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Abstract: Voting is the most basic form of political participation. The agencies that are responsible 

for voting must delineate precincts and designate a polling place for each precinct. This spatial 

decision-making requires a strategic approach for several reasons. First, changes in the location of 

polling places induce transportation and search costs from the perspective of voters. Second, 

improving accessibility to polling places can increase turnout. Third, differences in the population 

sizes of precincts may produce biased voting results. Spatial optimization approaches can be a 

strategic method for delimiting precincts and siting polling places. The purpose of this paper is to 

develop a spatial optimization model, namely, the capacitated double p-median problem with 

preference (CDPMP-P), which simultaneously delimits boundaries of precincts and selects potential 

facilities in terms of mixed integer programming (MIP). The CDPMP-P explicitly includes realistic 

requirements, such as population balance, the spatial continuity of precincts, the preferences of 

potential facilities where polling places can be installed, and the possibility of allocating multiple 

polling places in one facility. 

Keywords: accessibility; population balance; preference; spatial contiguity; double location-

allocation process; capacitated double p-median problem with preference (CDPMP-P) 

 

1. Introduction 

Voting is the most basic form of political participation in current democratic societies. Every 

time a presidential or parliamentary election or a referendum occurs, a government agency that is in 

charge of election administration and management delineates precincts and establishes polling 

places. Polling places are physical locations where eligible voters cast their votes, and precincts are 

the smallest electoral unit [1], which are geographically continuous areas for grouping residents to 

assign them to a polling place [2] (p. 138). The terms precinct and constituency are used to refer to 

electoral districts. To clarify the meaning of a precinct, it is necessary to distinguish the two terms. A 

constituency (seongeo-gu in Korea) is referred to as a unit that elects a representative(s), and a precinct 

(tupyo-gu in Korea) as a subdivision of planning units, such as a county, town, city, or ward, to 

manage and operate voting. Generally, a constituency consists of a number of precincts. In Korea, 

voters on Election Day must vote at the designated polling places based on their residential address, 

while those who opt to pre-vote can vote at any pre-polling place irrespective of their residence. The 

former is a traditional precinct-voting method, while the latter is a non-precinct-voting approach 

[3,4]. The agency that is responsible for the electoral administration of jurisdictions delineates 

precincts based on the voters’ residence and then notifies them individually where they will vote on 

Election Day. Because population changes continually over time, the process of designating precincts 

and polling places should be conducted whenever there is an election. Thus, partitioning a 

continuous geographical voting zone based on voters’ residence and informing voters where they 

can vote are common tasks in electoral administration. 
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Precincts and polling places are used temporarily for the convenience of voters and electoral 

administration on Election Day. Delineating precincts differs in many ways from political districting 

problems. Generally, population equality, contiguity, and compactness are considered key modeling 

concerns when districting constituencies. This type of political districting may have the problem of 

gerrymandering, which adjusts districts for specific political purposes, and political interests are 

sensitive to the outcome of redistricting [5]. The reason why politically sensitive and societal issues 

arise is that the results of elections can vary depending on how many and what types of people are 

included in constituencies; if the population imbalance among constituencies is severe, the 

equivalence of the voting might be damaged. Unlike constituency redistricting, which can cause 

gerrymandering due to political interests, delineating precincts and determining polling places target 

the convenience of voting. 

Why should we strategically approach the delineation of precincts and the siting of polling 

places? Polling places may induce two types of costs for voters. One is transportation costs that are 

incurred by moving from voters’ residence to the designated polling place, and the other is the search 

costs arising from the redistricting of precincts and the repositioning of polling places [6]. Several 

studies showed that the distance to polling places affects turnout rate [3,6–9]. Furthermore, the 

turnout rate can be increased through the relocation of polling places [10]. In addition, some claimed 

that the population size of the precincts (especially larger ones) could produce biased results [11]. For 

these reasons, it is necessary to partition precincts with a suitable population and increase access to 

polling places. Spatial optimization approaches can significantly contribute to these spatial decisions 

[12–14]. On the other hand, with many countries reducing the number of polling places to cut election 

costs [6,9,13,14], spatial optimization approaches can provide the alternative solutions to minimize 

accessibility deterioration. 

Despite the practical usefulness of spatial optimization approaches, not many optimization 

studies that relate to demarcating precincts and locating polling places have been conducted. 

References [13] and [14] developed a multi-objective genetic algorithm that can reduce the number 

of polling places while increasing turnout. However, these authors did not present a mixed integer 

programming optimization model. Reference [15] formulated a generalized assignment problem [16] 

that minimizes the cost of moving to polling places while balancing the population between precincts. 

