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Abstract: For billing purposes, telecom operators collect communication logs of our mobile phone
usage activities. These communication logs or so called CDR has emerged as a valuable data source for
human behavioral studies. This work builds on the transportation modeling literature by introducing
a new approach of crowdsource-based route choice behavior data collection. We make use of CDR
data to infer individual route choice for commuting trips. Based on one calendar year of CDR
data collected from mobile users in Portugal, we proposed and examined methods for inferring the
route choice. Our main methods are based on interpolation of route waypoints, shortest distance
between a route choice and mobile usage locations, and Voronoi cells that assign a route choice into
coverage zones. In addition, we further examined these methods coupled with a noise filtering using
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and commuting radius.
We believe that our proposed methods and their results are useful for transportation modeling as it
provides a new, feasible, and inexpensive way for gathering route choice data, compared to costly
and time-consuming traditional travel surveys. It also adds to the literature where a route choice
inference based on CDR data at this detailed level—i.e., street level—has rarely been explored.

Keywords: commuting trip; route choice inference; mobile phone network data; CDR; call detail records

1. Introduction

The majority of trips made by individuals is commuting, which is the most regular and repeated
travel between a residence and workplace. Commuting is thus believed to be one of major causes of
traffic congestion [1]. Understanding commuting patterns is thus essential and can play an important
role in urban planning and traffic management. Due to its nature, commuting patterns and behaviors
have been investigated in the fields of human geography, transport, and urban studies. Today, however,
commuting as well as mobility patterns are becoming a more attractive research problem to scholars
from other disciplines—such as physics, statistics, and data science—because of recent availability of
large-scale electronic datasets from which different models can be examined and developed to better
describe characteristics of human mobility at various spatial scales.

From the transportation’s perspective, human mobility as seen in forms of collective trips is studied
in the domain of travel demand modeling for which the sequential four-step model [2] traditionally
has been utilized for transportation forecasts, such as estimating the number of vehicles on a planned
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road, the ridership on a railway line, and the number of bus passengers at the airport. The four-step
model consists of trip generation, trip distribution, mode choice, and route assignment, where each of
these steps is designed to model the amounts, locations, travel modes, and route choices of generated
trips, respectively.

Travel demand modeling begins with the collection of traffic data that is related to travel
behavior—e.g., traffic count, number of trips made from/to a particular place, and start/end times of
journeys. Traditionally, traffic data is collected by a survey of individual travel behavior. Information
about the individual, their household, and a diary of their journeys on a given day are typically
collected by most surveys. Normally, methods for a travel survey are traffic count, roadside interviews,
and questionnaires, which are costly and laborious [3] and thereby major travel surveys are usually
conducted once a decade. Due to this large gap between the surveys, the collected data can be outdated
despite the fact that it provides detailed mobility information. Its high cost also limits travel survey
being done within particular analysis zones that cause spotty data. Moreover, the collected data is often
based on survey participants’ recalling some information regarding their past journeys, which can also
be erroneous due to the inaccurate responses to the travel survey questionnaires.

Due to recent advances in location-aware technologies, sensors such as GPS tracking units have
been used increasingly for travel surveys [4]. However, collecting data at such a large scale is difficult
and challenging because of the privacy issues and regulations, e.g., the EU general data protection
regulation (GDPR) [5]. Recent attempts have produced data that are limited to specific type of tracked
individuals, such as college students [6], city cyclists [7], and customers of a provided service [8].
Nonetheless, privacy concerns still largely prevent this type of detailed mobility data to be available
and utilized extensively for travel demand modeling.

Recently, opportunistic sensing data produced from various sources has emerged as a promising
alternative that can provide insights about spatial distribution of human mobility. Opportunistic
data refers to data that originally is collected for one purpose but also creates an opportunity for
another purpose. Mobile phone network data or so called CDR (call detail records) is a kind of the
opportunistic sensing data where the data is purposely collected for customer billing, but it can also
be useful for human mobility studies. CDR is a log of cellular network connectivity of a mobile
phone user. Each time the mobile phone user connects to a serviced cellular network by receiving
or making a call or using internet, the communication information is recorded—i.e., call duration,
timestamp, caller’s and callee’s identifications, and location of connected cellular tower. Collectively,
with these individual location footprints, CDR has emerged as a useful data source in human mobility
studies [9,10]. Though the CDR data is not as detailed as GPS tracking data, it is worth noting that
there is still a privacy concern even if they are anonymized when analyzed rigorously with additional
outside information [11].

In the context of the four-step model, the CDR data has been used in each of the sequential
steps. In the trip generation step, it has been used for—among other things—inference of trip volume
and spatial distribution for estimating commuting tip generation rates [12], calibration of a hybrid
trip generation model [13], and estimation of zonal travel demand [14]. It has been used in several
studies in the trip distribution step, such as origin–destination (O-D) matrix’s construction [15–17],
evaluation [18], and modeling [19–21]. In the mode choice step, the CDR data has been used for
inferring commuting mode choice based on distance measures between visited cell towers and route
choices [22], transport mode of given origin and destination based on travel time [23], and commuting
transport mode based on weak-labeling of visited cell towers [24]. Due to its challenging nature of the
problem, there are very few studies reported on using CDR data in the route assignment step, which is
the most detailed level of the transportation in all four steps. These studies include a simulation-based
approach for route choice estimation by Tettamanti et al. [25], but with drawbacks in its feasibility in
real-world scenarios where CDR data is spatially much more coarse-grained and sparse than in its
simulated situation. Another work is by Breyer et al. [26], which is an approach to reconstruct used
routes based on CDRs; however, its shortcomings are the case that only one route can be estimated
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per visited cellular zone. Lastly, a work by Bwambele et la. [27] is an attempt to model route choice
behavior, but for long-distance trips at an inter-regional level. While other previous studies have
captured commuting patterns at a zonal scale such as clustered areas [28], cellular tower locations [29],
and grid cells [30], this study attempts to extend the literature and fill in the gap by proposing and
evaluating models for inferring commuting route choice at street level based solely on a CDR data.

