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Abstract: Land use types and anthropogenic activities represent considerable threats to groundwater
pollution. To effectively monitor the groundwater quality, it is vital to measure pollution levels
before they become severe. In our research area, located in Gilgit Baltistan in northern Pakistan,
groundwater supplies are diminishing due to urban sprawl. In this study, we used a GIS-based
DRASTIC model (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of
the vadose zone, Hydraulic conductivity) to analyze the area’s hydrological attributes to assess the
groundwater susceptibility to pollution. Considering the importance of anthropogenic activities,
this research primarily utilizes an adjusted DRASTIC model called DRASTICA, which incorporates
anthropogenic impact as a parameter in the model. The resulting map, which depicts vulnerability to
groundwater contamination, reveals that 19% of the study area is classed as having high vulnerability,
42% has moderate vulnerability, 37% has low vulnerability, and 2% has very low vulnerability to
groundwater contamination. The adopted validation process (nitrate parameter of water quality)
revealed that the suggested DRASTICA model achieved better results than the established DRASTIC
model in a built-up environment. We used the nitrate concentration in groundwater to verify the
formulated results, and the single parameter sensitivity analysis and map removal sensitivity analysis
to analyze the model sensitivity. The sensitivity analysis indicated that the groundwater vulnerability
to pollution is largely influenced by anthropogenic impact and depth to the water table, thereby
suggesting that anthropogenic impact must be explicitly tackled in such studies. The groundwater
zones exposed to anthropogenic pollution can be better classified with the help of the proposed
DRASTICA model, particularly in and around built-up environments. The responsible authorities
can use this groundwater contamination data as an early warning sign, so they can take practical
actions to avoid extra pressure on this vital resource.
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1. Introduction

All societies, productions, and ecologies require a clean and abundant water supply for energy
production, drinking, sanitation, and farming. The quantity and quality of groundwater are significant
universal matters, and the water crisis represents a severe threat faced by human beings in the present
times [1–3]. One of the most important sources of drinking water is the groundwater, as the pollutants
from the surface of earth are less influential to this source. However, the quality of groundwater is
increasingly threatened by human activities, leading to momentary or enduring damage to the resource.
Consequently, harmful contaminants must be removed from the water before use, thus inviting a
significant cost [4]. An abrupt upsurge in urban development has negatively impacted the quality
and quantity of groundwater [5]. The availability of freshwater is vital for sustainable growth of the
natural ecosystem and human wellbeing. Therefore, for planners and decision-makers, to comprehend
an area’s groundwater susceptibility to contamination is a vital process [6,7].

The most available source of potable water supply in emerging countries like Pakistan is
groundwater. In Pakistan, economic growth and employment are mainly based on agriculture.
A substantial portion of the gross domestic product (GDP) stems from agriculture and the associated
industry [8]. In many agricultural areas, land treatment using fertilizers makes aquifers prone
to nitrate contamination, which represents a severe threat to groundwater purity. Other nations,
including China, India, and Bangladesh are also suffering from susceptibility to groundwater pollution.
Both in India and in other parts of the world, aquifers are the foremost supplier for the water
sector [9]. The investigations conducted in Bangladesh on groundwater have mostly been limited
to hydrogeochemical and hydrogeological features, including groundwater quality, groundwater
potential, heavy metal pollutants, and hydrogeological modeling [4,10]. However, groundwater
contamination susceptibility dur to mining actions in an open-pit coal mine in Bangladesh was assessed
by Haque, Reza [11]. In 2013, the Belt and Road (B&R) project proposed by China, represents the Silk
Road Economic Belt besides the 21st Century Maritime Silk Road. The main objectives of this initiative
are devotion to collaboration and growth around the world. Pakistan is a part of this initiative, led by
China, which increases the country’s regional importance. In particular, the province of Gilgit Baltistan
in northern Pakistan has an important location on the silk route. Presently, most B&R countries,
including China, are undergoing diverse notches of water scarcity [12,13].

The DRASTIC (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of
the vadose zone, Hydraulic conductivity) model is commonly used to assess the susceptibility of
groundwater reserves to pollution [14–17]. Hydrological and geological factors control the groundwater
flow into, through, and out of an aquifer. In the DRASTIC model, these factors are compositely
represented as hydrogeological settings [18]. The main hydrogeological features of an area that
control the groundwater susceptibility are the dwelling time of rainwater, infiltration of water past
the soil, the amount of water reaching the water table, and the water flowing into the aquifer [19].
The movement of contaminants in an aquifer is controlled by seven hydrogeological parameters
that are considered in the DRASTIC model [20]. The acronym of these respective parameter names
generates the term ‘DRASTIC’, and the parameters are the depth to water, recharge of network area,
aquifer matrix, soil media, topography, the impact of the vadose zone, and hydraulic conductivity [21].
Many approaches have been developed to measure aquifer susceptibility, such as index and overlay
procedures, process-based procedures, and arithmetical procedures [5]. The most universally used
index and overlay procedure is the DRASTIC procedure [17,22–27].

Despite its acceptance, no validation such as nitrate concentration in groundwater against field
measurements has been followed in the practice of novel DRASTIC model. Besides, the originally
proposed preset values by Aller [28] were configured to assign the weights to the factor, the ratings
of the classes are selected based on the expert’s finding, that acquaints vagueness, error, and human
partiality in the process. Besides amending factor weights and ratings based on the ground measured
data, two approaches are generally used to adapt the DRASTIC method: 1) removing or altering
factors included in the DRASTIC model [22], or 2) adding further parameters like land use or irrigation
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type [23]. Nitrate mediation and land use design play a key role in the betterment of the DRASTIC
method’s precision for groundwater susceptibility assessment [5]. Shirazi and Imran [5] evaluated the
groundwater susceptibility in the Malaysian State of Melaka using GIS and DRASTIC methods and
developed a map to evaluate the susceptibility of groundwater based on land use. Hussain et al. [29]
assessed the susceptibility of an agro-stressed aquifer in Kot Addu, the portion of grander Punjab
plain, due to non-point sources of pollution, salinity, and unchecked agricultural growth in a GIS
environment implementing a source-pathway-receptor model normally specified as DRASTIC. Alam
et al. [30] evaluated the susceptibility of groundwater to pollution by modifying DRASTIC in the
region of Central Ganga Plain by including constraints such as land use patterns. Khan et al. [31]
experienced that land use patterns regulate the quantity and quality of narrow aquifer at large when
they investigated the susceptibility of groundwater in the region of Indo-Gangetic Plains. Rahman [17]
studied the groundwater susceptibility to pollution in a narrow aquifer of Aligarh and adjacent
areas. The adjusted DRASTIC procedure was used by Ckakraborty et al. [32] to evaluate the aquifer
susceptibility of the zone of West Bengal, English Bazar Block of District Malda.