This model finds the optimal precinct boundaries by assigning demand spatial units to a 

predetermined number of polling places to minimize the population-weighted distance under 

capacity constraints. This is an allocation model because the location and number of polling places 

have already been determined. On the other hand, [12] proposed a capacitated plant location problem 

that allows multiple polling places at the same site. In this model, multiple polling places can be 

installed on one site by adding a new index to track multiple places on it. In this study, the authors 

pre-defined the number of facilities that can be installed per site. This model can determine the 

locations of the polling places, but may not demarcate a spatially continuous precinct. For example, 

suppose that two polling places are located on a site. Because the distance between the two polling 

places and the allocated demand are the same, even if the objective function minimizes the sum of 

distance, the demand that is allocated to the two polling places may be spatially mixed. Similarly, 

[17] suggested a spatial optimization model that allows the assignment of multiple polling places to 

the same site by relaxing the binary integer requirement of the location decision variables in a 

capacitated p-median problem. The authors defined an objective function with a utility cost, which is 

a function with a combination of the traveling cost and the preference of potential sites. Their 

computational results showed that one can co-locate multiple polling places on the same site by 

emphasizing a preference factor in the objective function. However, this approach also cannot 

delineate geographically continuous precincts using allocation information on the same site. This 

paper proposes a way to overcome the limitations of previous studies. 

The purpose of this paper is to develop a spatial optimization model for simultaneously 

redistricting precincts and locating polling places in terms of mixed integer programming (MIP). 

During modeling, the population balance, spatial contiguity, preference (or attractiveness as a polling 
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place) of potential facilities where polling places can be installed, and the possibility of installing 

multiple polling places on the same facility are explicitly considered. 

2. Modeling Concerns  

This section describes the aforementioned considerations in more detail. Related to the location 

of polling places, the most important consideration might be the ease of finding and accessing polling 

places. Many studies empirically demonstrated that accessibility to polling places can significantly 

affect turnout or voter participation [3,6–9]. Improving the accessibility to polling places is important 

both prescriptively and practically. Prescriptively, a lack of accessibility to polling places may be a 

type of suffrage violation. Improved accessibility to polling places might provide more equal political 

participation opportunities to voters. Practically, delimiting precincts and installing polling places 

are common election-management tasks for all elections, and factors such as accessibility can be easily 

reflected in this decision-making process [9]. If these practical actions can increase turnout or improve 

the convenience of voters, they become very valuable. 

The second modeling concern is population balance among polling places (or precincts). The 

balance of population between precincts might be important when redistricting precincts because the 

voting time on Election Day and the manpower that is available for polling places are restricted. In 

addition, the population size of the precincts can cause large precinct bias, which creates an 

advantage for specific candidates as the precinct size increases above a designated total precinct vote 

count [11]. 

The third consideration is the preference of facilities where polling places can be installed. Many 

studies combined consumers’ preferences for facilities with optimization models, such as p-median 

problems [18–20]. Generally, optimization models with consumers’ preferences were defined as bi-

level models that consisted of two components; that is, minimizing the location cost, which is 

estimated based on distance, and optimizing the consumers’ preferences. The preference for facilities 

is predefined in an order form for each individual consumer. When finding solutions for bi-level 

optimization models, the preference and distance interact with each other; but, these two values are 

measured independently. In practice, distance to a facility, alongside the characteristics of the facility, 

such as size, affects the preference of the facility [21]. To reflect this reality, a utility cost is defined in 

this study as a function of distance and the preference, which is evaluated from the characteristics of 

the facilities where polling places are installed [17]. The number of precincts depends on the size of 

the population in the jurisdiction. Because the population continually changes, the number of 

precincts and the location of the polling places also may variate each time. In most cases, the same 

sites are often used as polling places, but some sites can be designated as a new polling place for each 

election. In terms of election administration, designating public facilities as polling places is easier 

than private facilities. In addition, it is possible to install multiple polling places at larger facilities. 

Therefore, larger public facilities may be preferred. Meanwhile, voters would prefer to vote at a place 

they had previously voted, at a known facility, or at a geographically close facility.  

Fourth, installing multiple polling places at one facility can be a modeling issue. In Korea, several 

spatially separated spaces of a facility may commonly be used as polling places for different precincts, 

which is similar to Italy [12]. Several approaches exist to model the installation of multiple polling 

places at one facility or one site. The first method is to mitigate the integrality constraints of the 

location decision variables into a positive integer in optimization models [17]. In this method, 

however, if multiple polling places are installed on the same site, we cannot know to which precinct 

the assigned voters into the facility belong. The second method is to add a new index that points to 

different places in a facility, such as in [12]. This method can distinguish demand that is allocated to 

different polling places on the same site. However, the demand that is allocated to a polling place 

may not be spatially contiguous. Furthermore, the addition of a new index increases the complexity 

of a model (n × t × m, where n is the index indicating potential facilities, t is the index indicating the 

different places of a facility, and m is the index indicating demand). Thus, the new index makes 

finding solutions to practical problems with MIP more difficult. In addition, adding indices to track 

different places in one facility does not guarantee that multiple polling places will be installed on a 
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site. If demand is dispersed and potential facilities are distributed more evenly over a study area, the 

objective function that minimizes distance and fixed costs will likely not result in multiple polling 

places being located on the same site. Conversely, if the demand is concentrated in a specific area and 

the number of potential facilities is small, the co-location of the polling places may be possible. 

