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Abstract: Empirical studies have focused on investigating the interactive relationships between 
crime pairs. However, many other types of crime patterns have not been extensively investigated. 
In this paper, we introduce three basic crime patterns in four combinations. Based on graph theory, 
the subgraphs for each pattern were constructed and analyzed using criminology theories. A Monte 
Carlo simulation was conducted to examine the significance of these patterns. Crime patterns were 
statistically significant and generated different levels of crime risk. Compared to the classical 
patterns, combined patterns create much higher risk levels. Among these patterns, “co-occurrence, 
repeat, and shift” generated the highest level of crime risk, while “repeat” generated much lower 
levels of crime risk. “Co-occurrence and shift” and “repeat and shift” showed undulated risk levels, 
while others showed a continuous decrease. These results outline the importance of proposed crime 
patterns and call for differentiated crime prevention strategies. This method can be extended to 
other research areas that use point events as research objects. 
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1. Introduction 

Quantitative criminology has conducted an investigation into crime patterns. Crime pattern 
analysis uncovers the underlying interactive process between crime events by discovering where, 
when, and why particular crimes are likely to occur [1–3]. The outcomes improve our understanding 
of the dynamics of unlawful activities and can enhance predictive policing. 

Early efforts found that crimes are not randomly distributed but tend to follow patterns. For 
example, researchers observed that disproportionate crimes occur shortly after the previous crimes 
and call this phenomenon repeat victimization [4–7]. In addition, many places exhibit similar crime 
distribution patterns due to their similar geographic features [8,9]. According to displacement or 
diffusion of benefits, nearby locations may experience repeated high crime risk due to the dynamic 
nature of criminal opportunities [10–17]. Many studies have been conducted to detect and interpret 
these phenomena [4–22]. However, they are typically designed to investigate one particular pattern 
type and often overlook the complexity of crimes [17]. Crime changes across space, time, and culture 
[23,24]. Moreover, they are not generalized enough to detect, display, and interpret combinations of 
those patterns simultaneously. 
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Considering the complexity of crimes, we must study a comprehensive model. Utilizing graph 
representation, we can efficiently and effectively discover crime patterns, including repeat and near-
repeat (RNR) co-occurrence, and geographic shift. Besides, we will introduce and study a 
combination of these patterns. Compared to previous studies, we aim to detect, demonstrate, and 
analyze crime relations that have not been studied yet. The research results are expected to improve 
crime research and analysis by providing multiple crime patterns. This method can be extended to 
other research areas that use point events as research objects. 

2. Literature Review 

Crimes are often linked because of their similarities [25–27]. The same offenders commit some 
crimes, while others occur in similar places. For offenders, these places provide suitable opportunities 
because they can replicate their experience from previous crimes and reoffend after rational 
consideration of risks and rewards [28,29]. The literature suggests that these linked crimes are usually 
similar to each other in nature [21,30]. 

Crime pairs committed in close proximity within a short time are known as repeats and near-
repeats (RNR) [25]. Two hypotheses could account for such phenomenon: “boost” and “flag” 
[4,6,7,13,17,19,21,31–36]. The boost theory explains that an initial crime can boost the risk of 
subsequent victimizations [19,32,34]. Offenders may gain experience from a previous offense or gain 
information from other offenders and commit another crime at the same or proximate place [37]. In 
this situation, previous victimizations “boost” future crimes. Flag theory argues that opportunistic 
offenders may flag certain vulnerable objects as targets [19]. These targets may be physically soft or 
not well protected with security controls [4,18,19,37]. Thus, future offenders can take advantage of 
these flagged places and repeatedly commit crimes. Both boost and flag theories account for crime 
pairs close in space and time. 

Shift is an extended pattern of near-repeat. While RNR focuses on spatial-temporally close crime 
pairs, shift patterns emphasize crime pairs close in time [11,14–17,29,38,39]. This phenomenon could 
be interpreted as a response to crime prevention initiatives [14,16,17]. When one place has been 
victimized, motivated offenders would displace to alternative places for suitable opportunities [29]. 
Further interpretation could be found in crime pattern theory and routine activity theory [1,2,22,40–
45]. According to these theories, people participate in routine activities between geographic nodes, 
such as homes, workplaces, and entertainment sites. Over time, they get better acquainted with the 
places and form their own awareness space, also known as “mental maps” [29,42]. When one 
opportunity disappeared, the motivated offenders would navigate to other places on their “mental 
map” to explore alternative opportunities, even those opportunities can be far away. As such, two 
places may experience a high crime risk consecutively due to their similar geographic characteristics 
[17]. As such, the links between crime pairs are critical for understanding criminal activities. 
Identification of this pattern could uncover place pairs rich in crime shifts. 