Previous research assessing groundwater susceptibility to pollution reveals that the land areas of
municipalities are gradually inclined to pollution [30]. On a large scale, susceptibility analyses reveal
that the fundamental aquifer will be polluted or not and as if this contamination is may be due to
the anthropological happenings or other than these (usual happenings). Generally, the areas where
resources of water are strained due to anthropogenic occurrences are being subject to susceptibility
assessments. The studies outlined above assessed the susceptibility of groundwater to pollution
without considering the anthropogenic effect in the DRASTIC model. The effects of anthropology
play a substantial part in the contamination of groundwater in residential areas. In the present study,
we adjusted the DRASTIC model to DRASTICA, whereby the ‘A’ represents the additional constraint of
‘Influence of Anthropogenic activities’. Many other scholars, including Secunda et al., [23], Al-Adamat
et al., [33], and Huan et ai., [34] also applied the additional limitation of land use in an adjusted
DRASTIC model. This method was successfully applied by Singh et al., [27] in the assessment of
groundwater susceptibility to pollution in a built-up setting in Lucknow, India.

In this research, we used GIS techniques to evaluate groundwater susceptibility to pollutants
by applying the typical DRASTIC model, involving seven hydrogeological data layers, along with
the adjusted DRASTIC model, using both designs of land use and the anthropogenic effect, for a
buffer area of 30 km to either side of the Karakoram Highway (KKH), which is a part of the CPEC
route. The CPEC route will increase the anthropogenic activities in the area, which might increase the
groundwater contamination potential; hence, there is a dire need for the groundwater contamination
assessment to mitigate the threat of further pollution.

2. Materials and Methods

2.1. Study Area

Gilgit district, located at one end of the study area, is the capital city of Gilgit Baltistan (geographical
coordinates 35.8819◦ N, 74.4643◦ E), and comprises an approximate area of 4208 km2 on each side of
the Indus river (a giant river that intersects Pakistan and flows into the Arabian sea) (see Figure 1).
Gilgit Baltistan is a provincial unit made up of two states—Gilgit and Baltistan—which jointly comprise
ten districts. The population of Gilgit district, which is a built-up area, is 145,272 (census 1998-03-01).
The weather conditions of the study area are dominated by its topography. The average annual
rainfall of Gilgit city is 107.8 mm with the variation of four different seasons: spring, summer, autumn,
and winter. The period of the winter season is comparatively greater (eight to nine months a year)
due to heavy rainfall. The temperature reaches 35 C◦ during summer, from June to August, and the
minimum temperature drops to−8C◦ during winter, between December and January. Gilgit city is the
most consequential city in terms of its geographical importance. In the past, it was a central halt on the
ancient Silk Road, and, today, it serves as the main intersection between China and Pakistan along the
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Karakoram Highway while CPEC (China Pakistan Economic Corridor) is in progress. The city has an
elevation of 1,500 m above sea level. Gilgit Baltistan is a region that is highly susceptible to climate
change. Gilgit Baltistan does not contain any industrial zones. At the other end of the study area is
Bara Khun (longitude75.1622◦ E and latitude 36.8761◦ N) with the original pronunciation of Bāra Khūn.
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Figure 1. Location map of the study area.

2.2. DRASTIC Model

In the past, an overlay GIS model called DRASTIC (Depth to water, Recharge, Aquifer media, Soil
media, Topography, Impact of the vadose zone, Hydraulic conductivity), was the central approach
used by researchers to evaluate groundwater quality because of its unpretentious and uncomplicated
nature [35]. This model has been extensively applied in nations across the globe [36].

The resulting groundwater susceptibility maps are very useful for the planning of groundwater
organization and preservation. In this research, the aquifer vulnerability maps, and hydrogeological
characteristic maps were prepared by exercising the DRASTIC model in ArcGIS 10.3 software.
Seven parameters were considered for the formerly stated model, and the corresponding seven map
layers were used as input for this model. The seven considered model parameters are Depth to
groundwater-surface (D), recharge rate (R), aquifer matrix (A), soil type (S), topography (T), the impact
of vadose zone (I), and hydraulic conductivity (C). We used the weights and ratings of these parameters
to yield a numerical index using the DRASTIC model [37,38]. The DRASTIC Index (DI) was calculated
using the following equation:

DI = DrDw + RrRw + ArAw + SrSw + TrTw + IrIw + CrCw (1)
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where,

r = ratings allocated to each parameter
w = weights allocated to each parameter

Thereby, higher values of the DRASTIC index specify that the groundwater is more susceptible
to contamination.

2.3. Background Sources and Preparation of Input Datasets (Methodology)

The groundwater aquifers are a source of water for the community. Considering the importance of
groundwater aquifers and the sustainable use of groundwater, it is essential to assess their susceptibility
to pollution. The U.S. Environmental Protection Agency used the DRASTIC model to evaluate the
susceptibility of groundwater to contamination, which is a suitable approach for this purpose [39].
The zones or regions of groundwater that were more susceptible to pollution were outlined using
this model.

Hydrogeological studies include determination of soil penetration proportions, valuation of
aquifer parameters, sedimentary environment, and the probation of soil consistency for spotting the
grain differences. To determine the rating ranges of a parameter, it is necessary to be familiar with
the regional geology and hydrogeology of the investigative area. To understand the hydrogeological
setting of the study area, the mapping of environmental, geological, and hydrological elements is of
utmost importance. For every parameter, the practice of mapping the study area according to the
DRASTIC index was explained subsequently.