Therefore, an alternative approach is required to locate multiple polling places on a site, regardless 

of the distribution of demand and potential facilities. 

The last consideration is the spatial contiguity of the delineated precincts. If demand is 

represented as points, one can delimit continuous precincts by grouping demand points that are 

allocated into the same polling places. In this case, the partitioned precincts are relatively free from 

contiguity constraints. Because the objective function minimizes the sum of the distance to polling 

places, one can distinguish the allocated demand spatially and exclusively. However, demand is 

generally represented as areal spatial units in districting problems, and these spatial units are 

grouped into larger districts under predefined conditions [22–24]. When demand is represented as 

polygons, the distance from the centroid of a polygon to the center of the districts or facilities is 

measured, rather than the distance between the polygons themselves. Therefore, depending on the 

shape or arrangement of the polygons, the allocated polygons into a district can be discontinuous 

[22,24–26]. Additionally, the basic spatial units may be allocated to more distant facilities than the 

closest one when population balance constraints are included. In this case, discontinuous districts are 

more likely to be delineated. In this study, geographically contiguous precincts are delimited by using 

a flow-based contiguity constraint that enforces unit flows from individual spatial units to the centers 

of districts [22,24].  

3. Capacitated Double p-median Problem with Preference 

To model the five aforementioned considerations, this paper proposes a new model, called the 

capacitated double p-median problem with preference (CDPMP-P), by extending the capacitated p-

median problem [27]. This model is a type of districting problem because it includes the delineation 

of precincts. Demand is represented as polygons and potential facilities are represented as points. 

Unlike p-median problems [17,28], general assignment problems [15], or capacitated plant location 

problems [12], which have a single location-allocation process, the CDPMP-P consists of double 

location-allocation processes. The first process involves selecting a given number of basic spatial units 

as centers and allocating basic spatial units to the selected centers, and the second process comprises 

selecting polling facilities and allocating the selected centers to them. The latter process of 

determining candidate facilities and assigning delineated districts is the opposite of the regionally 

constrained p-median problem, which allocates facilities while complying with the minimum and 

maximum number of facilities in a predefined area [29–31]. Figure 1 illustrates the double location-

allocation process of the CDPMP-P. In this figure, three precincts were delineated by assigning eleven 

basic spatial units to three centers (x3, x4, and x8). In the second phase, the three centers were assigned 

to two selected facilities (y2 and y5). The basic spatial units are assigned to selected centers to 

minimize the sum of the population-weighted distance (first term in the objective function, see 

Equation (1)), so the selected units are the population centers of delineated precincts. These 

population centers are, in turn, assigned to facilities to minimize the sum of the population-weighted 

distance (second term in the objective function, see Equation (1)). Thus, access to polling places is 

indirectly modeled. Directly assigning basic spatial units to facilities to model voters’ accessibility to 

polling places may be desirable, but several practical reasons exist for adopting this indirect 

approach. 
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Figure 1. Double location-allocation process of the capacitated double p-median problem with 

preference (CDPMP-P). 

The first reason to introduce the double location-allocation process is to reflect realistic needs. 

According to [32], if no suitable places are available within a precinct, it is possible to site a polling 

place in an adjacent precinct. If demand is directly allocated to polling places or potential facilities, 

selected polling places must be located in precincts because an objective function minimizes the sum 

of distance in location-allocation problems. However, no adequate facilities may be available to install 

a polling place in a precinct. In such cases, polling places must inevitably be located outside precincts. 

The second reason is to obtain spatially separated precincts that correspond to each polling place 

when multiple polling places are installed in one facility. 

Here, we must explain the terms and notation that are used to clearly describe the proposed 

model. As mentioned earlier, the center is the population center of a precinct, which serves as a seed 

for grouping basic spatial units. The sink, which is used to model the continuity of the delineated 

precincts, is an imaginary point where unit flows that occur between adjacent basic spatial units 

within the same precinct are gathered. A facility is a location that has a physical space in which to set 

up polling places, such as community centers, schools, and gyms. On the other hand, in districting 

problems with continuity constraints, i, j, and k indices are needed to represent the adjacency 

relationship between the basic spatial units and to track the basic spatial units that are selected as the 

centers of the districts [22,24]. The notation that is required to mathematically define the CDPMP-P 

is as follows: 

�, �, � = index of basic spatial units, �, �, � = 1, … , �, 

� = index of potential facilities, � = 1, … , � , 

�� = demand of basic spatial unit �, 

��� = distance between basic spatial unit � and � selected as the center of a precinct, 