2. Materials and Methods

2.1. Data Description

CDR is a set of individual mobile phone communication logs, collected by a telecom operator
for billing purposes. Each time that a mobile phone user connects to his/her subscribed cellular
network by making or receiving a call, a communication log is recorded. Each record contains caller
ID, callee ID, caller’s connected cell tower ID, callee’s connected cell tower ID, timestamp, and call
duration. A connected cell tower is the serving cell tower, which is the nearest tower or base station to
the user.

In this study, we used CDR data collected from 1.8 million mobile phone users over a course of
one calendar year in Portugal, from April 2006 to March 2007. To safeguard personal information,
individual phone numbers were anonymized by the operator before leaving their storage facilities,
and were identified with a security ID (hash code), which complies with the EU GDPR. We treated data
on a securitized machine, under the Article 89 GDPR exemption for research which allows personal
data treatment for research purposes. For our study, as we were interested in analyzing the users’
mobility, we selected a set of mobile users whose cellular network connections were at least five times a
month and communication activities were observed for each of the 12 months to ensure a fine-grained
mobility observation. This filtering yielded us 110,213 users, who were our study’s subjects [31].
There is a total of 6511 cell towers in our dataset. Each cell tower has a unique ID with its corresponding
geo-location (latitude and longitude).

2.2. Home and Work Location Inference

We were particularly interested in the commuting trip, whose origin and destination are home and
workplace (or school). Thus, the first information that we needed before we can further investigate the
route choice was the home and workplace locations of each subject. We adopted the approach utilized
in previous studies [22,31,32] to infer each individual subject’s home location as the cell tower’s location
that was used most frequently (highest connectivity) during the sleeping hours (10:00 p.m.–7:00 a.m.)
over the 12-month period. Likewise, the workplace location is inferred as the location of the cell tower
that was most frequently used during the office hours (9:00 a.m.–5:00 p.m.) on weekdays.

2.3. Route Choices

Once the home and workplace locations of each subject are inferred, a set of potential route choices
are obtained from the use of the Google Maps Directions API. As there are many route choices between
home and workplace, the Google Maps Directions API provides us with a set of potential realistic
route choices with our given set of origin and destination, which are the inferred home and workplace
locations [33–36]. Through the API, we requested possible route choices by car and public transit for
each subject. An example of possible route choices displayed in Google Maps is shown in Figure 1.
With our HTTP request for the route choices through the Google Maps Directions API, we received a
set of waypoints—i.e., a sequence of geo-coordinates along the route choice. Each route choice can
have a different number of waypoints depending on the shape of the route. Curvier routes have more
waypoints. The waypoints received from the route choices shown in Figure 1 are illustrated in Figure 2.
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Figure 1. Examples of possible route choices by (a) driving and (b) public transit, from the use of the
Google Maps Directions API.

Figure 2. Route choices drawn with the received waypoints information from the Google Maps
Directions API.

2.4. Route Choice Inference

With the obtained set of possible route choices, our task was to identify the route that was most
likely taken by the subject from his/her mobile phone usage pattern. An example of a subject is shown in
Figure 3, where there are three possible route choices between home and workplace. Each yellow circle
represents a location of the used/connected cell tower over the observed 12-month period, while its
size corresponds to the total amount of connections—i.e., the larger the circle, the more frequently
visited the location. Our task can then be systematically formulated as a problem of choosing the route
that is nearest to the circles (visited locations).
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Figure 3. An example of route choices between home and workplace plotted along with the locations
of connected cell towers where the circle size corresponds to the total amount of connections.

Intuitively, our approach is to find the likelihood of a route choice being chosen based on
some calculated value measured between it and all visited cell towers with also taking into
account the amount of visits. Therefore, let rk denote a set of waypoints of route choice k, i.e.,
rk =

{
xk(1), xk(2), xk(3), . . . , xk(M)

}
where each waypoint i, i.e., xk(i) =

{
Latk(i), Lngk(i)

}
contains a

pair of geo-location coordinates; latitude and longitude. The likelihood score of route k (Wk) can be
calculated as a sum of ratios of the number of visits to the geographical distance from route k to each
visited tower location,

Wk =
M∑

i=1

wk(i) (1)

where M is the total number of waypoints and wk(i) =
∑N

j=1 f ( j)/di j, where N is the total number
of visited cell towers, f(j) is the total number of visits to cell tower j, and di j = dist(xk(i), y( j)) is the
geographical distance (in km) between a waypoint i and cell tower j based on the Haversine formula,
as follows.

di j = 2R · arcsin(

√
sin2(

Lat( j) − Latk(i)
2

) + cos(Latk(i)) cos(Lat( j)) sin2(
Lng( j) − Lngk(i)

2
)) (2)

where the geo-coordinates of cell tower j is y( j) =
{
Latk(i), Lngk(i), f ( j)

}
and R is the Earth radius (6371

km). Figure 4 shows a graphic that illustrates our distance calculation approach where black dots
between the home and workplace represent waypoints and circles are the visited cell tower locations.
Essentially, the route choice with the maximum likelihood score (Wk) is identified as the chosen one
among all candidates, i.e., argmax

k
Wk.

