
 International Journal of

Geo-Information

Article

Towards Automatic Points of Interest Matching

Mateusz Piech , Aleksander Smywinski-Pohl , Robert Marcjan and Leszek Siwik *

Department of Computer Science, AGH University of Science and Technology, al. Mickiewicza 30,
30-059 Krakow, Poland; mpiech@agh.edu.pl (M.P.); apohllo@agh.edu.pl (A.S.-P.); marcjan@agh.edu.pl (R.M.)
* Correspondence: siwik@agh.edu.pl

Received: 31 March 2020; Accepted: 22 April 2020; Published: 1 May 2020
����������
�������

Abstract: Complementing information about particular points, places, or institutions, i.e., so-called
Points of Interest (POIs) can be achieved by matching data from the growing number of geospatial
databases; these include Foursquare, OpenStreetMap, Yelp, and Facebook Places. Doing this
potentially allows for the acquisition of more accurate and more complete information about POIs than
would be possible by merely extracting the information from each of the systems alone. Problem:
The task of Points of Interest matching, and the development of an algorithm to perform this
automatically, are quite challenging problems due to the prevalence of different data structures,
data incompleteness, conflicting information, naming differences, data inaccuracy, and cultural and
language differences; in short, the difficulties experienced in the process of obtaining (complementary)
information about the POI from different sources are due, in part, to the lack of standardization
among Points of Interest descriptions; a further difficulty stems from the vast and rapidly growing
amount of data to be assessed on each occasion. Research design and contributions: To propose
an efficient algorithm for automatic Points of Interest matching, we: (1) analyzed available data
sources—their structures, models, attributes, number of objects, the quality of data (number of missing
attributes), etc.—and defined a unified POI model; (2) prepared a fairly large experimental dataset
consisting of 50,000 matching and 50,000 non-matching points, taken from different geographical,
cultural, and language areas; (3) comprehensively reviewed metrics that can be used for assessing
the similarity between Points of Interest; (4) proposed and verified different strategies for dealing
with missing or incomplete attributes; (5) reviewed and analyzed six different classifiers for Points
of Interest matching, conducting experiments and follow-up comparisons to determine the most
effective combination of similarity metric, strategy for dealing with missing data, and POIs matching
classifier; and (6) presented an algorithm for automatic Points of Interest matching, detailing its
accuracy and carrying out a complexity analysis. Results and conclusions: The main results of the
research are: (1) comprehensive experimental verification and numerical comparisons of the crucial
Points of Interest matching components (similarity metrics, approaches for dealing with missing
data, and classifiers), indicating that the best Points of Interest matching classifier is a combination
of random forest algorithm coupled with marking of missing data and mixing different similarity
metrics for different POI attributes; and (2) an efficient greedy algorithm for automatic POI matching.
At a cost of just 3.5% in terms of accuracy, it allows for reducing POI matching time complexity by
two orders of magnitude in comparison to the exact algorithm.

Keywords: Points of Interest (POIs); data matching; similarity metrics; machine learning;
classification algorithms; OpenStreetMap; Foursquare; Yelp; Facebook Places; geospatial data

ISPRS Int. J. Geo-Inf. 2020, 9, 291; doi:10.3390/ijgi9050291 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-0146-5921
https://orcid.org/0000-0001-6684-0748
https://orcid.org/0000-0001-8494-628X
https://orcid.org/0000-0003-0535-7220
http://dx.doi.org/10.3390/ijgi9050291
http://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/9/5/291?type=check_update&version=2