��� = distance between basic spatial unit selected as a center � and a facility �, 

��� = preference of facility �, 

� = preference impact factor, 

� = number of precincts to be delineated, 

���� = lower bound of population, 

�� = ������ = 1�, a set of spatial units that are adjacent to �, 

��� = �
1, basic spatial units � and � are adjacent 

0, otherwise 
, 
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���� = the amount of unit flow from � to � in a precinct centered on �, 

��� = �
1, if spatial unit � is assigned to center �

0, otherwise 
, 

��� = �
1, if spatial unit � is selected as a sink of precinct centered on spatial unit �

0, otherwise 
, 

y��� = �
1, if precinct with sink � and center � is assigned to facility �

0, otherwise 
, 

�� = �
1, if facility � is selected

0, otherwise 
. 

 
Capacitated double p-median problem with preference (CDPMP-P):  

�������� � =  ∑ ∑ ���������� + ∑ ∑ ∑
���

��
�
� �������       (1) 

Subject to  

∑ ���� = 1, ∀�           (2) 

∑ ∑ ����� = �,           (3) 

∑ ������ ≥ �������, ∀�, �            (4) 

∑ ����� = ���, ∀�, �          (5) 

���� ≤ ��, ∀�, �, �          (6) 

���� ≤  ���(� − �), ∀�, � ∈ ��, �       (7) 

���� ≤  ���(� − �), ∀�, � ∈ ��, �       (8) 

∑ �����∈��
− ∑ �����∈��

≥ ��� − (� − �)���, ∀�, �    (9) 

��� = {0, 1}, ∀�, �          (10) 

��� = {0, 1}, ∀�, �          (11) 

���� = {0, 1}, ∀�, �, �             (12) 

�� = {0, 1}, ∀�           (13) 

���� ≥ 0, ∀�, � ∈ ��, �         (14) 

 

The objective function (Equation (1)) consists of two terms: the first term minimizes the sum of 

the population-weighted distance from the basic spatial units to the centers of the precincts, and the 

second term minimizes the sum of the utility cost when allocating the selected centers to potential 

facilities. The utility cost is defined as a function of distance between the center of a precinct and the 

facilities and the preference of a facility as a polling place [17].  

If � equals 0, then double allocations proceed only based on distance. If � > 0, the preference 

is evaluated only by the characteristics of facilities when assigning the centers of the precincts to 

potential facilities. When strongly emphasizing the preference in this utility cost ( � > 1 ), the 

likelihood of choosing more preferred facilities is increased, and multiple precinct centers can be 

assigned because the denominator of the second term is much smaller. Because the number of basic 

spatial units is larger than those of the precinct centers and potential facilities (the contribution from 

the first term to the objective function is much greater than that from the second term), the emphasis 

on the preference affects the selection of potential facilities but has relatively little effect on the 

locations of the centers. Constraint (2) means that all basic spatial units should be allocated to only 

one center. Constraint (3) enforces p precincts to be delineated. Constraint (4) limits the minimum 

population size of the delineated precincts. According to Constraint (3), ��� is only 1 for the given 

number p and 0 for all other cases. Thus, ��� is a subset of ��� (��� ≥  ���); that is, ���  is 1 out of 

��� = 1. If we limit the upper bound of the population in Constraint (4), then the right side will often 

have a value greater than 0, while the left side will be mostly 0. Therefore, no solutions satisfy this 

type of constraint. Strictly speaking, the lower bound, similar to Constraint (4), is a lower threshold 

of the central place theory [33] rather than capacity. Constraint (5) ensures that all the selected centers 

should be assigned to one potential facility; that is, only the basic spatial unit i that is selected as the 

center of the precinct k (��� = 1) should be assigned to one potential facility l once. Constraint (6) 

enables us to assign the centers only to the selected facilities. Constraints (7), (8), and (9) are contiguity 

requirements that enforce unit flows between the spatial units i and j, which are adjacent to each 

other and assigned to the same precinct k [22,24–26]. Constraints (10), (11), (12), and (13) impose 



ISPRS Int. J. Geo-Inf. 2020, 9, 301 7 of 17 

 

integer restrictions on the location and allocation decision variables. Finally, Constraint (14) means 

that ���� is a non-negative decision variable. 

Generally, MIP models with contiguity constraints are computationally intractable [22,24,26]. 

���� and ���� can each produce �� × � variables, so finding the exact solution of a problem instance 

with MIP is difficult. If the contiguity constraints are removed from the CDPMP-P, the complexity of 

the model is greatly reduced. After removing the contiguity constraints, we can re-state the notation, 

decision variables, and the reduced CDPMP-P as follows: 

�, � = index of basic spatial units, �, � = 1, … , �, 

� = index of potential facilities, � = 1, … , � , 

�� = population of basic spatial unit �, 

��� = distance between basic spatial units � and � selected as the center of a precinct, 

��� = distance between basic spatial unit selected as a center � and facility �, 

��� = preference of facility �, 

� = preference impact factor, 

� = number of precincts to be delineated, 

���� = lower bound of population, 

��� = �
1, if spatial unit � is assigned to basic spatial unit � selected as a center

0, otherwise 
, 

�� = �
1, if spatial unit � is selected as a center

0, otherwise 
, 

y�� = �
1, if selected center � is assigned to facility �

0, otherwise 
, 

�� = �
1, if facility � is selected

0, otherwise 
. 