Figure 4. Illustrating graphics of distance calculation between a route choice and visited cell
tower locations.
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2.4.1. Interpolation-Based Method

The number of waypoints of each route choice can be different depending upon the shape of the
route. Curvier routes contain more waypoints. Hence, a route with more waypoints can potentially
have a higher likelihood score (Wk) as it sums over a higher number of terms (M) i.e., waypoints.
To have a fairer comparison across all route choice candidates, an interpolation is applied to equalize
the number of waypoints of each route. With an equal number of waypoints, each route can be divided
into the same number of segments (or edges), as shown in Figure 5.

Figure 5. An example of route choices (shown in Figure 3) after interpolation that equalizes the number
of waypoints of all possible route choices.

To obtain a set of interpolated waypoints, we firstly need to find a set of edges or road segments
that constitutes the whole route. Each edge that connects two adjacent interpolated waypoints contains
information about the locations of adjacent waypoints, its slope, length, and accumulated distance
from the origin (i.e., home). Let xk(i) and xk(i+1) denote adjacent waypoints of edge e(i)(i+1) that has
a slope of mi with length li, and has a cumulative distance from the origin of Ci. Figure 6 shows a
graphic illustrating physical meaning of these variables. Systematically, a given input is a set of route’s
original waypoints rk =

{
xk(1), xk(2), xk(3), . . . , xk(M)

}
, and the desired output is a set of edges of the

route Ek =
{
e(1)(2), e(2)(3), . . . , e(M−2)(M−1), e(M−1)(M)

}
. This process of obtaining a set of route edges is

described in the Algorithm 1.

Algorithm 1: To obtain a set of route edges.

Input: Route waypoints, rk =
{
xk(1), xk(2), xk(3), . . . , xk(M)

}
Output: Set of route edges, Ek
1 for i← 1 to M− 1 do

2 mi ←
Latk(i+1)−Latk(i)

Lngk(i+1)−Lngk(i)
3 li ← dist(xk(i), xk(i + 1))
4 Ci ← Ci−1 + li
5 e(i)(i+1) ←

{
xk(i), xk(i + 1), mi, li, Ci

}
6 end for
7 Ek ←

{
e(1)(2), e(2)(3), . . . , e(M−2)(M−1), e(M−1)(M)

}
8 return Ek
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Figure 6. Illustrating graphics of variables involved in finding a set of edges from the route waypoints.

Once a set of edges is obtained by using the Algorithm 1, we can then use this edge information
to interpolate the route by adjusting the edge length and locations according to a required new number
of edges. The process starts with a new interpolated edge length (l′), which can be simply calculated
as a ratio of the whole route length and a required new number of edges (t)—i.e., the new number of
road segments along the route. A new waypoint is assigned based on the original waypoint locations
and the new interpolated edge length. Figure 7 shows an example where an original route with five
waypoints (four edges) is interpolated into four waypoints (three edges). Our method is described
formally by the Algorithm 2 .

Algorithm 2: To obtain interpolated route waypoints.

Input: Route edges (Ek) and number of interpolated edges (t)
Output: Interpolated route waypoints, xk(i′)
1 for i′ ← 1 to t− 1 do
2 ∆l← i′ · l′ −Ci
3 θ← tan−1(mi)

4 if Lngk(i) < Lngk(i + 1)
5 Lngk(i′) = Lngk(i) + ∆l cosθ
6 Latk(i′) = Latk(i) + ∆l sinθ
7 else
8 Lngk(i′) = Lngk(i) − ∆l cosθ
9 Latk(i′) = Latk(i) − ∆l sinθ
10 end if
11 xk(i′) =

{
Latk(i′), Lngk(i′)

}
12 end for
13 Return r′k =

{
xk(1), xk(2), . . . , xk(t− 1)

}

Figure 7. Illustrating graphics of the shortest distance (dij) being a perpendicular distance from a visited
cell tower location y(j) to an edge e(i)(i+1).

2.4.2. Shortest Distance-Based Method

Another approach to measuring distance from the route to the visited cell tower locations is to
find the shortest distance between each visited cell tower location and each route segment or edge
(e(i)(i+1)) instead of the distance to each waypoint (xk(i)). Intuitively, this approach helps better reflect
on a more realistic distance from the route to the visited cell tower.
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With this approach, the distance dij in Equation (2) can therefore be calculated as a distance from a
visited cell tower location y(j) that is perpendicular to an edge e(i)(i+1) —i.e., shortest distance. If there is
no perpendicular distance from y(j) to e(i)(i+1), then dij is a distance from y(j) to either adjacent waypoint
(xk(i) or xk(i+1)) whichever is the shortest. Figure 7 shows illustrating graphic example of a case where
there is a perpendicular distance from a visited cell tower location to the edge. On the other hand,
Figure 8 shows an example of another scenario where there is no perpendicular distance along the edge,
so the distance dij is calculated as a distance between the visited cell tower and the nearest waypoint of
the considered edge.

Figure 8. Illustrating graphics of the shortest distance (dij) being a distance from a visited cell tower
location y(j) to the nearest waypoint (xk(i+1) in this case) along the edge e(i)(i+1).

