasets, is a prerequisite. Moreover, the new approach aims to improve our ability to understand 



ISPRS Int. J. Geo-Inf. 2020, 9, 350 12 of 14 

 

the driving forces of LUCC, while linking findings from different aspects is always challenging. In 
future work, with the ongoing improvement of data, the mixed method should be able to better serve 
the LUCC studies. In addition, research on a more standard way to combine qualitative and 
quantitative methods is also necessary. 
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