 

Reduced CDPMP-P:  

�������� � =  ∑ ∑ ���������� + ∑ ∑
���

���
� �����        (15) 

Subject to  

∑ ���� = 1, ∀�            (16) 

��� ≤  ��, ∀�, �            (17) 

∑ ������ ≥ ������, ∀�          (18) 

∑ ��� = �,            (19) 

∑ ���� = ��, ∀�           (20) 

��� ≤ ��, ∀�, �            (21) 

�� = {0, 1}, ∀�           (22) 

��� = {0, 1}, ∀�, �           (23) 

��� = {0, 1}, ∀�, �           (24) 

�� = {0, 1}, ∀�            (25) 

In the reduced CDPMP-P, the meaning of the objective function and constraints is the same as 

that of the full version except for Constraint (17). These constraints mean that basic spatial units can 

only be assigned to the central spatial unit of a precinct. By excluding the contiguity constraints, the 

total number of constraints is greatly reduced from (2�� + ��(� + 3) + � + 1) to (�� + �(� + 3) + 1). 

4. Computational Results 

The proposed models were evaluated by using two datasets. To test the full version of the 

CDPMP-P, we used a very small dataset with 13 basic spatial units and six potential facilities. To 

evaluate the reduced CDPMP-P, we used a relatively large dataset with 200 basic spatial units and 

38 potential facilities. The minimum number of voters in the basic spatial units was zero, the 

maximum was 563, and the average was 106. The minimum area of the basic spatial units was 0.002 

km2, the maximum was 0.052 km2, and the average was 0.008 km2. The Euclidean distance between 

the centroids of the basic spatial units and between the basic spatial units and potential facilities were 

used for analysis. Using network distance may be more realistic. However, the spatial extent of the 

case area was small (the maximum distance between the basic spatial units was 2990 m and the 
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average distance was 751 m), demand was aggregated into polygons, and most people walk to 

polling places. For these reasons, alongside the ease of calculation, we used the linear distance. Figure 

2 shows the distribution of the voters and the locations of potential facilities within an administrative 

unit (Seokyo-dong, Mapo-gu, Seoul) that can be itself a single precinct or can be divided into several 

precincts in Korea. In this figure, the preference of potential facilities was evaluated by considering 

their histories as polling places in previous elections, the sizes of facilities, and whether facilities were 

public. The preferences in this map were normalized to values between one and two. As of April 1, 

2016, 24,128 voters were in this area. In previous elections, the area was divided into seven precincts 

and seven polling places were established. The spatial distribution of the voters was represented by 

reallocating the voters of each precinct proportionally to the number of households in basic spatial 

units. This approach is similar to the dasymetric technique of estimating the values of small spatial 

units [34]. 
  

 

Figure 2. Spatial distribution of the voters and potential facilities. 

ILOG CPLEX Optimization Studio (version 12.5.1) was used to find the optimal solutions to the 

problem instances. The solver was run on a computer with the following specifications: Windows 7 

Enterprise K (64-bit OS), Intel(R) Core(TM) i5-6500 CPU @ 3.20 GHz, and 8.00 GB RAM. ESRI ArcGIS 

(version 10.2) was used to spatially represent demand, generate input data for the proposed spatial 

optimization, and visualize results. 

First, let us examine why contiguity constraints are required in districting problems, such as 

precinct delineation. Figure 3a,b show three delineated precincts from the small dataset when using 

the reduced and full versions of the CDPMP-P, respectively. In Figure 3a, the delineated precincts 

from the reduced model were spatially non-contiguous. The Euclidean distance from Spatial Unit 8 

to Spatial Unit 5 (selected as the center of Precinct 1) was closer than that from Spatial Unit 8 to Spatial 

Unit 6 (selected as the center of Precinct 2), so this unit was allocated to Center 5 because no contiguity 

constraints were used. On the other hand, the full version delineated contiguous precincts. Because 

of the contiguity constraints, Spatial Unit 8 was assigned to Center 6 in Figure 3b. This example shows 

that the contiguity constraints worked correctly in the proposed full model. 
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(a) 

 
(b) 

  

Figure 3. Role of the contiguity constraints in the CDPMP-P: (a) without contiguity constraints; (b) 

with contiguity constraints. 