Practically, as we operate in a discrete domain, locating a point along the edge that projects
a perpendicular distance to a visited cell tower can be done approximately by interpolating the
edge and finding the point with the shortest distance to the cell tower. The number of interpolated
points along an edge can be set such that it gives a reasonable separation between the points for
which we used one-meter spacing. Hence, number of interpolated points along an edge can be
calculated as

⌈
ddist(xk(i), (xk(i + 1)) × 103

⌉
for each edge. With a given edge and its calculated number

of interpolated points (t’), the Algorithm 2 can be applied to obtain the interpolated points along the
edge from which the shortest distance can be then be estimated. Algorithm 3 describes our method of
obtaining a shortest distance, where E′(i)(i+1) =

{
x′(1), x′(2), . . . , x′(t′)

}
is a set of interpolated points

along the edge i.

Algorithm 3: To find a shortest distance.

Input: Edge e(i)(i+1) and cell tower y( j)
Output: Shortest distance, di j

1 t′ ←
⌈
dist(xk(i), (xk(i + 1)) × 103

⌉
2 E′(i)(i+1) = Algorithm2

(
e(i)(i+1), t′

)
3 for i← 1 to t′ − 1 do
4 ci j ← dist(x′(i), y( j))
5 end for
6 Return argmin

i
ci j

2.4.3. Voronoi Cell-Based Method

Voronoi diagram is a popular method for partitioning space into sub-regions based on a set of
pre-defined points in the space. It is widely used in the fields of spatial analysis and urban planning,
such as service area delimitation [37] and map generalization [38]. As it is for space partitioning
based on the distance to a set of seed points, the Voronoi diagram can be directly applied in our case
to partition the entire area into sub-areas (or Voronoi cells) based on the cell tower locations—i.e.,
generating a coverage zone of each cell tower—which can then be used as a spatial reference in
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measuring a distance from the route (dij). Figure 9 shows the generated Voronoi cells that define service
coverage zones across the country according to all 6511 cell tower locations.

Figure 9. Generated Voronoi cells that indicate service coverage zones based on cell tower locations.

With these generated Voronoi cells, a distance from a route to each visited cell tower can be
calculated from the points on its Voronoi boundaries that the route passes through. Figure 10
demonstrates an example where the points on visited cell tower’s Voronoi boundaries are marked
with black solid circles. As shown in Figure 11, the distance between the route and each visited cell
tower (or dij in Equation (2)) can be calculated in two ways: (1) the sum of distances from all passed
points to the cell tower location i.e., dij + d(i+1)j; or (2) the minimum distance among all crossed points
to the cell tower location i.e., d(i+1)j in this example. Note that in our study the Voronoi cells were
generated using Matlab function called voronoi while another function called polyxpoly was used to
find the intersection points between route and Voronoi cell boundaries.

Figure 10. An example showing points (marked with black solid circles) on the visited cell tower’s
Voronoi boundaries that each route passes through.
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Figure 11. Illustrating graphics showing how distance from the route and visited cell tower is measured
using the Voronoi cell-based method.

2.4.4. Visited Voronoi Cell-Based Method

With the Voronoi-cells based method, potentially there may be some portions of the route that do
not pass through visited Voronoi cells and hence are not considered in distance calculation. This can be
addressed as we introduce another approach here where the key concept is to start with an individual
subject’s Voronoi-cell map, which is individually generated by considering only the subject’s visited
cell tower locations. This way, each of the route candidates will be passing through visited Voronoi
cells along the way, so that the distance calculation is done over the whole route. Figure 12 shows an
example of a sample subject’s visited Voronoi-cell map (with a zoom-in of the Lisbon area), which takes
into account only the subject’s visited cell tower locations in generating the Voronoi cells. By using this
approach, Figure 13 shows a sample subject’s (previously shown in Figure 10) route choices that pass
through the visited Voronoi cells. The distance calculation between each route and visited cell towers
can then be carried out as previously described in the Voronoi-cell based method (Section 2.4.3).

Figure 12. An example of a subject’s only visited Voronoi-cell map with a zoom-in of Lisbon area.
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Figure 13. An example showing points (marked with black solid circles) on the visited cell tower’s
Voronoi boundaries that each route passes through, by using the visited Voronoi-based method.

2.4.5. Noise Filtering

Although commuting trips constitute the majority of individual trips, there are also other trips
made to/from elsewhere besides home and workplace. These non-commuting trips also are present
in forms of logs of connectivity and can be reflected from the CDR data. Yet, as our focus is on
commuting trips, the cellular network connectivity associated with these non-commuting journeys can
be considered noise.

To reduce this noise from our commuting route choice inference, we introduce two approaches.
First approach involves applying the DBSCAN algorithm [39], which is a density-based spatial
clustering method that groups together data points with many nearby neighbors and filters out outliers
that are data points lying alone in low-density regions. To proceed with the DBSCAN, there are
two required parameters, which are the radius of a neighborhood (ε) and the minimum number of
points required to form a dense region (minPts) for which we set ε to be equal to the commuting
distance (i.e., direct distance between home and workplace) and minPts = 10, respectively. The values
of these parameters were chosen and justified by our observations of the results based on which we
believed that our chosen values were suitable. Different practical choices of DBSCAN parameters can
of course be worth exploring in a future study. Choosing optimal choices of these two parameters
is still an open research question as shown in a sensitivity analysis of spatiotemporal trajectory data
clustering by Wong and Huang [40]. The two parameters apparently are against each other to a certain
degree—i.e., increasing the value of minPts will disband larger clusters into smaller ones—while the
value ε determines the spatial scale of cluster detection and hence increasing ε value produces extensive
clusters. Appropriate values of these two parameters have been suggested in some studies [41,42],
however these suggestions are not quite general as they are data dependent. In our case, the starting
point is set to be the subject’s home cell tower location, so that the first cluster is a group of visited
cell tower locations located near the commuting route. Therefore, only this first cluster is considered
in our route choice inference while other clusters and noise are considered altogether as a noise and
discarded. Figure 14 shows a clustering result of DBSCAN of a sample subject whose Cluster #1 is
further considered in our route inference method while the rest of the visited cell towers is considered
as noise and discarded.
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Figure 14. Clustering result of DBSCAN from which its Cluster #1 is further considered for the route
choice inference while the rest of the visited cell towers are considered as a noise and discarded.