ISPRS Int. J. Geo-Inf. 2020, 9, 291 2 of 29

1. Introduction

The rising popularity and accessibility of devices with a GPS receiver has had an impact on the
growth of geospatial databases. Spatial data are utilized in many mobile and web applications, such as
augmented reality games, e.g., Pokémon GO (https://www.pokemongo.com/) or Geocaching (https:
//www.geocaching.com/); social media applications, which allow for the exchange of the current
locations of the users by “checking in” to places where they spend time; social utility applications,
such as FixMyStreet (www.fixmystreet.com) and The Water Project (https://thewaterproject.org/),
which allow a user to submit data regarding places that require the attention of a local authority
or a charity; and genuine databases such as OpenStreetMap (https://www.openstreetmap.org/) or
DBpedia (https://wiki.dbpedia.org/) created to collect various pieces of information about many
geographical objects. Unfortunately, the fact that there is a growing number of diverse (geospatial)
databases, powered by data from thousands of users, does not necessarily mean that we can
automatically and easily compare and combine data concerning the interesting points or places,
so-called Points of Interest (POIs), in order to obtain a complete set of information about the given
POI. The reasons for this include, among others: different data structures in particular databases,
data incompleteness, conflicting information, naming differences, data inaccuracy, and cultural and
language differences. In other words, we are confronted by a lack of standardization with regards to
the Points of Interest descriptions. The problem is further compounded by the huge, and fast-growing,
amount of data to be assessed every time (complementary) information is sought about a POI via these
diverse sources.

Figure 1 shows data models used to store information about POIs by four popular data sources.
It gives a general overview of the issues involved when combining information about the same Point of
Interest from different databases. Due to the limited space available, the figure presents only fragments
of data models. Nevertheless, even for the few popular attributes presented, one may see how
significant the differences between them all are. For instance, the attribute name is a top-level attribute
in Foursquare, Yelp, and Facebook Places models, but, in the OpenStreetMap model, it is one of the
(optional) tags. The geographical location attribute is sometimes a “location” complex attribute with
nested “lat” and “lng” (sub)attributes as in the Foursquare model, while, other times, it is a “coordinates”
complex attribute with nested “latitude” and “longitude” (sub)attributes; on yet other occasions, location
is represented as a top-level “lat” and “lon” pair of attributes as in the OpenStreetMap model. Similar
differences can be seen, for instance, for information representing phone number, category, website, etc.
The second serious problem is the incompleteness of the information, not to mention the discrepancies,
errors, and ambiguities in the data itself. Examples of these problems are:

(a) (b) (c) (d)

Figure 1. The JSON-structured (parts of) Point of Interest models of: FourSquare (a); Yelp (b); Facebook
Places (c); and OpenStreetMap (d).

https://www.pokemongo.com/
https://www.geocaching.com/
https://www.geocaching.com/
www.fixmystreet.com
https://thewaterproject.org/
https://www.openstreetmap.org/
https://wiki.dbpedia.org/

ISPRS Int. J. Geo-Inf. 2020, 9, 291 3 of 29

• The manner in which numbers are presented, e.g., Restaurant Paracas II in OpenStreetMap versus
Paracas 2 in Yelp;

• Attribute value incompleteness, e.g., Daddy’s in Foursquare versus Daddy’s Pizza& Billiard in Yelp;
• Language differences, e.g., Doutor Coffee Shop in Foursquare versus ドトルコヒショップ in Yelp;
• Text formatting differences (blank spaces, word order, etc.), e.g., Caleta Rosa in Foursquare versus

RosaCaleta in Yelp;
• Phone number formatting differences, e.g., 2129976801 in Foursquare versus +12129976801 in

OpenStreetMap;
• URL format differences, e.g., http://www.juicepress.com in Foursquare versus https://juicepress.

com in OpenStreetMap;
• Category distinctions: for instance, in OpenStreetMap an in-depth analysis of the object’s attributes

is required to find and anticipate which attributes might point to the category (e.g., amenity, tourism,
keys with a value of “yes” etc.);

• Differences in geographical coordinates (as outlined in Section 4.1.1), which are so significant that
the search radius, within which matching points in other data sources might be obtained, should
be as long as 300 m to have sufficient confidence of finding a matching POI, if there is one;

• Data incompleteness, i.e., a significant proportion of attributes for a given Point of Interest have
empty values. Moreover, one part of data may be completed for a given point in one source
and another part in another source. Naturally, it would be advantageous to simply assemble
data which are “scattered” across various sources in the hope that we acquire a range of diverse
(complementary) data points. Given this aim, in a certain sense, it is extremely helpful that
there are different pieces of data arising from these various sources. However, when we wish
to determine whether the analyzed POI refers to the same real place, then suddenly the task
becomes rather problematic. The reason for this is that there is a scarcity of “common data” on
the basis of which the POIs can be identified and classified as matching. For instance, one very
distinctive attribute, namely the www address, cannot be used as a basis for identifying matching
points since in Yelp the value for this attribute has been provided for 0% of Points of Interest.
A broader and more detailed analysis of this problem for our 100,000-point training set, broken
down into individual data sources and attributes, is given in Section 3.2.