Crimes could be linked when they were committed at the same/close time [8,9]. Research shows 
that many facilities may report similar crime patterns due to their geographical features [22,40]. For 
example, bars, entertainment sites, and liquor stores may attract a large number of people on certain 
days like weekends and game days [46]. These facilities usually demonstrate uniform opening time 
and may attract similar groups of people [47]. Criminal opportunities can be created during shared 
opening times and activities (e.g., sports events). When converged with suitable targets, along with 
the absence of guardianship, a motivated offender may commit crimes and thereby form co-occurring 
crimes [43]. The linked crime pairs typically inform similar crime patterns at/around certain 
geographic facilities [8,9]. Identifying this pattern would be beneficial for discovering places that are 
typically attractive for certain crimes.  

Measurements of the patterns vary significantly. The Knox test is typically adopted to test RNR, 
while the weighted displacement quotient is applied to measure crime shift [14,21,48]. More recently, 
data mining methods with frequent item mining have been applied to detect frequent co-occurring 
crime pairs [8,9]. However, these mathematical methods were typically designed for one pattern 
measurement. We must investigate a generalized model for combinations of these models. 
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Graph theory has been applied in many research fields. According to this theory, a graph can 
represent a group of spatial-temporal events that consist of nodes and edges. Nodes and edges 
represent the events and their associations, respectively. For a crime network, the edges represent the 
interactive relationships between crime events. A recent study applied graph theory to the analysis 
of crime patterns and relationships within hotspots [49,50]. Nevertheless, the graphs were 
constructed based on the geometric characteristics of crime events and are difficult to explain using 
criminology theories. Furthermore, the research was restricted to a certain space time scale. Our 
current research will construct graphs based on existing criminology knowledge and analyze 
patterns on different scales. The research results can reveal the complex interactive relationship 
between crimes and are expected to benefit our understanding of the dynamic nature of crimes. 

3. Methodology 

In this study, we introduce three basic crime patterns as well as four combinations of these 
patterns. The Monte Carlo simulation method will be introduced to identify statistically significant 
crime patterns. Finally, we will display and analyze the experimental results. 

3.1. Event Network 

According to graph theory, nodes and edges make up a graph. In this study, a crime network is 
composed of crime events, indexed by i, and the links between each crime pair. Each of the crimes 
was recorded with geographical location, 𝑥௜ , 𝑦௜ , and time of occurrence, 𝑡௜ . The shorthand 𝑑௜௝ , 𝑡௜௝ 
represents the spatial and temporal distances between crime pairs 𝑖, 𝑗, which can be calculated with 
the following equation:  

𝑑௜௝ = |𝑥௜ − 𝑦௜| + ห𝑥௝ − 𝑦௝ห 

𝑡௜௝ = 𝑡௝ − 𝑡௜ (1) 

The nodes and edges construct a spatial-temporal network in which two crimes can be connected 
if the spatial distance 𝑑௜௝  and/or temporal distance 𝑡௜௝ is smaller than specified thresholds 𝐷௦ , 𝐷௧, 
respectively. In order to detect crime patterns on multiple scales, the spatial and temporal thresholds 
𝐷௦ , 𝐷௧ are empirically determined at space-time scales with a difference of 200 m and seven days, 
respectively. Manhattan distance is adopted for this research because it follows a grid-like path, 
which approximates the actual path between points people travel along in the urban context [51]. 
Previous studies have shown statistically significant relationships between burglaries that occur close 
together spatially and temporally [4,6,20,52]. Therefore, burglary is selected as the research object in 
this study. 