The data sources for the preparation of the input parameter maps are shown in Table 1. The ArcGIS
10.3 software was used for the formulation of input datasets and for execution of the DRASTIC model.
Thereby, we applied the RBF technique to the available data points and create the map layers
representing the impact of the vadose zone, precipitation, aquifer media, permeability, soil media, and
hydraulic conductivity. We used the slope module in ArcGIS 10.3 to convert the Digital Elevation
Model (DEM) raster layer into the slope map layer used for our analysis. The pollution potential of the
aquifer specifies the relative status of each of the seven parameters, and they are weighted accordingly.
These parameters are not only ranked based on their impact on contamination possibility but are also
subdivided into different classes and ranges. Based on their relative impact on the contamination
possibility, a rating value between 1 and 9 is allocated to all parameters subclasses. A value to each
parameter was allocated stretching from 1 to 5 as weight provisional to their comparative importance
as given in Table 2. These ratings are based on expert judgment, extensive literature review, and
methodologies adopted by [27,39].

Table 1. Data sources for all the used parameters and for the validation of the model.

1 Net Recharge Rainfall Dataset of Pakistan Meteorological Department

2 Aquifer media Soil Survey of Pakistan and Pakistan Council of Research in Water Resources
(PCRWR)

3 Soil media Soil Survey of Pakistan and Pakistan Council of Research in Water Resources
(PCRWR)

4 Topography Aster DEM, downloaded from
(https://earthexplorer.usgs.gov/)

5 Impact of vadose zone Soil Survey of Pakistan and Pakistan Council of Research in Water Resources
(PCRWR)

6 Hydraulic conductivity Soil Survey of Pakistan and Pakistan Council of Research in Water Resources
(PCRWR)

7 Population Data The Gridded Population of the World, Version 4 (GPWv4), downloaded from
(https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11)

8 Land Use Data
FAO Land use Data set, downloaded from

(http://www.un-spider.org/links-and-resources/data-sources/land-cover-and-
land-cover-change-himalaya-region-fao)

9 Nitrate Concentration Water Well Data

https://earthexplorer.usgs.gov/
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11
http://www.un-spider.org/links-and-resources/data-sources/land-cover-and-land-cover-change-himalaya-region-fao
http://www.un-spider.org/links-and-resources/data-sources/land-cover-and-land-cover-change-himalaya-region-fao


ISPRS Int. J. Geo-Inf. 2020, 9, 332 6 of 23

Table 2. Classes, their ratings, and the assigned weights of DRASTIC parameters [40]

Parameter Range Rating Weight

Depth to water table (m)

<40 9

5
40–60 7
60–80 5
80–100 3
>100 1

Net recharge (mm)
>80 9

460–80 7
<60 5

Aquifer media Sand 8
3

Soil media

Sandy loam 7
Silt 6

Sandy clay 4
2Clay 2

Topography

<5 9

1
5–10 8

10–20 6
20–40 4
>40 2

Impact of vadose zone Sand 7 5

Hydraulic conductivity

>300 9

3
200–300 8
100–200 6

<100 4

3. Results

3.1. Thematic Maps of the Parameters

Through the DRASTIC and modified DRASTIC (DRASTICA) methodologies, seven and eight
organized thematic maps were incorporated to formulate the risk maps of the earlier mentioned two
approaches, respectively, corresponding to the groundwater susceptibility valuation of the study area.
The sequential steps are outlined below.

3.1.1. Depth to Water

The gap between the water table and the land surface is the depth to the groundwater table, which
plays an active role in the evaluation of a certain area’s susceptibility to pollution. The depth to water
is of primary importance because the distance (the stretch of the material that must be covered by
a pollutant before reaching the aquifer) and the sum of time (duration throughout which the contact of
the pollutant with the immediate media (aquifer or soil) is sustained) can be determined. In general,
for deeper water levels the pollutants travel time increases, so the chances of diminution are greater.

In the study area, the map depicting the depth to water exhibits that the groundwater level
fluctuates from depths of under 40m below the earth’s surface to depths greater than 100 m (Figure 2a).
However, the area is mostly characterized by groundwater depths from 80 to 100 m. These depth point
data were split into five classes, i.e., <40, 40–60, 60–80, 80–100, and >100 m, and were allocated the
flexible ratings of 9, 7, 5, 3 and 1 (Figure 2a). Afterwards, for processing in GIS, it was converted into
grid to make it raster data The interval range, weight, DRASTIC rating, and resulting index of depth to
water is portrayed in Table 2. In areas where water tables are high, pollutants have shorter distances to
travel before contacting the groundwater, thus making these areas more susceptible to groundwater
pollution. Therefore, lower rating values indicate that the groundwater level is deeper and, therefore,
less susceptible to contamination.
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3.1.2. Net Recharge

Net recharge plays a key role in the migration of pollutants, as it reflects the quantity of water
that reaches the ground water table after penetration through ground surface. Water is a source of
transporting the contaminants. Said migration is mostly regulated by environmental and geological
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surroundings. As the amount of water is more which is the carrier source then there is increased
probability to carry contaminants.

For the perpendicular transmission of water, gravity is the influential force. Millimeter per year
unit is used to define net recharge. The study area is drained through the non-perennial watercourses
of the region. As monsoon season breaks in the southern range of the Himalayas, the city of Gilgit
lacks substantial rainfall with an annual average of 120 to 240mm. Wide ranges of annual rainfall
indicate variations in the weather conditions in the study area. Therefore, the annual precipitation of
the study area is categorized into three classes, namely >80 mm, 60–80 mm, and <60 mm and, thus,
given the respective ratings of 9, 7, and 5 (Figure 2b).

3.1.3. Aquifer Media

The framework material known as media controls the flow rate (hydraulic conductivity) and the
nature of an aquifer. Description of the geologic configuration, which acts as aquifer, are in case of
alluvium, sand, and gravel and in case of hard rock, secondary porosities (rupture/joint) and weathered
zones. High vulnerability permits more water, and, thus, more pollutants enter the aquifer. The path
length and route of the contaminant are mainly controlled by the aquifer medium. Besides gradient
and hydraulic conductivity, path length is a significant regulator in determining the available time
for reduction progressions such as reactivity, dispersion, besides sorption, and it also determines the
extent of effective surface area of constituents contacted in the aquifer. Sand is the only constituent of
the aquifer media in the investigative area and is given a rating of 8 (Figure 2c).