Therefore, the problem of pinpointing entries referring to the same real-world entities in the
geospatial databases is an important and challenging area of research. Despite the fact that the issue
is preliminarily addressed in the literature, it is still difficult to deduce which approach is the most
appropriate. One reason for this, is that in the published research (described in Section 2), experiments
have been carried out on very small datasets. In addition, there is no comprehensive analysis of the
different similarity metrics, classification algorithms, and approaches to incomplete data with regards
to POI matching. Furthermore, the partial research that has been done so far was carried out on
disjunctive sets of data, making it difficult to draw any clear comparisons and conclusions.

In this paper, to address the problems identified and conclude with an automatic algorithm for
POIs matching, a two-stage research procedure is reported.

The first stage is focused on a comprehensive survey of the crucial aspects of the Points of Interest
matching process and elements, namely:

• the size and diversity of the datasets and the data sources;
• the metrics used to assess the similarity of the Points of Interest;
• the missing values of attributes employed by the matching algorithms; and
• the classification algorithms used to match the objects.

This survey and in-depth analysis allowed us to put forward, in the second stage, an algorithm
for the automatic matching of spatial objects sourced from different databases.

http://www.juicepress.com
https://juicepress.com
https://juicepress.com

ISPRS Int. J. Geo-Inf. 2020, 9, 291 4 of 29

The remainder of the paper is organized as follows:

• In Section 2, the work related to POIs matching done thus far is briefly reviewed.
• In Section 3, the data sources, the unification of Points of Interest models and the preparation of

experimental datasets are discussed.
• In Section 4, three crucial elements of Points of Interest matching classifiers, namely similarity

metrics (see Section 4.1), strategies for dealing with missing data (see Section 4.2), and classification
algorithms (see Section 4.3), are discussed.

• In Section 5, the results of experiments are provided, which compare the efficiency of various
POI-matching approaches in terms of their similarity metrics (see Section 5.1) and the classification
algorithms used (see Section 5.2) while also addressing the missing-data handling strategies,
and the sensitivity of classifiers to the geographical, cultural or language zones from which the
data come.

• In Section 6, the algorithm for automatic Points of Interest matching along with its quality, accuracy
and complexity is presented and analyzed.

• In Section 7, we draw conclusions and outline future work.

2. Related Work

Among the existing algorithms for Point of Interest objects matching, two fundamental groups
can be distinguished. The first one is a group of algorithms based on Natural Language Processing
(NLP) techniques. The algorithms in this group differ mainly in terms of the mechanisms used for
string comparisons and similarity estimations. The second group of solutions consists of algorithms
employing various machine learning techniques.

In [1], the authors proposed a solution for integrating Points of Interest (and their associated
data) from three sources: OpenStreetMap, Yelp/Qype, and Facebook Places. The proposed solution
is based on building a similarity measure, taking into account both the geographical distance and
the (dictionary) Levenshtein distance [2] between selected pieces of metadata describing the points
being analyzed. The authors compared the proposed approach with two other solutions: Nearest
Point of Interest and Longest Common Substring. This notable paper is one of the first related to the
integration of POI data from various sources. Unfortunately, the practical value of both the work itself
and the proposed approach is very limited. This is because of two reasons. The first is the very small
size of the test set on which the experiments were carried out (50 Points of Interest). The second is
the low efficiency of the algorithm. Even for such a small, specially crafted test set, the validity of the
algorithm was about 75–80%.