3.2. Crime Patterns and Crime Networks  

With the basic crime patterns, we construct three basic crime patterns as well as combinations 
of these patterns (Figure 1, Table 1). The three basic patterns include RNR, shift, and co-occurrence 
(the subgraphs in 1st row of Figure 1). The four combined patterns are composed of basic patterns, 
which represent more complex crime associations (the subgraphs in 2nd row of Figure 1). 
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Figure 1. Various crime patterns. (Repeat) Property A is burgled. This property is burgled again 
shortly after the previous burglary. The two crimes will be connected and marked as one “repeat.” 
(Shift) Property A is burgled and not burgled again within a certain temporal bandwidth, but 
property B is. The two crimes committed at different times will be connected and marked as a “shift.” 
(Co-occurrence) Properties A and B are burgled on the same day, and neither is victimized again 
within certain days. The two crimes can be connected and marked as one “co-occurrence.” (Repeat 
and shift) Property A is burgled. Then, properties A and B are both burgled again within a certain 
temporal bandwidth. This group of crimes could be connected and marked as a “repeat and shift.” 
(Repeat and co-occurrence) Properties A and B are burgled on the same day, and one of the two places 
experiences another burglary within a certain temporal bandwidth. This group of crimes could be 
connected and called “repeat and co-occurrence.” (Shift and co-occurrence) Properties A and B are 
burgled on the same day, and one of the two is burgled again. Obviously, this pattern is identical to 
“repeat and co-occurrence.” Where there is a “repeat and co-occurrence,” there will be a “shift and 
co-occurrence,” and so the two patterns will merge and be referred to as “repeat and co-occurrence.” 
(Shift, repeat, and co-occurrence) Properties A and B experience burglaries on the same day. The two 
places experience two additional burglaries separately. These crimes committed at two different 
places could be connected and marked as “shift, repeat, and co-occurrence.” This pattern has the 
highest number of crimes. If property A and property B are in proximity, this pattern would probably 
be considered a hotspot because of the disproportionate levels of crime density. 

Table 1. Rules for the construction of crime network. 

Index Pattern  𝑫𝒔   𝑫𝒕  
1 Repeat  𝑑 = 0   0 < 𝑡 ≤ 𝐷௧  
2 Shift  0 < 𝑑 ≤ 𝐷௦   0 < 𝑡 ≤ 𝐷௧  
3 Co-occurrence  0 < 𝑑 ≤ 𝐷௦   0 ≤ 𝑡௜௝ < 1  

4 Repeat and Shift  𝑑ଵ = 0  
0 < 𝑑ଶ ≤ 𝐷௦ 

 0 < 𝑡ଵ ≤ 𝐷௧  
0 < 𝑡ଶ ≤ 𝐷௧ 

5 Repeat and Co-occurrence  𝑑ଵ = 0  
0 < 𝑑ଶ ≤ 𝐷௦ 

 0 < 𝑡ଵ ≤ 𝐷௧  
0 < 𝑡ଶ ≤ 1 

6 Shift and Co-occurrence  0 < 𝑑ଵ ≤ 𝐷௦  
0 < 𝑑ଶ ≤ 𝐷௦ 

 0 < 𝑡ଵ ≤ 𝐷௧  
0 < 𝑡ଶ ≤ 1 

7 
Shift, Repeat and 

Co-occurrence 

 𝑑ଵ = 0  
0 < 𝑑ଶ ≤ 𝐷௦ 
0 < 𝑑ଷ ≤ 𝐷௦ 

 0 < 𝑡 ≤ 𝐷௧  
0 < 𝑡ଶ ≤ 𝐷௧ 
0 < 𝑡ଷ ≤ 1 

Notes: 𝑑௜: spatial distance between ith pair of crimes; 𝑡௜: temporal distance between ith pair of crimes; 𝐷௦: 
spatial bandwidth; 𝐷௧: temporal bandwidth. 

In Figure 1, the horizontal axis is the time dimension (Figure 1, Table 1). As such, the “repeat” 
graph represents the phenomenon in which two crimes occur one after another in the same place. 
The “shift” graph represents two crimes committed consecutively at two different places. The “co-
occurrence” graph represents two simultaneous crimes committed at two different places. It is 
necessary to note that near-repeat will be detected together with a shift even though they represent 
two distinct phenomena [6,21,32]. As such, geographic shift refers to displacement/deflection and 
near-repeat. Displacement/deflection cannot be separated from near-repeat as it is difficult to 
determine why the following crime geographically shifted as of the initial crime [10]. 

Repeat and shift is a combination of repeats and shifts. When one crime is committed in property 
A, another crime will be committed at properties A and B. Repeat and co-occurrence is a combination 
of the two. Two places were victimized at the same time. One of the two places experienced another 
crime shortly after the previous. Shift and co-occurrence are essentially the same as repeat and co-
occurrence. Therefore, only one of the two patterns is calculated. The last pattern is shift, repeat, and 
co-occurrence. It can be interpreted as two co-occurring crimes, followed by two others shortly after. 