Our second approach to filtering out visited cell towers that are unlikely related to commuting
trip, i.e., cell towers that are further away from the route choices, or considered as noise involves the
use of commuting distance, i.e., direct home-workplace distance, which is used as ‘commuting radius’
to draw a noise filtering scope, as an analogy to bandpass filter. This noise filtering scope is centered at
the midpoint on a straight line drawn between the home and workplace. All visited cell towers that
are located within the scope of commuting radius are then further considered for our route inference
while the rest is considered as noise and discarded. Figure 15 shows a graphic demonstrating this
commuting-radius based noise filtering approach. For an actual example, Figure 16 shows a result of
the commuting-radius based noise filtering (of the subject previously shown in Figure 14) where cell
towers located within the enclosed commuting-radius scope are further taken otherwise discarded
as noise.

Figure 15. Illustrating graphics showing how the commuting-radius based noise filtering works.
Cell towers located within the commuting-radius (dc) scope are taken further for the route choice
inference while those located outside the scope are considered as noise and discarded.
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Figure 16. An example of applying the commuting-radius based noise filtering from which the visited
cell towers located within the commuting-radius scope are taken further for the route inference but
those located outside the scope are considered as noise and then discarded.

3. Results

Here, we present the results of our route inference methods including the interpolation-based,
shortest distance-based, Voronoi cell-based, and visited Voronoi cell-based methods implemented with
and without noise filtering (DBSCAN and commuting radius-based). Accuracy rate was calculated by
comparing the inferred route against a ground truth.

As obtaining the actual route choice information from the subjects was not possible, so we
generated a ground true based on a visual inspection and hand labeling of data, which was believed
to be most reasonably feasible in our case here. For consistency, one person was designated for the
task and asked to hand label the route that was mostly believed to be the taken commuting route
choice. The designated hand-labelling person viewed a subject’s CDR connectivity along with route
choices (similar to the one shown in Figure 3) and was asked to identify the most probable route taken.
The hand-labelling person was asked to only hand label the most probable route with high confidence,
so the person did not hand label every examined subject but only those whose most probable route
choices were clearly obvious to her. This exhaustive hand-labeling task yielded a 90-subject ground
truth for our experiment.

3.1. Interpolation-Based Methods

For the interpolation-based method, an accuracy rate was calculated for each of the varying
number of interpolated edges ranging from 2 to 100 edges to observe the impact of the level of
interpolation. Furthermore, the used (visited) cell towers were ranked from the most to the least used
towers, for which an accuracy rate was calculated from the top 1% to 100% (all) used cell towers.

Overall result is shown in Figure 17a for a total of 99 × 100 = 9900 experimental setups for which
accuracy rates were calculated. The overall average accuracy rate is 82.05%. The accuracy reaches its
maximum of 90% for 62 times which all happen when the number of interpolated edges is set to 12
edges and the top cell tower percentage varies from 34% to 95%. Figure 17b shows the average accuracy
rates of each of the varying number of interpolated edges along with corresponding standard deviation
bars, which confirms that with 12 interpolated edges, the average accuracy rate is at the highest of
87.72%, averaged across all top cell tower percentage variations. Interestingly, when considering
the average accuracy rates across all top cell tower percentages as shown in Figure 17c, the average
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accuracy gradually rises and becomes stable as the number of top cell towers considered for accuracy
rate calculation increases. The average accuracy rate rises to 83.04% at 26% top cell towers and does
not change much as it continues to slightly climb up to 83.79% when it reaches all 100% top cell towers.
This suggests that only some percentage of top visited cell towers can be sufficient for the route choice
inference, as it does not significantly improve the accuracy by taking more data presumably less
relevant. This result opens up an interesting research question of how much of the individual CDR
data that is said to be significantly sufficient and relevant to the route choice inference, which is worth
future investigation.

Figure 17. Results based on the interpolation-based method: (a) overall accuracy rates; (b) average and
standard deviation of the accuracy rates of varying numbers of interpolated edges; (c) average and
standard deviation of the accuracy rates of varying numbers of top cell tower percentage.

For the interpolation-based method implemented with the DBSCAN-based noise filtering,
the examined number of interpolated edges varies from 2 to 100 edges, while the percentage of
top cell towers ranges from 2% to 100% in this experiment (as there were not top cell towers in some
cases made up by 1% after some towers being filtered out as noise). The overall result from a total of
99 × 99 = 9801 experimental setups is shown in Figure 18a. The overall average accuracy is 81.85%,
while the highest accuracy rate is 90% when the number of interpolated edges is 12 and the percentage
of top cell towers is from 37% to 95%. Along the same line, Figure 18b shows at the highest average
accuracy rate of 87.49% is reached when 12 interpolated edges were used. Our examination of top
cell tower percentages in Figure 18c shows that with DBSCAN, the average accuracy rate increases
slightly slower than the interpolation-based method without DBSCAN to reach its stable level. In this
experiment, it reaches a stable level (83.41% accuracy) at 35% of top cell towers, which is slower than
that of the normal method whose stable accuracy rate is reached at 26% of top cell towers. The average
accuracy once reaches its stable level at 83.41%, it continues to slowly rise to 83.79% when the entire
cell towers were considered.