Table 1 summarizes the computational results for the small dataset. When including the 

contiguity constraints, Spatial Unit 8 was not assigned to the nearest center because of them, so the 

objective function’s value increased. In addition, the computational time, the number of nodes, and 

iterations significantly increased because the number of cases in which the basic spatial units could 

be allocated due to the continuity constraints increased. When solving the practical problem instance 

with 200 spatial units and 38 potential facilities, the solution procedure of the MIP solver reached the 

out-of-memory limit without finding solutions. Therefore, the reduced model was applied to solve 

the large dataset and check whether the contiguity was violated.  

Table 1. Computational results for the small dataset (n = 13, p = 3). 

Contiguity 

constraints 
ß Cmin Objective Value Time (sec) Node Iteration IDs of Selected Facilities 

Without 3 750 95.601 0.12 0 46 2, 6 

With 3 750 97.151 2.54 1467 69,818 2, 6 

 

Table 2 summarizes the computational results when applying the reduced version to the large 

dataset. This table shows some interesting points. First, the tighter population balance constraints 

tended to increase the number of nodes, the number of iterations, and the time that is required to find 

solutions. By emphasizing population balance, basic spatial units were allocated to centers that were 

located farther than the nearest center to balance the population among the delimited precincts, 

which increased the number of allocation cases. Thus, the number of sub-problems or nodes to be 

solved and checked for integrality increased. Secondly, 11 problem instances among the 30 cases 

violated the contiguity requirements. In particular, contiguity violations were more likely to occur 

when the population balance constraint was applied more tightly. As the population balance 

constraint became tighter, basic spatial units had to be allocated to centers other than the nearest 

center, which increased the likelihood that dis-contiguous districts are demarcated. Districting 

problems that use the minimized sum of distance between centers and the assigned spatial units as 

an objective function implicitly assume that this objective function produces a contiguous and 

compact district [26]. Emphasizing population balance increases the likelihood that the model 

violates this assumption. This result demonstrates that contiguity conditions must be explicitly 

modeled in districting problems, particularly when models include population balance constraints. 

Thirdly, the modeling results shows that the co-location of polling places is possible if the preference 

was emphasized. When ß = 3 or 4, multiple centers of precincts were assigned to one potential facility. 
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From these results, in addition, it can be seen that population balance as well as preference can affect 

the co-location of polling places. 

Table 2. Computational results for the large dataset (n = 200, m = 38, p = 7). 