3.1.4. Soil Media

The form of a surface over the unsaturated (vadose) zone can be called soil media. There is
generally a variation in the thickness as we move in depth. Movement of pollutants to the vadose
zone can be controlled by growing vegetables and farming activities in the soil media. Pollutants are
mostly moved by recharge during the phenomenon of infiltration. The phenomenon of attenuation
is determined by the form of soil media and its thickness. Five kinds of soil are found in our study
area, namely, sandy loamy soil, silty soil, sandy clayey soil, and clayey soil, as presented in Figure 2d.
The ratings assigned to these classes are 7, 6, 4, and 2, respectively (Figure 2d).

3.1.5. Topography

The gradient of the land surface along its alterations is termed as topography. In this study,
we produced a topography map from ASTER DEM data. Considering the gradient values, we categorized
the exploratory area into five regions; namely the region below than 5 degrees (very gentle gradient),
5–10 degrees (gentle gradient), 10–20 degrees (moderate gradient), 20–40 degrees (steep gradient), 5–10,
and >40 degrees (very steep gradient), respectively.

Overall, the gradient progressively declines towards the south of the study area. The study area is
situated in a mountainous region and is among the steepest places on Earth. The region is home to
world’s mightiest mountain, K2, with an elevation of 8611 m located on the border of Pakistan and
China in the Gilgit Baltistan region of northern Pakistan. An extreme rating of 9 has been allocated to
the gradient differing from approximately flat to very mild, whereas the minimum value has been
allocated to the very sheer gradient (Figure 2e).

3.1.6. The Impact of the Vadose Zone

Between the ground surface and the water level, there is an unsaturated region known as the
vadose zone. The percolating water is greatly influenced by the presence of this zone. The expanded
vadose zone includes the vadose zone along with the superimposed saturated zones on the aquifer.
The restraining layer is formed because of the expressively restraining zone overhead the aquifer that
zone the is used as the type of media with the most substantial influence. The vadose zone of the
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pertaining area, which has been mapped as shown in Figure 2f, is comprised of sand only and is given
a rating of 7.

3.1.7. Hydraulic Conductivity

The water-conducting capacity of aquifer constituents is termed as hydraulic conductivity, which,
for a specified hydraulic gradient, governs the groundwater’s flow rate. The hydraulic conductivity
values were charted, as shown in Figure 2g. The figure shows four different classes of hydraulic
conductivity; namely, very high conductivity, which is characterized by a water transmission rate
of more than 300 m/day; high conductivity with a transmission rate of 200 to 300 m/day; moderate
conductivity with a rate of 100 to 200 m/day; and low conductivity with a rate of less than 100 m/day.
These four classes were used to map hydraulic conductivity. The regions with moderate to high
conductivity values have a higher availability of groundwater than those which have low conductivity
values. In the study area, the DRASTIC rating was used to assign the ratings to different definite
hydraulic conductivity regions.

3.2. Preparation of DRASTIC Risk Map

The various processes stated above were used to construct a DRASTIC model. Three susceptibility
classes, namely, low, moderate, and high, are shown in the DRASTIC risk map (Figure 3) based on
the DRASTIC index. The areas of Bara Khun, Sharhkater, and Khudabad showed low vulnerability
(80–119), the city area of Gilgit and the region surrounding Nagar showed high vulnerability (150–180),
and the remaining zones are moderately vulnerable (120–149). The DRASTIC risk map displays the
combined impact of all seven constraints.
Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 24 

 
Figure 3. DRASTIC risk map of the exploratory area. 

3.3. Confines of the DRASTIC Model and Refinements 

The use of the DRASTIC model to assess groundwater susceptibility is predominant, but this 
model is not best suitable for a built-up environment because the anthropogenic effect is not included 
as a model parameter. To overcome this limitation, the current study implements an adjusted 
DRASTIC model, or DRASTICA, where the ‘impact of anthropogenic activities’ (represented by ‘A’ 
in the acronym) was incorporated as an additional constraint. The anthropogenic impact (A) was 
included in the present study by using the satellite interpretations as a supplementary parameter and 
land use near the built-up areas to validate the methodology. 

3.3.1. Formulation of an Anthropogenic Impact Map 

Besides the urbanization index map (developed from the University of Columbia’s World 
Gridded Population Density dataset), a land use map of the research area was used to formulate the 
anthropogenic impact map. 

3.3.1.1. Land Use  

In most areas, the groundwater susceptibility to pollution is greatly affected by the different land 
use types and the activates involved in organic development. Different land use patterns like urban, 
commercial, industrial, and agricultural control the concentration of contaminants. The study area’s 
land use map (Figure 4) is divided into six classes: bare areas, agriculture in the valley floor, forest, 
natural shrubs, snow, and water body. The land use data used in this research is acquired from the 
FAO land use data set. Hydrogeological parameters are notably affected by land use parameters. The 
sources that alter the properties of hydrogeological parameters include the addition of urban and 
industrial waste, use of pesticides, and seepages from septic tanks and leftover discarding spots. The 
area proportions listed in Table 3 show that forests cover (31%) most of the land of the study area, as 
also indicated by land use division map. The subsequent most prominent land use type of the study 
area (29%) are the bare lands (Table 3). The remaining land use types in the study area are divided 
into waterbodies, natural shrubs, snow, and agriculture in the valley floor. The susceptibility of 

Figure 3. DRASTIC risk map of the exploratory area.

3.3. Confines of the DRASTIC Model and Refinements

The use of the DRASTIC model to assess groundwater susceptibility is predominant, but this
model is not best suitable for a built-up environment because the anthropogenic effect is not included
as a model parameter. To overcome this limitation, the current study implements an adjusted DRASTIC
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model, or DRASTICA, where the ‘impact of anthropogenic activities’ (represented by ‘A’ in the
acronym) was incorporated as an additional constraint. The anthropogenic impact (A) was included in
the present study by using the satellite interpretations as a supplementary parameter and land use
near the built-up areas to validate the methodology.

3.3.1. Formulation of an Anthropogenic Impact Map

Besides the urbanization index map (developed from the University of Columbia’s World
Gridded Population Density dataset), a land use map of the research area was used to formulate the
anthropogenic impact map.