Lastly, with the commuting radius-based noise filtering, the interpolation-based method preforms
slightly worse than the previous two methods. The variation of examined number interpolated
edges is the same as in previous experiments which is 2–100 edges, but the percentage of top cell
towers in this experiment varies from 6% to 100%. The overall result obtained from a total of
99 × 96 = 9504 experimental setups is shown in Figure 19a where the overall average accuracy rate is
81.35%. The highest accuracy is 90%, which happen when the number interpolated edges is 12 and
percentage of top cell towers is from 59% to 93%. From the perspective of the number interpolated
edges, the average accuracy reaches its maximum at 84.70% with 12 edges, as shown in Figure 19b.
With the varying percentage of top cell towers, the accuracy reaches its stable rate at 83.03% when the
top 58% cell towers were considered, and it moves up and down slightly and eventually stands at
83.59% when the entire visited cell towers were taken into consideration (Figure 19c).
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Figure 18. Results based on the interpolation-based method implemented with DBSCAN-based noise
filtering: (a) accuracy rates; (b) average and standard deviation of the accuracy rates of varying numbers
of interpolated edges; (c) average and standard deviation of the accuracy rates of varying numbers of
top cell tower percentage.

Figure 19. Overall results based on the interpolation-based method with commuting radius-based
noise filtering; (a) accuracy rates, (b) average accuracy rates with varying numbers of interpolated
edges, and (c) average rates with varying percentages of top cell towers.

3.2. Shortest Distance-Based Methods

With the shortest distance-based method, an accuracy rate was calculated for each varying
percentage of top cell towers implemented with and without noise filtering. All results from three
different models are shown in Figure 20, including the shortest distance-based method without noise
filtering (Shortest distance), the shortest distance-based method with DBSCAN (Shortest distance +
DBSCAN), and the shortest distance-based method with commuting radius-based noise filtering
(Shortest distance + Commuting radius). The top cell tower percentage varies from 1–100% for the Shortest
distance method, from 2–100% for the Shortest distance + DBSCAN method, and from 6–100% for the
Shortest distance + Commuting radius method.

With the Shortest distance method, its accuracy rate has an uprising trend and reaches the maximum
value of 72.22% when the top cell lower percentage is 21%, 22%, and 23%. It then shows a continuous
dropping trend to reach 64.44% accuracy rate when the entire (100%) visited cell towers were taken
into account. The result of the Shortest distance + DBSCAN method shows a similar up-and-down
trend with the Shortest distance method. It rises to reach its maximum at 70% when the top cell tower
percentage is 23%, 24%, and 33%, then gradually drops to eventually reach 64.44% when the entire cell
towers were considered. Lastly, the resulting accuracy rates of the Shortest distance + Commuting radius
method also appear to a similar trend where it rises to its maximum value of 71.11% when 35% or
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36% top cell towers were considered. It then slowly decreases to eventually reach 64.44%. Overall,
the shortest distance-based method without noise filtering appears to have a better performance than
implementing it with a noise filtering, as it shows to be the fastest to reach its maximum accuracy rate,
and it also poses the highest accuracy value among all three examined methods.

Figure 20. Results of the shortest distance-based methods with and without noise filtering.

3.3. Voronoi Cell-Based Methods

The Voronoi cell-based method was implemented with and without noise filtering. The results
are shown in Figure 21. Percentage of top cell towers considered for the route inference varies and
starts from 15%, 22%, and 35% for the Voronoi cell-based method without noise filtering (Voronoi),
with DBSCAN (Voronoi + DBSCAN), and with commuting radius-based noise filtering (Voronoi +
Commuting radius), respectively. The top cell tower percentage starts from a different value in each of
the three methods due to the obtainable amount of top cell towers with a specified percentage value.
Two separated set of experiments were implemented, one with the summed distance approach and the
other with the shortest distance approach, as described in Section 2.4.3—i.e., distance measured from
passed points to a visited cell tower location (dij, d(i+1)j to y(j)).

Figure 21. Results of the Voronoi cell-based methods with and without noise filtering: (a) summed
distance approach; (b) shortest distance approach.

For the summed distance approach as shown in Figure 21a, the Voronoi method shows an uprising
trend to reach its maximum accuracy of 78.89% with top 26% cell towers and remains at this accuracy
until the top 54% cell towers considered, then it drops slightly to 77.78% and remains there from top
55–82% cell towers and then takes another step drop to 76.67% and lasts for the rest of the cell tower
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percentages. The Voronoi + DBSCAN method exhibits a similar result with the Voronoi method, as its
accuracy rate climbs up in the same fashion but reaches the same maximum rate (78.89%) later at
top 29% cell towers and remains at the level before it drops to 77.78% at the same 55% top cell tower
level but remains there until 85% top cells before taking the last step drop to the same accuracy rate
of 76.67% for the rest of the way. The three-step accuracy rates are also observed for the Voronoi +
Commuting radius method, as it rises to the maximum (78.89%) and remains there from 42% to 75%
top cells, and then later down steps are 76–94% and 95–100%. These stepwise accuracy rates are most
possibly due to the issue previously discussed in Section 2.4.3 that with the Voronoi-cells based method,
there may potentially be some portions of the route that do not pass through visited Voronoi cells and
hence they are not considered in distance calculation. A chunk of top cell towers are likely required to
make an impact on accuracy rate, thereby a stepwise accuracy result is observed.