ß Cmin 
Objective 

Value 

Time 

(sec) 
Node Iteration Contiguity Violation IDs of Selected Polling Facilities 

0 2500 3645.116  8.82  71  3,250  No 15, 18, 24, 26, 28, 32, 38 

0 2600 3657.363  7.58  2  2,603  No 15, 18, 24, 26, 28, 32, 38 

0 2700 3679.259  4.98  0  337  No 15, 18, 24, 26, 28, 32, 38 

0 2800 3714.938  10.05  149  12,479  No 15, 18, 24, 26, 28, 32, 38 

0 2900 3756.439  17.72  129  34,111  Yes 15, 18, 24, 26, 28, 32, 38 

0 3000 3863.127  3007.76  26,212  3,975,306  Yes 15, 18, 24, 26, 28, 32, 38 

1 2500 3631.458  11.12  193  11,411  Yes 15, 18, 24, 26, 28, 31, 32 

1 2600 3644.737  7.91  18  1,095  No 15, 18, 24, 26, 28, 32, 38 

1 2700 3666.633  6.33  0  487  No 15, 18, 24, 26, 28, 32, 38 

1 2800 3702.053  9.92  161  9,086  No 15, 18, 24, 26, 28, 32, 38 

1 2900 3743.593  21.56  283  58,893  Yes 15, 18, 24, 26, 28, 32, 38 

1 3000 3846.118  1999.23  13,909  2,325,943  Yes 15, 18, 24, 26, 28, 32, 38 

2 2500 3616.215  10.14  84  6,127  No 15, 18, 24, 26, 28, 31, 32 

2 2600 3634.916  9.39  59  4,945  No 15, 18, 24, 26, 28, 32, 38 

2 2700 3656.812  8.53  17  1,341  No 15, 18, 24, 26, 28, 32, 38 

2 2800 3691.677  11.22  190  10,177  No 3, 15, 18, 24, 26, 28, 32 

2 2900 3731.337  30.42  465  57,041  Yes 3, 15, 18, 24, 26, 28, 32 

2 3000 3883.495  3883.54  26,220  4,289,912  Yes 3, 15, 18, 24, 26, 28, 32 

3 2500 3600.918  8.33  65  3,864  No 3, 15, 18, 24, 26, 31, 32 

3 2600 3622.543  10.39  114  9,520  No 3, 15, 18, 24, 26, 31, 32 

3 2700 3648.490  11.97  136  18,020  No 3(2), 15, 18, 24, 26, 32 

3 2800 3682.106  11.15  96  6,631  No 3(2), 15, 18, 24, 26, 32 

3 2900 3718.859  31.68  512  93,063  Yes 3(2), 15, 18, 24, 26, 32 

3 3000 3822.775  3181.55  20,225  4,089,337  Yes 3(2), 15, 18, 24, 26, 32 

4 2500 3589.139  9.67  235  11,585  No 3(2), 15, 18, 26, 31, 32 

4 2600 3608.441  9.59  93  4,713  No 3(2), 15, 18, 26, 31, 32 

4 2700 3635.920  12.75  226  14,650  Yes 3(2), 15, 18, 26, 31, 32 

4 2800 3671.420  16.49  303  27,371  No 3(3), 15, 18, 26, 32 

4 2900 3706.331  16.54  230  36,502  Yes 3(3), 15, 18, 26, 32 

4 3000 3810.764  2025.94  18,905  2,923,362  No 3(3), 15, 17, 18, 32 

 

Figures 4 and 5 show changes in the boundaries of the precincts and the locations of the selected 

facilities when emphasizing the preference and population balance. When ß = 0 (Figure 4), 

emphasizing population balance shifted the allocation of the basic spatial units at the boundaries of 

the precincts, thereby slightly shifting the locations of the selected centers and facilities; but, the 

changes were not noticeable. All the selected facilities were located within the precincts. When the 

lower bound of the population balance was greater than or equal to 2900, the disjointed precincts 

were delineated, with spatial units assigned to a more distant center to meet the tight population 

balance. However, facilities with a high preference outside precincts were selected when 

emphasizing the preference for potential facilities (Figure 5). As the ß value increased in the second 

term of the objective function, the distance friction decreased, and the selected precinct centers can 

be assigned to a more distant but more favorable potential facilities. Under the same ß value, 

emphasizing population balance resulted in the assignment of multiple centers to a high-preference 

potential facility with changes in the location of the precinct centers. In Figure 5, the centers of the 

three precincts around a high-preference potential facility were assigned to it when Cmin was greater 

than or equal to 2800.  
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Figure 4. Delineated precincts and selected potential facilities when ß = 0. 
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Figure 5. Delineated precincts and selected potential facilities when ß = 4. 

Under the tightest population balance (Figure 6), contiguity violations occurred when ß ranged 

from 0 to 3, but geographically contiguous precincts were delineated when ß = 4. However, the 

delineation of contiguous precincts when ß = 4 in Figure 6 seemed to be a coincidence. We must also 

stress the necessity of simultaneously delineating precincts and determining the locations of polling 

facilities. In Figure 6, you can compare the maps for when ß was 3 and 4. By emphasizing the 

preference of potential facilities, the distance friction from the center of Precinct 5 to A was reduced. 

Thus, A was chosen as a polling facility for this precinct instead of B, which was selected from other 

ß values. That is, when the preference was emphasized, the location of the selected polling facilities 

could be changed, which could affect the centers of precincts and the allocation of basic spatial units. 

This change was possible because the reduction in the second term in the minimization objective 

function was greater than the increase in the first term, which was caused by the allocation of basic 

spatial units to the non-closest center. These results show that determining the locations of polling 

facilities and delineating precincts can interact with each other. Therefore, both tasks should be 

processed simultaneously rather than independently or sequentially. 
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Figure 6. Delineated precincts when Cmin = 3000. 

5. Discussion 

There are several discussions regarding optimization modeling and analysis results. First, it is 

necessary to evaluate whether the model developed provides improved outcomes theoretically and 

practically. Previous studies that were related to delineating precincts or determining polling places 

were based on a single location-allocation model, whether MIP or heuristic [12–15,17], while the 

CDPMP-P has a double location-allocation structure. Therefore, directly comparing the performance 

of the model with the results of previous studies is difficult. However, it is possible to compare the 

results obtained through this study with the existing system. In the existing system, the study area is 

divided into seven precincts, and different polling places are allocated to each of them. The 

population of the precincts varied from 2453 to 4874 and the average distance traveled by voters was 

250 m. For comparison, the population range and average distance were calculated for a solution 

obtained from ß = 2 and Cmin = 2800 (in Table 2, seven falling places were selected, spatial contiguity 

was not violated, and Cmin was the largest). As a result, the population range of the precincts ranged 

from 2800 to 4119. The population deviation was significantly reduced compared to the existing 

system. In addition, the average distance to the polling places was reduced to 185 m compared to the 

existing 250 m, resulting in improved access to the polling places. These results suggest that the 

spatial optimization model developed could support better decision-making regarding election 

administration. 