Land Use

In most areas, the groundwater susceptibility to pollution is greatly affected by the different land
use types and the activates involved in organic development. Different land use patterns like urban,
commercial, industrial, and agricultural control the concentration of contaminants. The study area’s
land use map (Figure 4) is divided into six classes: bare areas, agriculture in the valley floor, forest,
natural shrubs, snow, and water body. The land use data used in this research is acquired from the
FAO land use data set. Hydrogeological parameters are notably affected by land use parameters.
The sources that alter the properties of hydrogeological parameters include the addition of urban
and industrial waste, use of pesticides, and seepages from septic tanks and leftover discarding spots.
The area proportions listed in Table 3 show that forests cover (31%) most of the land of the study
area, as also indicated by land use division map. The subsequent most prominent land use type of
the study area (29%) are the bare lands (Table 3). The remaining land use types in the study area are
divided into waterbodies, natural shrubs, snow, and agriculture in the valley floor. The susceptibility
of groundwater to nitrate dilution is higher in agricultural areas. In groundwater systems, the nitrate
distribution is controlled by the soil dynamics, groundwater movement, recharge rate, and on-ground
nitrogen loading [5]. Urban activities and agriculture in the valley floor were found to more significantly
influencing the condition of groundwater in the exploratory area than the other land use classes,
as specified by the land use classification.
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Table 3. Areas of land use classes.

Sr. No. Land Use Classes Area km2 Area %

1 Agriculture 467.5 11
2 Bare areas 1232.5 29
3 Forest 1317.5 31
4 Natural shrubs 382.5 9
5 Snow 595 14
6 Water bodies 255 6
7 Total 4250 100%

Urbanization Index

The urbanization index map was generated using the University of Columbia’s World Gridded
Population Density Dataset of 2020. The urbanization index map was used for the additional
enhancement of the land use map. Based on the urbanization index map (Figure 5), the urbanized class
of the land use map was additionally sorted into four categories, namely, urbanized with very high
density, urbanized with medium density, urbanized with low density, and urbanized with very low
density. The ratings shown in Table 4 were applied to formulate the new anthropogenic map (Figure 6).
The map of urbanization index was multiplied by the weight of “5”, which is in accordance with the
weight of this parameter. An eighth parameter, termed as anthropogenic impact, was generated after
integrating all these alterations and included in the DRASTIC model.
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3.3.2. Formulation of an Anthropogenic Impact Map

In the present study, we fused anthropogenic activities with the DRASTIC map to evaluate the
groundwater susceptibility to pollution. This adjusted DRASTIC model was named DRASTICA
to reflect the additional parameter of anthropogenic impact. The anthropogenic impact map was
transformed into raster format by multiplying the weight of the anthropogenic impact parameter
(Aw = 5) with the map. The two maps, namely, the anthropogenic impact map and the conventional
DRASTIC map was overlaid to produce a spatial association among anthropogenic impact and the
established DRASTIC map. The DRASTICA index, or modified DRASTIC Index (MDI), was computed
using the following equation by the accumulation of ultimate grid coverage with conventional
DRASTIC Index (DI) [5].

MDI = DrDw + RrRw + ArAw + SrSw + TrTw + IrIw + CrCw + ArAw (2)

where,

Ar = rate of the anthropogenic impact parameter
Aw = weight of the anthropogenic impact parameter

The DRASTICA map indicates which regions of the study area are extra disposed to pollutants
based on the anthropogenic happenings which cause this susceptibility. The DRASICA risk map
contains four susceptibility classes; namely, low (120–149), moderate (150–179), high (180–209), and
very high (>210) susceptibility to groundwater contamination (Figure 7). The conducted investigation
revealed that 19% of the study area falls within the very high susceptibility class, 42% is classed
as having high susceptibility, 37% has moderate susceptibility, and 2% has low susceptibility to
groundwater contamination. Compared to the conventional DRASTIC map, the adjusted DRASTICA
map classes 15% more of the study area into the high susceptibility class (Table 5).
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Table 5. Comparison of the DRASTIC and DRASTICA risk maps [40].

Class
Index

Ranges
DRASTIC DRASTICA

N. pixel Area km2 Area % N. Pixel Area km2 Area %

1 <120 102,000 1020 24 8500 85 2
2 120–149 225,250 2252.5 53 157,250 1572.5 37
3 150–179 89,250 892.5 21 178,500 1785 42
4 >180 8500 85 2 80,750 807.5 19

4. Discussion

The assessment of groundwater susceptibility to contamination is vital for organizing the viable
groundwater reserve, [20]. In this regard, the DRASTIC method can be used in the GIS interface for the
altitudinal amalgamation of various thematic layers to evaluate groundwater susceptibility at a specific
site. To analyze the groundwater susceptibility, the board of the United States Environmental Protection
Agency developed diverse layers of the DRASTIC index [28,40]. The DRASTIC parameters, which
are depth to groundwater-surface (D), recharge rate (R), aquifer matrix (A), soil type (S), topography
(T), the impact of the vadose zone (I), and hydraulic conductivity (C), are assessed for this study
area (Figure 2). The various data sources used to prepare the involved parameters are illustrated
in Table 1. The depth to the water table is one of the crucial aspects determining groundwater
susceptibility to pollution, as it indicates the distance that a pollutant must travel before entering an
aquifer. The comparative significance of depth to water is illustrated in Table 2 [40]. In the research
area, the depths to the groundwater-surface (D) vary from 9 m to more than 100 m (Figure 2a). Based on
expert opinions and literature review, the depth was divided into five intervals, namely, <40, 40–60,
60–80, 80–100, and >100 [16,41,42]. The yearly volume of water that penetrates the aquifer after
infiltrating the ground surface is termed as the Net Recharge (R) [43]. The DEM used in the preparation
of the slope map and the rainfall data collected from the Pakistan Metrological Department (PMD) were
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used as input data to prepare the net recharge map. Ground slope, precipitation and soil permeability
are the factors that affect net recharge [44]. Finally, the net recharge was divided into three classes: >80,
60–80, and <60. The weightings and classes are mentioned in Table 2.