Considering the various risk levels introduced by the research results on RNR, the interactive 
relations show various intensities on different space-time scales [6,7,17,20,21,35]. Therefore, the 
spatial and temporal thresholds 𝐷௦ , 𝐷௧  are empirically determined at space-time scales with a 
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difference of 200 m and seven days, respectively. Given the thresholds, the spatial-temporal networks 
for each pattern are constructed in the following steps. 

3.3. Crime Risk Introduced by the Crime Patterns 

Monte Carlo simulation was conducted to estimate the risk level introduced by each crime 
pattern. First, the crime pairs satisfying the definitions of crime patterns were connected and marked 
as subgraphs (Table 1). Then, the number of each crime pattern was counted according to its 
corresponding space-time band. At last, the count of patterns from real crime data was compared 
against the expected counts generated by simulated data. 

In this calculation, a connection between one pair of crime represents their distance over space 
and time. Therefore, the ratio of the actual number of patterns 𝐶௔௖௧௨௔௟  against all expected numbers 
of patterns in simulated data 𝐶௘௫௣௘௖௧௘ௗ  can statistically show the risk level R introduced by crime 
patterns. 

R =
𝐶௔௖௧௨௔௟

𝐶௘௫௣௘௖௧௘ௗ

 (2) 

Higher values mean higher risk levels introduced by one pattern, while lower values mean 
lower risk levels introduced by one pattern. The significance level of a risk value is determined by 
the percentile level of the number of observed crime patterns in the counts of simulated crime 
patterns. 

For each pair of crimes, three basic patterns are first detected. If two crimes are at the same 
location, then the two crimes can be connected as a subgraph for repeat pattern. If two crimes are 
committed at the same time but located at different places, then the two crimes are connected as a 
subgraph for co-occurrence pattern. Similarly, if two crimes are located at two different places, the 
earlier one has no following crime committed at the same place, while the latter has no previous crime 
at the same place. Then, this pair of crimes can be connected as a subgraph for shift pattern.  

Following the basic patterns, we further detect their combinations. The repeat and shift pattern 
can be detected when a repeat occurs and one crime is committed at another place as a shift. A repeat 
and co-occurrence pattern can be detected when a co-occurrence occurs and one crime is committed 
after one of the two co-occurring crimes. A repeat, shift, and co-occurrence pattern can be detected 
when a co-occurrence takes place and two crimes are committed after the two co-occurring crimes, 
respectively. Crime simulation and risk calculation are completed on Matlab platform. 

4. Study Area and Data 

Complying with the confidentiality requirements of the local Public Security Bureau (PSB), we 
adopted the short-term N to represent large Chinese cities. According to data from local demographic 
departments, 2.6 million permanent residents and 0.7 million migrants live in the study area [53]. The 
registered unemployment rate for N city is 1.82% and the total administrative area includes 4 
districts, covering 266 km2. 

At the beginning of the 21st century, N city experienced a period of rapid economic development. 
Like many other cities in China, ancient buildings at the central part were well kept as city features, 
while many new communities were built in the suburban areas for urbanization. Besides, the local 
public transportation system was constructed to improve the efficiency of transport for citizens. 

The dataset adopted for this research contains the location and date of the crime records. 
Previous studies have shown statistically significant relationships between burglaries that occur close 
together spatially and temporally [4,20,52]. Therefore, burglary is selected as the research object in 
this study. After being registered on the map, 8561 burglaries with coordinates and date were used 
for the current research. These crime records were between January 2013 and December 2013. 

Community sizes and population density vary across N city, which is quite similar to the study 
area used in existing Chinese research [50]. Combined with the other result from western countries, 
we chose a 200 m spatial bandwidth, a seven-day temporal bandwidth. 
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5. Experimental Results 

Following the crime patterns in Table 1, we constructed the corresponding networks. Figure 2 
represents the results of pattern analysis. The value in each cell informs the crime risk level over an 
expected frequency in the corresponding spatial-temporal bands. Dark units correspond to larger 
values and inform higher crime risk, while light-colored units correspond to smaller values and 
inform lower crime risk. White units correspond to insignificant values. 