In [3], the authors attempted to integrate data from Foursquare and Yelp. The approach taken
consisted of a weight regression model composed of the following metrics: Levenshtein distance
between names, phonetic similarity, categories, and geographical distance. In the experimental studies
presented in the paper, the efficiency was at a level of 97%, but the experiment was run on a very small
test set (100 POIs).

In [4], a graph-based approach was proposed in which the vertices represent Points of interest,
and the edges possible matches. This approach allows for the dynamic creation of a “merging graph”
based on the accepted similarity metrics. It addresses the problem of the lack of corresponding POIs
in the analyzed datasets, and the detection of multiple Points of Interest with the same location.
Experimental research was conducted for datasets from the OpenStreetMap and Foursquare services
covering the city of London. The authors reported the effectiveness of the proposed method at 91%,
which exceeded the effectiveness of the reference method by more than 10%.

ISPRS Int. J. Geo-Inf. 2020, 9, 291 5 of 29

In [5], the authors applied the Isolation Forest algorithm (one of the weakly supervised machine
learning methods) [6]. The tagging of the training set uses the Factual Crosswalk API [7]. During the
experiments, different measures of string similarity were used (e.g., the previously mentioned
Levenshtein distance, different variations of Partial Ratio, and the Jaro–Winkler [8] measure). In the
study, the authors used data from Facebook Places and Foursquare for New York City, United States as
the training set, and tested it on the city of Porto, Portugal, attaining a 95% performance level.

In [9], the authors developed an algorithm for finding matching Points of Interest in Chinese.
In the paper, the application of a transcription-based procedure to improve the matching of the names,
as well as an entropy-based weight estimation was proposed. The authors experimented with 300
Points of Interest taken from the Baidu and Sina social sites and achieved approximately 85% F1 score
for matching the POIs.

In [10], the authors addressed the more sophisticated problem of finding a Point of Interest based
on its description in natural language. The example is a conversation between a person needing help
and an emergency service operator. The authors combined the string-similarity, linguistic-similarity,
and spatial-similarity metrics during the construction of a graph representation of the geospatial
environment described in the text (unlike in [4], where the edges represent the possible matches).
Next, the graph is used to improve the matching performance by employing graph-related algorithms,
taking into account the similarity of nodes and their spatial relations encoded in the edges of the graph.
The authors conducted one case study of the algorithm by applying it to the environment of university
campuses in Australia. They carried out a manual analysis of various combinations of the parameters
and achieved 82% precision and 63% recall.

In [11], the authors proposed a new approach for combining data between geospatial datasets
linking a Dempster–Shafer evidence theory and a multi-attribute matching strategy. During data
merging, they calculated the similarity of POI coordinates, name, address, and categories. The metrics
chosen were: the Euclidean distance, the Levenshtein distance, the cosine similarity (developed for
Chinese), and the distance in the constructed tree of categories, based on two datasets: Gaode Map
and Baidu Map. As part of the experiment, they conducted tests on nearly 400 randomly selected
objects from each database, which they manually joined together. Unfortunately, the solution suffers
from two main disadvantages if applied more generally. The first is that it requires the creation of a
proper categories hierarchy, which is in practice infeasible in the case of objects with OpenStreetMap,
for example. The second is the use of the address comparison metric, which was only built for the
Chinese alphabet.

As one may see, the problem of matching POI objects arising from various sources and combining
their associated information is discussed in the literature. However, thus far, no study has applied the
constructed algorithm to a large dataset. Moreover, most authors have sought to obtain the optimal
values for the variously employed similarity-measures manually. In contrast, our study investigated a
number of machine learning algorithms to resolve this issue and the soundness of the solution was
verified on a diverse set of locations around the globe.

Since we are dealing with user-created geospatial data sources such as OpenStreetMap,
the relevant research also includes studies related to the quality of the data provided. One of the
first studies related to this is in [12], which compares OpenStreetMap with Ordnance Survey (OS),
a professional GIS service run by the British government. The author assessed the accuracy and
completeness of OpenStreetMap and found that the average accuracy is pretty high, with a 6-m mean
difference between OpenStreetMap and Ordnance Survey entries. On the other hand, it is reported
that the completeness of the data in OpenStreetMap is worse than in OS. For instance, the A-roads
are 88% covered on average, while B-road coverage is at 77%; the rural areas of the UK are mostly
uncovered. However, the author was impressed by the pace at which the database was constructed.