Horizontal and vertical lithological variability was addressed by classifying the lithology.
Hydrogeological formation layers were generated by interpolating point data. How well a certain
configuration would act as an aquifer unit was evaluated proportionally and was based on assigning
the ratings (Figure 2c). The framework material that is mostly used to control the rate of flow and the
nature of an aquifer is termed as media. This media also employs a foremost control over the route
and the length of the path of the contaminants [9]. In general, the contaminant attenuation capacity of
an aquifer hinges on the sorting and amount of fine grains, and this is what that determines the aquifer
media. Thus, high susceptibility ratings are yielded based on high penetrability [45]. A high rating of
8 has been allotted to the aquifer media that contains solely sand (Figure 2c). Soil has a substantial
influence on the quantity of recharge that can penetrate into the ground, and have the capability of a
pollutant to move sheerly into the vadose zone [46]. Within the soil cover, the occurrence of delicate
particles, such as silt, peat or clay, and the presence of carbon-based matter intrinsically reduces the
soil permeability, which retards the passage of pollutants through physicochemical progressions, i.e.,
biodegradation, absorption, oxidation, and ionic exchange [47]. Therefore, the permeability of the
different soil types was used to assign the ratings (Table 2) accordingly, with the highest ratings allotted
to highly permeable soil and lower ratings to the less permeable soil, as depicted in the Figure 2d.

The slope of an area is determined by the topography of that area. A ground slope map was
constructed using a DEM and was divided into five classes: 5, 5–10, 10–20, 20–40, and >40 degrees
(Figure 2e). Water flow is reserved for increased period of time in the low gradient areas thus accounting
for the bigger tendency of pollution [48]. Areas with sheer gradients are less susceptible to groundwater
contamination because they have smaller amounts of infiltration due to large amounts of runoff [33].
Considering these facts, nearly flat areas with up to 5 degrees of slope were allocated a high rating
value of 9, followed by 5–10, 10–20, 20–40 degrees of slope ranked 8, 6, 4, respectively, and the steepest
slopes of >40 degrees receiving the lowest rating of 2 (Table 2). The subsurface movement of water, i.e.,
filtration of rainwater, is greatly influenced by the vadose zone [17,49]. In the study area, the main
constituent of the vadose zone was found to be solely sand, which was assigned a rating of 7 (Table 1).
The procedures that were implemented to measure and formulate the maps of constraints depth to
water (D) and aquifer media (A) were comparable to the procedure carried out on lithological data
to create the Impact of vadose zone (I) map. The constituent materials of the vadose zone determine
the contamination exhaustion features like sorption, biodegradation, dispersion, volatilization, and
biodegradation [40]. Hydraulic conductivity (C), which ranges from <100 to >300 m/day in the study
area, disturbs the passage rate of contaminants in the aquifer (Figure 2g). The groundwater is always
on the move, and the capability of the aquifer to conduct water is known as hydraulic conductivity [9].

A final susceptibility map (Figure 3) was generated after the weights and ratings of each parameter
were defined by operationalizing the prototype in the ArcGIS setting. The DRASTIC susceptibility index
was finalized by integrating the combined influences of seven data layers using a GIS environment.
Despite adopting the numerous general color coding of susceptibility maps [40], the index range
was centered on the swiftly used method for susceptibility classification [43,50,51]. Thereby, the
obtained DRASTIC susceptibility index ranged from 80 to 150. These values were classified into the
three categories of high, moderate, and low susceptibility to groundwater contamination using the
quantile arrangement scheme (Figure 3). Based on this model, about 1020 km2 of the total study area,
comprising 4250 km2, is classed as having low susceptibility to groundwater contamination, with a
DRASTIC index of <120. Furthermore, around 2252.5 km2 falls within the moderate susceptibility
class, with DRASTIC values ranging from 120 to 149; while a total of 892.5 km2 falls within the
high susceptibility class, with DRASTIC values ranging from 150 to 179. Lastly, 85 km2 of the total
study area is classed as a very high susceptibility region, with a DRASTIC index of >180. The results
further specify that 85 km2 (2%) of the research area, corresponding to the urban area of Gilgit city,
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is subjected to a very high risk of contamination possibility. The reason for the city’s high susceptibility
to groundwater pollution may be the combined effect of the shallow water table, porous vadose zone,
and gentle slope. Whereas, on the other end of the spectrum, a notable part of the study area is classed
as having low contamination susceptibility and comprises the areas of Bara Khun, Sharhkater, and
Khudabad. This could be credited to all the parameters that decrease the probability of the aquifer
getting polluted, including a deep water table, low recharge rate, and high slope. Overall, the DRASTIC
analysis indicates that a considerable portion of the research area has a reasonable susceptibility to
groundwater pollution.

Most previous studies have used the conventional DRASTIC model to assess the groundwater
susceptibility to pollution, whereby some researchers noted weaknesses in the model. Although this
model considers the transportation of contaminants from the surface to the groundwater through
the unsaturated zone, the pollution that results from humanoid actions—termed as anthropogenic
effects, which lower the DRASTIC index values—are forgotten. Anthropogenic actions, such as
expansion, industrialization, and agriculture, are increasing the susceptibility of groundwater reserves
to pollution [4,52,53]. Common alterations made to the DRASTIC model in previous studies include
adding or eliminating one or more of the aquifer or environmental parameters, conferring to the
characteristics of the respective research objectives and study areas. The main alterations include the
amendment of ratings [17,54,55] and adding extra parameters [27,56,57].

In this research, the conventional DRASTIC model, first proposed by Aller et al. [40], was
modified to include anthropogenic effects (DRASTICA) and used to analyze the susceptibility of
groundwater to pollution in a study area along the CPEC route in the region of Gilgit Baltistan, situated
in northern Pakistan. The ratings and weights of the anthropogenic impact maps were assigned
considering the land use class conventions [5,23,33] to produce the DRASTICA risk map (Figure 7).
The filed examinations of groundwater conditions are best validated using the DRASTICA risk map,
which represents an improved measure of susceptibility compared to the conventional risk map.
The anthropogenic activities in urban areas resulted in increased nitrate contamination. The most
effective parameters that accounts for groundwater contamination include depth to the water table,
hydraulic conductivity, and anthropogenic impact, while soil media, net recharge, topography, and
aquifer media are the least effective parameters. The groundwater susceptibility map can be used as
an early warning tool to locate the areas subjected to groundwater contamination and is thus useful for
the protection, organization, and planning of groundwater resources. The DRASTICA map was sorted
into four categories of susceptibility (very high, high, moderate, and low susceptibility), compared to
the conventional DRASTIC risk map, which has only three classes. Due to intensified anthropogenic
impact and low water level, the urban area of Gilgit is distinguished by very high susceptibility.
A large proportion of the study area falls within the low susceptibility zone. Low susceptibility is
observed in areas around shrubland, wasteland, forest land, and water bodies. The built-up areas
show high susceptibility to contamination, and the samples collected from urban areas showed high
nitrate concentrations.