As shown in the figures, the burglary risk level introduced by the patterns varies a lot (Figure 
2). As a classic pattern, the “repeat” phenomenon is observed to exhibit within 49 days. The highest 
risk level is located between eight to 14 days of bandwidth. The ‘co-occurrence’ phenomenon is 
observed to exhibit within 200 m. Therefore, the frequency of co-occurrent crimes within 200 m is 
significantly greater than expected. Only one significant cell value was observed in the figure “shift”, 
which indicates that the “shift” pattern is significantly more frequent than expected. Once a location 
experiences a burglary, the chance of the second one taking place within one to 200 m and within the 
next seven days is significantly greater than if there were no discernible patterns (Figure 2). 

 
Figure 2. Crime risks introduced by different crime patterns. 

According to the definition of the “repeat and shift” pattern, once a place was victimized, the 
possibility for both the same place and nearby places within 1000 m to experience another 
victimization is significantly high. Cells within 200 m and seven days exhibit high crime risk, which 
indicates that both the previous victimized places and their neighbors within 200 m and seven days 
would experience high crime risk, respectively (Figure 2).  

The figure ‘co-occurrence and shift’ in Figure 2 shows the crime risk informed by “co-
occurrence” and the shift pattern. According to the definition of this pattern, once two adjacent places 
simultaneously experienced crimes, the possibility for one to experience another crime is significantly 
high. Values were observed within 1000 m and 35 days (Figure 2). The highest value is located at “1–
200” meters and “1–7” days cell, which indicates that the risk level within the corresponding spatial-
temporal area is the highest one than expected. 

The figure ‘Co-occurrence, repeat, and shift’ in Figure 2 indicates the crime risk informed by the 
co-occurrence, repeat, and shift patterns. This graph shows an elevated burglary risk in the 0–600 m 
spatial range and within 49 days informed by co-occurred burglaries. The cell values within 0–14 
days and 0–200 m are much higher than the other cell values, and a much higher crime risk level 
could be expected for this pattern. Many of the patterns showed significantly elevated burglary risk 
within 200 m and 14 days after the original events. This space-time range is consistent with previous 
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research results using burglary data in China. The risk would decrease to normal over space and 
time. 

Some of the patterns show higher burglary risk levels, while others show lower. The combined 
patterns estimate a higher risk than the basic patterns. Therefore, crimes are more likely to occur in 
clusters than in pairs. The most complicated pattern co-occurs, and repeat and shift patterns could 
estimate the highest risk level (> 6), which means this pattern may have a better ability to predict 
crime risk than others. The repeat pattern performs the lowest risk level. 

6. Analysis 

This study applied graph theory to a burglary dataset and focused on analyzing the potential 
ability of crime patterns represented by subgraphs to elevate crime risk. Finally, we statistically 
confirmed the proposed patterns. At least in N, a large Chinese city, the burglary data shows 
significant risk level over space and time with respect to the proposed patterns. On linking the crimes 
into subgraphs, the patterns revealed that the heightened risk created by a previous burglary event 
remained within a limited area in space and time. 

Consistent with previous literature, the results show that the repeat phenomenon is evident for 
burglary in a Chinese context [6,7,17,35,36,50,54]. The elevated risk level was statistically significant 
at 49 days. This continuous high crime risk can lead to hotspots, which call for preventive police 
deployment at the repeatedly victimized places. According to the “flag” hypothesis, these places have 
disadvantages that attract people’s attention and provide opportunities for offenders [19]. Thus, some 
special maintenance is necessary to eliminate these disadvantages. 

Compared to the other patterns proposed in this approach, however, the repeat pattern creates 
the lowest risk level. Given this result, the traditional crime prediction method, which gives equal 
weight to recent crime events, may overlook the potential ability of historical crimes for crime 
prediction [34,55,56]. Separating crimes based on their patterns may help develop crime prediction 
methods and improve their efficiency. 

A shift pattern was observed and statistically significant within a limited spatiotemporal range 
of 200 m and seven days. As mentioned, we hypothesize this pattern to be composed of several 
phenomena, such as displacement, diffusion, and near repetition. In the literature, displacement and 
diffusion were observed to occur in a much larger spatiotemporal area. For example, Wang and Liu 
observed significantly elevated burglary risk within 600 m and 28 days [17]. Ratcliffe and Breen 
quantitatively measured displacement over 1 mile [14,57]. However, the elevated risk area created 
by the shift pattern is very limited. This result suggests that burglars are likely to transfer to 
proximate places for other opportunities, while there are no co-occurrences or repeats occur. Such 
small impact areas suggest that the “shift” pattern is more likely to be composed of near-repeat rather 
than displacement. 