ISPRS Int. J. Geo-Inf. 2020, 9, 291 6 of 29

The research reported in [13] is a more recent and more comprehensive study of the quality and
the contents of the following services dealing with geospatial data: Facebook, Foursquare, Google,
Instagram, OpenStreetMap, Twitter, and Yelp. The authors found that the social media platforms such
as Facebook, Instagram, and Foursquare have many low-quality Points of Interest. These are either
unimportant user entries, such as “my bed”, or entries with invalid coordinates—for instance, some of
the POIs (e.g., a barber) were placed on a river. These mistakes are less apparent in services such
as Google Places and OpenStreetMap. The second problem observed was that there are clusters of
Points of Interest with the exact same coordinates (as in the case of companies located in one building),
probably due to the use of a common hot-spot used to enter the geodata.

3. Data Sources, Unified Data Model and Experimental Datasets

Geospatial services providing information about Points of Interest can be divided into two
groups. The first of them are services with a fixed structure for the points provided—Foursquare,
Yelp, Facebook Places and Google Places being some examples. Most of them provide a similar set of
attributes, as well as some extensions such as the number of visits, opening hours, or a description
of the object. When conducting a POI comparison, however, we are mostly interested in common
attributes, such as geographical coordinates, name, address, web page, phone number, and category.

The second group of services are those with open and dynamic structures. Some selected
examples are OpenStreetMaps or the spatial dataset in DBPedia [14]. The services mentioned always
provide information about coordinates, while the other attributes differ in terms of their occurrence and
sometimes even in the keys between each other. In our analysis, we only focused on OpenStreetMap
from this group because it has the largest number of points—over 6 billion (as of August 2019).

3.1. Unified Data Model

Figure 1 presents models of Points of Interest supported by the services we focus on (i.e.,
Foursquare (Figure 1a), Yelp (Figure 1b), Facebook Places (Figure 1c), and OpenStreetMap (Figure 1d).
For clarity, the models in Figure 1 are reduced to present only their general structure and the most
relevant attributes for the purpose of POI-matching. As discussed in Section 1, both the structure and
the individual attributes differ between the services. To make it possible to compare and merge the
data arising from these sources, a unified model of Points of Interest was developed, as illustrated
in Figure 2. The unified model captures the most common attributes used to describe Points of
Interest, and provides them with a universal naming convention. Mappers were also? developed for
translating POIs, represented by source-specific models (as presented in Figure 1), into our unified
model. For those sources with a rigid scheme, the translation procedure was quite straightforward.
When it comes to OpenStreetMap, however, it was much more challenging, since, for example, a phone
number may be referred to as phoneNumber, phone_number, number:phone, etc.

PointOfInterest

+ id: String
+ source: String
+ coordinates: Coordinates
+ name: String
+ address: String
+ website: String
+ phoneNumber: String
+ category: List<Category>

Coordinates

+ lat: double
+ lon: double

Category

+ id: String
+ name: List<String>

*

1 1

Figure 2. Unified Point of Interest model presented as a UML diagram.

ISPRS Int. J. Geo-Inf. 2020, 9, 291 7 of 29

To resolve the ambiguity of attributes during the extraction of data from OpenStreetMap,
additional tag analysis was required. In this context, two additional services were used. The first
one was TagInfo [15], which provided information about the most common keys and values in tags
appearing in OpenStreetMap. The second was the OpenStreetMap Wiki [16]. During the analysis,
we sifted through the most popular tags in order to identify those that may correspond to the attributes
from our unified model. It turned out that some of the attributes can easily be mapped, for instance:

• each Point of Interest stored in OpenStreetMap has information about its geographic coordinates,
which is referred to using the same pair of keys;

• most Points of Interest stored in OpenStreetMap have a tag with a name key containing the POI
name;

• the address can be extracted by analyzing a key that starts with addr (https://wiki.openstreetmap.
org/wiki/Key:addr); and

• contact information is usually stored in the phone and website keys.