For the Voronoi-based shortest distance approach, the result is shown in Figure 21b where the top
cell tower percentage starts at 15%, 22%, and 35% for the Voronoi cell-based method without noise
filtering (Voronoi cells), with DBSCAN (Voronoi + DBSCAN), and with commuting radius-based noise
filtering (Voronoi + Commuting radius), respectively. Stepwise accuracy results are also observed here.
The calculated accuracy rates of all three models exhibit a similar trend, as they all rise to reach the
same maximum rate of 78.89% and remain there for some top cell tower percentages, then drops to
77.78% and later 76.67%. The Voronoi method reaches the maximum with the least percentage of top
cell towers of 35%, followed by the Voronoi + DBSCAN of 41% and then Voronoi + Commuting radius of
43%. The Voronoi + Commuting radius, however, is able to stay at the maximum rate for the largest
portion of the top cell percentages, i.e., 43–75%.

3.4. Visited Voronoi Cell-Based Methods

Likewise, the visited Voronoi cell-based method (V-Voronoi) was implemented without and with
noise filtering (V-Voronoi + DBSCAN and V-Voronoi + Commuting radius), as well as altered with the
summed distance and shortest distance approaches. The top cell percentage starts at 11%, 12%, and 39%
for V-Voronoi, V-Voronoi + DBSCAN, and V-Voronoi + Commuting radius, respectively. The results are
shown in Figure 22.
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Figure 22. Results of the visited Voronoi cell-based methods with and without noise filtering; (a) summed
distance approach and (b) shortest distance approach.

With the summed distance approach, the maximum accuracy among three methods of 75.56% was
achieved by the V-Voronoi + Commuting radius at 42% top cell tower level, followed by the V-Voronoi at
73.33% when top cell percentage is in the ranges 25–28% and 36–49%, and the V-Voronoi + DBSCAN at
also 73.33% for a span of 40–56% top cell towers. With the shortest distance approach, the maximum
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accuracy among all three methods was 74.44%, which was achieved by V-Voronoi + DBSCAN for
45–47% top cell towers and V-Voronoi + Commuting radius for 64–69% top cell towers.

Interestingly, the performance of the visited Voronoi cell-based methods are lower than that of the
Voronoi cell-based methods. This may be due to the consideration of only visited Voronoi cells that
draws up larger coverage zones (or cells), which may negatively affect the distance calculation.

3.5. Result Summary

The results from all sets of experiment of our developed and examined methods for route choice
inference including the interpolation-based, shortest distance-based, Voronoi cell-based, and visited
Voronoi cell-based methods, implemented with and without DBSCAN or commuting radius-based
noise filtering are summarized in Table 1.

Table 1. Result summary of all proposed commuting route choice inference methods

Method
Accuracy Top Cell Tower

Percentage
Number of

Interpolated Edges
Max Min Avg.

Interpolation 90.00 56.67 82.05 1–100 2–100
Interpolation + DBSCAN 90.00 60.00 81.85 2–100 2–100

Interpolation + Commuting radius 90.00 64.44 81.35 6–100 2–100
Shortest distance 72.22 50.00 65.89 1–100 -

Shortest distance + DBSCAN 70.00 56.67 66.20 2–100 -
Shortest distance + Commuting radius 71.11 60.00 66.61 6–100 -

Voronoi cells (summed dist.) 78.89 73.33 77.54 15–100 -
Voronoi cells (summed dist.) + DBSCAN 78.89 74.44 77.82 22–100 -

Voronoi cells (summed dist.) + Commuting radius 78.89 76.67 77.25 35–100 -
Voronoi cells (shortest dist.) 78.89 71.11 76.83 15–100 -

Voronoi cells (shortest dist.) + DBSCAN 78.89 71.11 77.09 22–100 -
Voronoi cells (shortest dist.) + Commuting radius 78.89 74.44 77.83 35–100 -

V-Voronoi cells (summed dist.) 73.33 61.11 70.58 11–100 -
V-Voronoi cells (summed dist.) + DBSCAN 73.33 62.22 70.67 12–100 -

V-Voronoi cells (summed dist.) + Commuting radius 75.56 71.11 77.88 39–100 -
V-Voronoi cells (shortest dist.) 73.33 61.11 70.12 11–100 -

V-Voronoi cells (shortest dist.) + DBSCAN 74.44 64.44 70.46 12–100 -
V-Voronoi cells (shortest dist.) + Commuting radius 74.44 67.78 72.19 39–100 -

Interestingly, the interpolation-based method has the best result in both points of view of the
maximum and average accuracy rates. From the average accuracy rate’s perspective, the top five
rankings are Interpolation (82.05%), Interpolation + DBSCAN (81.85%), Interpolation + Commuting
radius (81.35%), V-Voronoi cells (summed dist.) + Commuting radius (77.88%), and then Voronoi cells
(shortest dist.) + Commuting radius (77.83%). The bottom five rankings include Shortest distance
(65.89%), Shortest distance + DBSCAN (66.20%), Shortest distance + Commuting radius (66.61%),
V-Voronoi cells (shortest dist.) (70.12%), and V-Voronoi cells (shortest dist.) + DBSCAN (70.46%).
If grouped by the main method, the interpolation-based group has the highest average accuracy rate
(81.75%), followed by the Voronoi cells (summed dist.) group (77.54%), and Voronoi cells (shortest
dist.) group (77.25%).