Secondly, the fact that the results of the reduced version without contiguity constraints are often 

spatially non-contiguous, alongside the computational intractability of the full version, suggests that 

an alternative approach is required to find solutions to the CDPMP-P. One of the most important 

considerations when developing a heuristic algorithm may be how to effectively check the continuity 
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of the partitioned precincts. In previous studies that involved districting problems, techniques such 

as the connectivity matrix multiplication [35], the switching point method [36,37], and the spanning 

tree method [38] have been suggested. Another important consideration when developing heuristic 

algorithms is how to extend the search space beyond local optima so as to increase the quality of 

solutions. Alternatives may include tolerating poor-quality solutions, such as simulated annealing 

[39] or TABU search [40], or increasing the number of alternative solutions, such as genetic algorithms 

[41]. In addition, disassembling and dividing districts may be an alternative to increase the search 

space [38]. The final consideration is related to the feasible solution sets of potential facilities. In the 

proposed CDPMP-P, the number of precincts to be delineated (p) is given in advance, but the number 

of facilities to establish polling places is not fixed. Depending on the preference of facilities, several 

precincts may be assigned to one facility. Therefore, all solutions with a range of potential facilities 

greater than 1 and less than or equal to p should be evaluated in the second location-allocation process 

of the model.  

The need to develop a heuristic algorithm for the CDPMP-P is related to how spatial 

optimization can be integrated with GIS. This is the last discussion. In this study, an optimization 

solver was used to find solutions for CDPMP-P. This is an example where spatial optimization and 

GIS are “loosely” combined [42]. Here, GIS was used to spatially represent demand and facilities, to 

create input data to be used in the developed optimization model, such as adjacency and distance 

matrices, and to visualize the modeling results. Even with these roles, GIS has sufficient value in the 

implementation of the spatial optimization model. In such a loose coupling, however, whenever a 

dataset is changed, the input data must be regenerated each time, the values specifying the 

constraints in the optimization model must be reset for the data, and the solutions must be visualized 

through additional processing. The development of a heuristic algorithm makes it possible to 

combine spatial optimization and GIS more closely [43]. If a heuristic algorithm and user interface 

are developed using a script language like Python provided by GIS, many hassles encountered in the 

loose coupling can be reduced, and spatial decision-making to meet users’ needs can be supported 

more effectively.  

6. Summary and Conclusions 

Voting is an important channel of political participation. The agencies that are responsible for 

voting must delineate precincts and designate a polling place for each precinct. A strategic approach 

is required for the spatial decision-making for several reasons. First, the locations of and changes in 

polling places induce transportation and search costs from the perspective of voters. Secondly, 

improving accessibility to polling places can increase turnout. Thirdly, differences in the population 

sizes of the precincts may produce biased voting results. Spatial optimization approaches can be a 

strategic method for delimiting precincts and siting polling places. In this study, we developed a 

spatial optimization model, i.e., the capacitated double p-median problem with preference (CDPMP-

P), which simultaneously delineates the boundaries of precincts and selects potential polling facilities 

with mixed integer programming (MIP). The CDPMP-P explicitly includes realistic requirements, 

such as population balance, the spatial continuity of precincts, the preference of potential facilities 

where polling places can be installed, and the possibility of allocating multiple polling places in one 

facility. The CDPMP-P consists of a double location-allocation process: determining the centers of the 

precincts and allocating basic spatial units to them, as well as determining the locations of the 

potential facilities and assigning the selected centers of the precincts. This double location-allocation 

process enables us to install polling places outside the boundaries of the precincts and multiple 

polling places in one facility. 

For optimization models that involve continuity constraints, finding solutions becomes difficult 

when the problem size increases. Therefore, solutions to the application data were obtained by using 

the reduced CDPMP-P, which excluded the continuity constraints from the full version. The main 

results are as follows. First, when the population balance constraints were applied more strictly, the 

time required to find solutions increased because the basic spatial units were allocated to remote 

centers rather than the nearest centers to satisfy the conditions. In addition, the probability that 
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discontinuous precincts were partitioned increased as the basic spatial units were allocated to more 

geographically distant centers. These results disproved the need to explicitly consider continuity 

constraints for districting problems with population balance. Secondly, emphasizing the preference 

for potential facilities where polling places were installed enabled us to assign multiple polling places 

to a facility because the distance friction from the centers of precincts to the potential facilities was 

reduced. Finally, the analysis results confirmed that determining the locations of polling places and 

delineating precincts could influence each other, demonstrating the need for both tasks to be 

performed simultaneously and not independently or sequentially. The model proposed in this study 

may be useful in supporting spatial decision-making because it reflects realistic requirements that are 

related to the delineation of precincts and the installation of polling places.  

This study proposed a new optimization model that can deal with mutually affecting districting 

and location problems simultaneously. If the developed model can be applied to electoral 

administration in practice, it would be possible to obtain solutions improving voter access to polling 

places while reducing the population variation between precincts. However, in order for the 

developed model to be utilized in reality, it is necessary to develop a heuristic algorithm that can find 

good solutions quickly, as well as an application with a user-friendly interface that can be easily used 

by users who are unfamiliar with GIS and spatial optimization. 
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