The most difficult problem, when it comes to OpenStreetMap, is the extraction of the object
category. The reason is that, in this data source, there is no single tag representing the semantic Point
of Interest qualification. During the analysis, it was found that the category can be extracted from
tags, such as amenity (an indicator of bars and restaurants), shop, tourism (an indicator of hotels),
and cuisine (another indicator of restaurants). By consulting both TagInfo and OpenStreetMap Wiki,
approximately 750 keys were identified which potentially indicate the category of the point. Following
this, in the course of the translation to our model, the presence of a given key in the description of the
point was treated as belonging to the category corresponding with that key.

3.2. Experimental Dataset

For our experiments, we prepared a dataset containing 100,000 pairs of objects represented
in a standardized form, i.e., modeled as presented in the previous subsection. The set was
composed of the objects taken from the aforementioned services (Foursquare, Yelp, Facebook Places,
and OpenStreetMap) and contains an equal number of matching and non-matching pairs of POIs.

The dataset was created in a two-stage process. In the first stage, using the exact attribute
comparison and the Factual Crosswalk API, we prepared a set of candidates. Factual Crosswalk API
is a platform providing places with references to various APIs and websites. Its main advantage is
that it stores about 130 million places from 52 countries all around the world (as of 1 September, 2019),
and indicates for popular datasets, such as Facebook Places or Foursquare, among others. Having an
object ID from one database, we can obtain the object ID in other available databases. Unfortunately,
OpenStreetMap—which is the largest known Points of Interest database—is not available there. In the
second stage, we verified these objects using annotators and selected a proportion of those from this set
of candidates for the final dataset. The cities we chose data from for the training dataset are (indicated
with red markers in Figure 3): London, Warsaw, Polish Tricity, Moscow, Wroclaw, Berlin, Paris, Madrid,
New York, Istanbul, and Budapest. In addition, verification data containing 4000 Points of Interest
from five cities (indicated with green markers in Figure 3) were prepared:

• Krakow, 1000 pairs of objects;
• San Francisco, 500 pairs of objects;
• Naples, 500 pairs of objects;
• Liverpool, 1000 pairs of objects; and
• Beijing, 1000 pairs of objects.

https://wiki.openstreetmap.org/wiki/Key:addr
https://wiki.openstreetmap.org/wiki/Key:addr

ISPRS Int. J. Geo-Inf. 2020, 9, 291 8 of 29

Figure 3. Cities used for training (red markers) and verifying (green markers) datasets.

Since further analysis covers the number of missing values for individual attributes in the dataset,
and its impact on the behavior of particular classification algorithms, the percentage share of POIs
(along with the number of missing attributes in the training and test set) are presented in Figure 4.

Training set

0.3%

61.9%
19.4%

6.8%
11.6%

Test set

0.4%

52.9%

3.1%

38.0%

5.6%

0 attribute missing 1 attribute missing 2 attributes missing

3 attributes missing 4 attributes missing

Figure 4. The percentage of missing attributes in training and test sets.

The charts below present the percentage of Points of Interest from individual data sources with
zero, one, two, three, or four missing attributes. These charts—in Figures 5a, 6a, 7a, and 8a—are for
OpenStreetMap, Foursquare, Facebook Places, and Yelp, respectively.

ISPRS Int. J. Geo-Inf. 2020, 9, 291 9 of 29

0 attr. miss.
1 attr. miss.
2 attr. miss.

3 attr. miss.
4 attr. miss.

The percentage share of the
number of missing attributes

0.44%

31.9%

21.98%
15.46%

30.1%

(a)

0% 20% 40% 60% 80% 100%

Name

Address

Phone

Website

Category

100%

71%

49%

61%

94%

The percentage of
completeness of

selected attributes

(b)

Figure 5. OpenStreetMap: The percentage of POIs with 0–4 missing attributes (a); and the percentage
of completeness of selected attributes (b).

0 attr. miss.
1 attr. miss.
2 attr. miss.

3 attr. miss.
4 attr. miss.