From the point of view of a receiver operating characteristic curve, or ROC curve, which is a
performance measurement for classification problem at various thresholds settings, the performance
across all route inference models with varying top cell percentages is in line with the results observed in
Table 1 as all interpolation-based models are among the top performance on the ROC curve, as shown
in Figure 23. Model performance is measured in forms of true positive rate (TPR) or sensitivity versus
false positive rate (FPR) or probability of false alarm.
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Figure 23. ROC curve of each model’s performance using top cell percentage for threshold settings.

As our ultimate goal of this investigation is to offer a new and more efficient way than the
traditional surveys to gather a route choice information at a large scale, so we applied our best method
(i.e., interpolation-based with 12 edges) to infer commuting route choices in Portugal. Our ground
truth of 90 subjects’ route choices is shown in Figure 24, and the inferred route choices of 110,213
subjects on the Portugal road network shown in Figure 25. With our approach, commuting route
choice information can be gathered at anytime, which is intuitive and more up-to-date compared to
the travel survey that is collected once every 5–10 years. Thus, transportation can be better informed,
planned, and designed to meet the current traffic demand and travel behavior.

Figure 24. Ground-truth commuting route choices of 90 subjects.
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Figure 25. Inferred commuting route choices of 110,213 subjects on the Portugal road network.

4. Conclusions

Its ubiquity has turned mobile phone into personal sensor that collects digital traces of
individual through the usage of provided services, such as voice calls, messages, and internet.
These communication logs are collected purposely for billing, but collectively on a large scale these
individual traces can be regarded as a valuable behavioral data source from which insights into human
behavior can be gained. This study makes use of the location traces of mobile phone users to gather
information on route choices of individuals in their commuting trips. This offers a better alternative
to the traditional travel surveys such as roadside interviews and questionnaires, which are costly
and time-consuming. A total of 18 different route choice inference models have been developed
and examined. Our route choice inference has been formulated as a problem of choosing the most
probable route taken among different route choice candidates based on the location traces of individual
mobile phone’s connectivity i.e., connected (or visited) cellular towers. Four main models are based
on the interpolation of route waypoints for calculating distance between a probable route choice
and connected cell towers, the shortest distance between a route choice with original waypoints
and visited cellular towers, the Voronoi cells that assign a route choice into multiple coverage zones,
and the consideration of only visited Voronoi cells that assign a route choice into individual coverage
zones. For both Voronoi-based models, two variations in calculating the distance have also been
implemented; one with the summed distance of passed points and the other approach is the use of
only the shortest distance of all passed points on each considered Voronoi boundaries. Each of these
models has been implemented with and without noise filtering, which includes applying the DBSCAN
algorithm and our own approach that uses commuting distance to draw a noise filtering scope, as an
analogy to bandpass filter. Our model development and experiment were carried out using a mobile
network phone dataset (or CDR) from Portugal. As the result, from the accuracy rate’s point of view,
the interpolation-based models have the best performance followed by the consideration of only visited
Voronoi cell-based model with summed distance approach and with commuting radius-based noise
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filtering, and then the Voronoi cell-based shortest distance approach and with commuting radius-based
noise filtering.

Interestingly, reflecting on our experimental results seems to suggest that the noise may not
be noise as initially perceived after all. Consideration of the entire data tends to produce a better
performance than the noise filtered data. Relevance is probably the key here as evidenced in the top
cellular tower percentage experiments that with some portion of top cell towers the model performs
better than taking the entire data in consideration, as we varied the percentage of top (used/visited)
cellular towers in our accuracy calculation.

From a small ground truth set, commuting route choices of people in Portugal are inferred and
demonstrated on the road network as a case study. Our developed and examined models can have
an immediate implication in gathering route choice information on a large scale that facilitates the
four-step model in transportation forecasting. Our models and approaches can also serve as a baseline
for future development and investigation into the route choice inference problem which is based on
solely on CDR data, as they provide a perspective to both problem formation and solution.

Nonetheless, there are a number of significant limitations to our study. The first of these is the
possibility of multiple route choices. Our assumption in this study was that a person takes only one
route choice for commuting, which is not always the case for everyone but presumably for most people.
Another potential limitation is an arguably small set of ground truth, which is due to the exhaustive
nature of our hand labeling task. A larger ground truth size may potentially increase the significance
to the model evaluation. A third limitation relates to the route choice candidates gathered via the
Google Maps Directions API, which may not precisely be the route choices available. Yet, we believe
that the gathered route choices still share many similarities with the actual ones as the suggested
route choices are fundamentally based on the fastest travel time, which is presumably the approach of
most commuters. As our analysis was performed based on mobile phone users in Portugal, a final
limitation is about the extent to which our findings are applicable beyond the country of case study.
Though it is a case study to demonstrate our model development and analysis, we strongly believe
that the findings are still valid to a large extent and likely to be applicable to countries with broadly
similar social, cultural, and economic profiles with Portugal, which is a member of the 26 Schengen
countries and a developed country that shares significant similarities with several European and other
developed counties in the world.

As for future research directions, this study opens up a number of interesting related research
questions worth exploring in a future study, such as how to determine a percentage of top visited
cell towers that is effectively adequate for route choice inference. Especially, in the big data era,
data streams consist of both relevant and irrelevant portions. How to effectively extract only relevant
ones is the key. Another future research trajectory is utilizing the temporal context of the CDR data in
route choice inference, which is left out of the present study. Consideration of temporal sequences
could potentially improve the model’s performance. Lastly, the reasoning behind chosen route choices
is another interesting aspect for investigation, which could be related to connectivity of road network
and how it is designed.
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