The co-occurrence phenomenon can be interpreted in two ways. First, similar places were 
hypothesized to share similar geographic features, which can exert similar impacts on people and, 
therefore, produce the same opportunities for these places on the same day [9]. This interpretation 
emphasizes the shared vulnerability of the co-victimized objects as a key reason for the co-occurring 
victimization. Second, many crimes that occur in proximity and on the same day are usually serial 
crimes. Offenders may commit two burglaries consecutively on the same day just because the second 
victim seems as vulnerable as the first one. The first account emphasizes the impact of criminogenic 
facilities, while the second one argues for the disadvantages within neighborhoods. The experimental 
results suggest that co-occurred crimes take place within a limited space area. These criminogenic 
places require proactive measures to prevent more crimes. 

Compared to basic patterns, joint patterns create higher risk levels, which further outlines the 
importance of crime patterns. At least in this case study, crimes tend to occur in forms of complex 
patterns rather than simple ones. These influential patterns are more likely to form hotspots than 
crime pairs. 

The influence of joint patterns differs in terms of intensity and scope. The crime risk generated 
by repeat and shift patterns ranges from 49 days to 1000 m. Furthermore, the risk level was not 
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linearly decreased but showed some fluctuation, which suggests periodic activities or displacement 
of offenders [6]. Co-occurrence and shift patterns create linearly decreased crime risk where the 
highest burglary risk is directly after the origin crime in this pattern. Once a co-occurred crime was 
committed, the proximate areas would experience high crime risk within seven days. The burglary 
risk decreases rapidly after seven days. Similarly, co-occurrence, repeat, and shift patterns create a 
highly elevated crime risk level within 200 m and 14 days as well as a rapidly decreased risk level 
outside the range. The heightened crime risk within a limited area is more likely to be interpreted as 
a result of the attractiveness of specific geographical characteristics for potential offenders [19,32,34]. 

The distinct risk patterns suggest different levels of crime prevention measures and crime 
prediction methods. For example, repeat and shift patterns create an undulated crime risk within 
1000 m and 49 days of space and time. As such, crime prevention initiatives must consider special 
strategies to decrease crime risk in specific locations over short periods. In contrast, the other two 
patterns seem to generate a high level of risk directly after the original crime. The two patterns call 
for preventive measures immediately after the original crime. 

7. Conclusions 

In this study, graph theory was introduced to construct crime graphs. Several subgraphs were 
generated to represent the complex interactive relationships between crimes. Using the burglary 
record from a large Chinese city, crime patterns were statistically significant within a certain 
spatiotemporal bandwidth. The identification of these patterns further confirmed the interactive 
associations between crimes. 

According to graph theory, the subgraphs were created based on space-time distances between 
crimes. These subgraphs expanded the repeat and near-repeat phenomena with more crime patterns. 
The experimental results demonstrated the undulation of risk after a previous burglary and 
displayed how crimes would occur according to these patterns. Further, the differences among crime 
risks introduced by different patterns are also noteworthy. They show that the subgraphs guided by 
graph theory can help classify crime patterns and benefit crime risks introduced by these patterns.  

The basic crime patterns create a relatively low burglary risk as of the combined crime patterns. 
Co-occurring patterns suggest special maintenance performed for the vulnerable neighbors. Shift 
patterns call for preventive measures at places nearby the previous crime locations. The complex 
patterns generate a higher risk level than the basic patterns. Repeat and shift patterns create 
undulated burglary risk, which calls for periodic preventative activities at special times and places. 
The other combined patterns, however, generate high crime risk within a limited spatiotemporal 
area. Proactive policing is necessary shortly after the original crimes to prevent crime and reduce 
overall crime levels. 

Given the various range and intensity levels of crime risk, crime pattern analysis can be applied 
to improve crime prediction accuracy and increase efficiency of patrols. The modified method and 
the introduced patterns could be applied in point-event-based studies. 

The current research is limited to discerning the social environmental characteristics of the 
proposed patterns. These patterns may be associated with different social environmental 
characteristics. Identifying the criminogenic factors for these patterns is critically important for 
developing crime prevention strategies. For example, neighbors with co-occurred crimes may expose 
similar vulnerabilities offenders. Identifying the criminogenic factors for these patterns can reveal 
why these patterns form at certain places. 
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