The percentage share of the
number of missing attributes

0.0%

37.1%

0.46%
61.5%

1.2%

(a)

0% 20% 40% 60% 80% 100%

Name

Address

Phone

Website

Category

100%

100%

91%

69%

99.5%

The percentage of
completeness of

selected attributes

(b)

Figure 6. Foursquare: The percentage of POIs with 0–4 missing attributes (a); and the percentage of
completeness of selected attributes (b).

Similarly, Figures 5b, 6b, 7b, and 8b show the percentage of completeness for the five attributes of
most interest: Name, Address, Phone Number, Website, and Category. Figure 5b describes the data from
OpenStreetMap, Figure 6b characterizes the data from Foursquare, Figure 7b outlines the data derived
from Facebook Places, and Figure 8b describes data for Yelp.

ISPRS Int. J. Geo-Inf. 2020, 9, 291 10 of 29

0 attr. miss.
1 attr. miss.
2 attr. miss.

3 attr. miss.
4 attr. miss.

The percentage share of the
number of missing attributes

0.0%
23.4%

0.4%

73.3%

2.7%

(a)

0% 20% 40% 60% 80% 100%

Name

Address

Phone

Website

Category

100%

94%

92%

85%

97.5%

The percentage of
completeness of

selected attributes

(b)

Figure 7. Facebook Places: The percentage of POIs with 0–4 missing attributes (a); and the percentage
of completeness of selected attributes (b).

1 attr. miss.
2 attr. miss.

The percentage share of the
number of missing attributes

98.6%

1.3%

(a)

0% 20% 40% 60% 80% 100%

Name

Address

Phone

Website

Category

100%

100%

98.6%

0%

99.9%

The percentage of
completeness of

selected attributes

(b)

Figure 8. Yelp: The percentage of POIs with 0–4 missing attributes (a); and the percentage of
completeness of selected attributes (b).

4. Crucial Elements of Points of Interest Matching Classifiers: Similarity Metrics, Handling
Strategies for Missing Data and Classification Algorithms

The most important elements of Points of Interest matching classifiers are:

• the metrics for measuring the similarity of POIs;
• handling strategies for missing data; and
• algorithms for classifying Points of Interest as either matching or non-matching.

All these elements used in our research are discussed briefly in the following subsections.

ISPRS Int. J. Geo-Inf. 2020, 9, 291 11 of 29

4.1. Similarity Metrics

4.1.1. Distance Metrics

The most obvious approach to Points of Interest matching is to compare the (physical) distance
between them. Knowing the geographical coordinates for the POIs being compared, and assuming
that the points being compared are located a short distance apart, we can calculate the geographical
distance in degrees (distdeg) between them using the following formulas:

distdeg (poi1, poi2) =

√(
poi1lat − poi2lat

)2
+
(

distlon
deg(poi1, poi2)

)2
(1)

where

distlon
deg(poi1, poi2) = cos

(
poi1lat ∗ π

180

) (
poi1lon − poi2lon

)
(2)

Now, having obtained the distance in degrees, we can calculate the distance in meters according
to the following formula:

distm (poi1, poi2) = distdeg(poi1, poi2) ∗
40, 075.704

360
∗ 1000 m (3)

We intentionally avoided the use of a more accurate great circle distance and opted to use a
simpler formula that ignores the curvature of the Earth. The reason is the fact that we are calculating
the distance for relatively closely located objects (closer than 300 m). In that case, the curvature of
the Earth can easily be omitted for our purposes. For example, sample distance values for two points
located about 225 m from each other are 225.42 m when we use a great circle distance and 225.67 m
with our formula. Simultaneously, the distance of 1 m represents a 0.003 difference in the value of
our matching metric. Thus, since the difference is negligible, we decided to use this simpler, faster,
and more efficient (i.e., less computationally complex) formula.