Generally, the DRASTIC model is subjected to several uncertainties. For example, the classes of
each parameter in the DRASTIC model are rated based on expert opinions, which is the main reason
for the model’s ambiguity. To verify the zonation produced by DRASTIC, the generated results are
validated by comparing the susceptibility zones of the study area with the respectively present nitrate
concentration. The hazard zonation mapping was fully validated with the known nitrate concentration
susceptibility zones, and, afterwards, the procedure of sensitivity analysis was progressed with to
check the influence of individual parameter layers on the susceptibility analysis.

4.1. Confirmation of the Methods

Recent groundwater contamination resulting from surface occurrences, such as inflow from
city sewages and agriculture, is indicated by a high dilution of negative NO¬3 in the limit of 0.4
to 318.2 mg/L [58]. The nitrate parameter of water quality was used (Figure 8) to validate both the
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conventional DRASTIC and novel DRASTICA procedures. In a groundwater system, there is usually
no source of nitrate. Therefore, its presence in groundwater is an indication of contamination from
sources like anthropogenic and agricultural activities. The data for the preparation of the nitrate
concentration map was collected from previously conducted research on water quality assessment in
the pertaining region [59] (Table 1). The high nitrate (negative NO3) concentration, as shown in the
map, indicates that polluting sources are involved.
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A correlation was detected between the estimates of DI, MDI, and nitrate concentrations.
The connection between two computable and constant variables is examined through correlation [60].
In the current research, a proper relationship was portrayed between the DRASTICA index and the
maximum values of nitrate concentration. A Pearson’s correlation coefficient ‘r’ of −0.61 for DI and 0.81
for MDI was noted after these indexes were correlated with the present nitrate concentrations. The plots
of 50 correlated data pairs are shown in Figures 9 and 10 for DI and MDI, respectively, against the
nitrate concentrations. The additional validation of the DRASTICA model for the built-up environment
is shown by the subsequent constructive correlation between nitrate concentration and MDI.



ISPRS Int. J. Geo-Inf. 2020, 9, 332 17 of 23

Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 24 

 

Figure 9. Plot relating nitrate concentration (mg/l) and the DRASTIC index (DI).

 

Figure 10. Plot relating nitrate concentration (mg/l) and the modi ed DRASTIC index (MDI)

4.2. Sensitivity Analysis 

An effective assessment tool is the sensitivity analysis, which validated and evaluated the 
uniformity of the analytical results of the susceptibility maps [61]. The final output is rendered 
uncertain due to the impact of individual parameters [62] as in the DRASTIC model successful 
assessment can be achieved using an increased number of input data layers which is an important 
benefit [22]. However, some investigators, such as Barber et al. [63], believed that by reducing the 
number of input parameters the results obtained by the DRASTIC model could be improved in the 
manner of precision. In this study, sensitivity analysis was applied to check the accuracy of the 
susceptibility maps generated by the DRASTICA model. Lodwick, Monson [64] familiarized the map 
removal sensitivity analysis, whereas Napolitano and Fabbri [65] proposed a single parameter 
sensitivity analysis. In this study, the model’s sensitivity analysis was conducted by performing the 
following two sensitivity tests. 

Figure 9. Plot relating nitrate concentration (mg/L) and the DRASTIC index (DI).

Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 24 

 

Figure 9. Plot relating nitrate concentration (mg/l) and the DRASTIC index (DI).

 

Figure 10. Plot relating nitrate concentration (mg/l) and the modi ed DRASTIC index (MDI)

4.2. Sensitivity Analysis 

An effective assessment tool is the sensitivity analysis, which validated and evaluated the 
uniformity of the analytical results of the susceptibility maps [61]. The final output is rendered 
uncertain due to the impact of individual parameters [62] as in the DRASTIC model successful 
assessment can be achieved using an increased number of input data layers which is an important 
benefit [22]. However, some investigators, such as Barber et al. [63], believed that by reducing the 
number of input parameters the results obtained by the DRASTIC model could be improved in the 
manner of precision. In this study, sensitivity analysis was applied to check the accuracy of the 
susceptibility maps generated by the DRASTICA model. Lodwick, Monson [64] familiarized the map 
removal sensitivity analysis, whereas Napolitano and Fabbri [65] proposed a single parameter 
sensitivity analysis. In this study, the model’s sensitivity analysis was conducted by performing the 
following two sensitivity tests. 

Figure 10. Plot relating nitrate concentration (mg/L) and the modified DRASTIC index (MDI)

4.2. Sensitivity Analysis

An effective assessment tool is the sensitivity analysis, which validated and evaluated the
uniformity of the analytical results of the susceptibility maps [61]. The final output is rendered
uncertain due to the impact of individual parameters [62] as in the DRASTIC model successful
assessment can be achieved using an increased number of input data layers which is an important
benefit [22]. However, some investigators, such as Barber et al. [63], believed that by reducing the
number of input parameters the results obtained by the DRASTIC model could be improved in the
manner of precision. In this study, sensitivity analysis was applied to check the accuracy of the
susceptibility maps generated by the DRASTICA model. Lodwick, Monson [64] familiarized the
map removal sensitivity analysis, whereas Napolitano and Fabbri [65] proposed a single parameter
sensitivity analysis. In this study, the model’s sensitivity analysis was conducted by performing the
following two sensitivity tests.
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4.2.1. Map Removal Sensitivity Analysis

The map removal sensitivity method was used to eliminate one or more parameter layers of the
DRASTICA index map at a time using the following equation:

S = [(V/N - V’/n)/V] × 100 (3)

where,

S = sensitivity measure
V = unagitated vulnerability index (all seven parameters were used to obtain the actual index)
V’ =agitated vulnerability index (vulnerability index computed exercising a lesser quantity
of constraints)
N and n = to compute V and V’ the used number of data layers

The outcomes of the map removal sensitivity analysis after the DRASTICA parameter layers were
removed one or more at a time are illustrated in Tables 6 and 7. In ArcGIS, the raster math tool was used
to compute the sensitivity measure for each grid cell, according to Equation 3. This analysis detected
an increased disparity in the vulnerability index as the parameter layers of anthropogenic impact and
depth to the water table (mean variation of 1.98% then 1.57% accordingly) were removed. Due to the
lower variation in the ratings of soil media and topography and lesser parameter weights, after depth
to the groundwater table, the deletion of the topography and soil media layers are comparatively less
sensitive to the vulnerability index. The aquifer media layer is the least sensitive of all eight parameters
used in the DRASTICA model, as the layer’s removal result is only 0.41%.

Table 6. Results of the map removal sensitivity analysis after removing each parameter.

Parameter
Removed

Variation Index %

Mean Min Max SD

D 1.57 1.01 2.5 0.19
R 0.62 0.16 2.08 0.31
A 0.41 0.04 0.92 0.15
S 1.13 0.79 1.42 0.11
T 1.33 1.1 1.6 0.09
I 1.12 0.42 1.5 0.15
C 0.7 0 1.52 0.26
A 1.98 2.1 2.27 0.21

Table 7. Results of the map removal sensitivity analysis after using parameter.

Parameter
Removed

Variation Index%

Mean Min Max SD

D,R,S,T,I,C,A 0.31 0 0.79 0.11
D,S,T,I,C,A 0.74 0 2.3 0.41
D,S,T,I,A 0.59 0 2.75 0.46
D,S,T,A 1.56 0 3.43 0.61
D,T,A 1.4 0 4.1 0.59
D,A 11.03 5.67 15.34 1.34

A 9.16 5.67 13.04 1.2

4.2.2. Single Parameter Sensitivity Analysis

The calculated variation index using map removal sensitivity analysis explained the importance
of each involved parameter, while single parameter sensitivity analysis equates “effective” masses
alongside “theoretical” masses [66]. The effect on the vulnerability index of all eight DRASTICA
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parameters was checked by performing a single parameter sensitivity test. In this test, each parameter
of individual sub-area was compared in manner of their “effective” and allotted “theoretical” value.

The “effective” weight Wpi (%) of the individual sub-area was computed using the following
equation:

Wpi = (Pri × Pwi / V) × 100 (4)

where,

Wpi = effective weight (%)
Pri = rating of individual parameter
Pwi = weight of individual parameter
V = ultimate susceptibility index

Although, in obtaining the DRASTICA vulnerability index, the eight used parameters were
ranked using map removal sensitivity analysis the single parameter sensitivity analysis assesses the
relationship between the “theoretical” and “effective” weights of parameters (Eq. 4). The deviation
between “effective” and “theoretical” assessments of the DRASTICA constraints are portrayed in
Table 8. Based on the single parameter sensitivity analysis, the most significant parameters in the
susceptibility valuation were anthropogenic impact (19.4%), hydraulic conductivity (17.4%) and depth
to water table (23.5%), as their effective weights surpass the theoretical weights assigned by DRASTICA
(18.6%, 14.8%, 22.4%, respectively). The theoretical weight (5.2%) of topography is also surpassed by its
effective weight (5.9%). For the remaining parameters, namely, net recharge, aquifer media, impact of
the vadose zone, and soil media, the effective weights are lower than their assigned theoretical weights.
Thus, for the parameters of hydraulic conductivity, topography, and net recharge, more comprehensive
and precise data is required for the improved valuation of groundwater susceptibility.

Table 8. Results of single parameter sensitivity analysis.

Parameter
Removed

Theoretical
Weight

Theoretical
Weight (%)

Experimental Weight (%)

Mean Min Max SD

D 5 22.4 23.5 19.2 29.43 1.17
R 4 17.3 17.4 2.6 26.84 3.87
A 3 1.7 8.5 4.1 18.65 1.47
S 2 7.1 7.3 6.3 10.54 0.48
T 1 5.2 5.9 5.1 8.21 0.65
I 5 22.8 18.9 16.3 22 1.21
C 3 14.8 17.4 15.8 21.54 0.97
A 5 18.6 19.4 17.5 26.4 1.04

5. Conclusions

In this study, we evaluated the groundwater susceptibility to pollution along the CPEC route in
the northern Pakistan region of Gilgit Baltistan using an experimental index DRASTIC model in GIS
software. Furthermore, we used satellite observations of the area to locate the human settlements
and land use patterns to develop an advanced procedure termed as the modified DRASTIC—or
DRASTICA—model. Based on the results of the conventional DRASTIC model, we distinguished
the study area into three susceptibility classes, namely, high, moderate, and low susceptibility to
groundwater pollution; whereas, for the adjusted DRASTICA risk map, we employed four susceptibility
categories comprised of very high, high, moderate and low susceptibility to contaminants. When
comparing the conventional DRASTIC model and the novel DRASTICA approach for the valuation
of groundwater susceptibility in developed areas, we found the DRASTICA technique to be more
certain as demonstrated by the validation of the process. This method can be replicated in other urban
settings if the ratings of the hydrogeological locations are adjusted accordingly. Our results reveal
that 19% of the study area falls within the very high risk class, whereas 2% of the area is classed
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as having a low-risk of groundwater contamination. The urban area of Gilgit city shows very high
susceptibility, which is due to the penetrable vadose zone, high net recharge rate, and shallow water
level. The groundwater susceptibility map is an utmost cost-effective tool to detect zones of potential
groundwater contamination, particularly in light of the chaotic and unrestrained expansion of land
and objectionable events putting groundwater conditions at stake. In this regard, DRASTIC is an
effective tool to generate groundwater susceptibility maps, working in a GIS environment with an
effective database. Policymakers and local authorities can use this as an operative tool in managing
groundwater. Proper wastewater management policies need to be implemented, and wastewater
plants must be installed to protect groundwater resources.
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