The range of 300 m in which we seek possible “matches” is an arbitrary choice, but one for which
there is strong justification in the analysis we performed. Figure 9a presents the percentage of matching
Points of Interest located within the range of 0–300 m. As can be seen, almost 100% of matching POIs
are located no further than 300 m from each other. It would seem that the border distance could be
set even closer (to 200 m), but since there are also some matching Points of Interest located within the
range between 200 and 300 m (detailed in Figure 9b), in further analysis, we took the range of 300 m as
the border distance in the search for matching Points of Interest. Thus, for further calculations and
analyses, we took a normalized distance measure calculated according to the equation:

0 50 100 150 200 250 300

40%

60%

80%

100%

The distance between matching points [m]

Th
e

pe
rc

en
ta

ge
of

m
at

ch
in

g
PO

Is
w

it
hi

n
th

e
gi

ve
n

di
st

an
ce

(a)

200 220 240 260 280 300
99.6%

99.7%

99.8%

99.9%

100%

The distance between matching points [m]

Th
e

pe
rc

en
ta

ge
of

m
at

ch
in

g
PO

Is
w

it
hi

n
th

e
gi

ve
n

di
st

an
ce

(b)

Figure 9. The percentage of matching POIs within the range of 0–300 m (a); and for the sub-range of
200–300 m (b).

ISPRS Int. J. Geo-Inf. 2020, 9, 291 12 of 29

metricscoord(poi1, poi2) = max
{

0,
(

1− distm(poi1, poi2)
300m

)}
(4)

The distribution of metricscoord in the training set for matched and mismatched Points of Interest
are shown in Figure 10.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

20

40

Coordinate metrics

%
of

da
ta

se
t

(a) Distribution for matching POIs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

Coordinate metrics

%
of

da
ta

se
t

(b) Distribution for non-matching POIs

Figure 10. The distribution of metricscoordinates in the training set for matched and mismatched POIs.

As we can see, this metric indicates the matching and non-matching Points of Interest very well.
In the analyzed set, over 80% of matching objects display the value of this metric ranging from 0.9 to 1.
At the same time, in a subset of mismatched points, over 35% of objects have the value of this metric
equal to 0.

4.1.2. String Distance Metrics

The second approach to combining Points of Interest is to match their descriptive attributes
(such as the name, address, phone number, etc.). To make this possible, it is necessary to determine the
similarity between strings for specific attributes. There are many algorithms for string comparison.
In our research, we used Levenshtein [2] and Jaro–Winkler [17] distances, as well as algorithms
provided by the FuzzyWuzzy library [18], i.e., Ratio, Partial Ratio (PR), Token Sort Ratio (TSoR),
and Token Set Ratio (TSeR). In addition, as in [5], we used a combination of the average value of Partial
Ratio algorithm with Token Sort Ratio (ATSoR) and Partial Ratio with Token Set Ratio (ATSeR).

The Levenshtein distance is defined as the minimal number of operations that must be performed
to transform one string into another [2]. The set of permissible operations includes:

• inserting a new character into the string;
• removing a character from the string; and
• replacing a character inside the string with another character.

To facilitate the analysis of string similarity as measured by the Levenshtein metric, the value of
the metric determined for two non-empty strings should be normalized in the range from 0 to 1 and
applied to the equation:

mLEV (s1, s2) = 1− distlev (s1, s2)

max {|s1|, |s2|}
(5)

The Jaro–Winkler metric [17] determines the distance between two strings according to
the equation:

dJW (s1, s2) =
1
3

(
m
|s1|

+
m
|s2|

+
m− t

m

)
(6)

ISPRS Int. J. Geo-Inf. 2020, 9, 291 13 of 29

where m is the number of matching characters, m 6= 0 and t is half of the number of
so-called transpositions (matching characters but occurring at different positions in the inscriptions
being compared).

In other words, the Jaro–Winkler distance is the average of:

• the number of matching characters in both strings in relation to the length of the first string;
• the number of matching characters in both strings in relation to the length of the second string; and
• the number of matching characters that do not require transposition.

The algorithms implemented in the FuzzyWuzzy library provided by the Seatgeek group
(https://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/) are based on the
Levenshtein metric, differing in their variants in the way they select string elements for comparison.
All values representing the similarity of the strings are returned in the range [0,100], thus their
normalization is achieved by dividing by 100. The FuzzyWuzzy strings similarity measures are
as follows:

• The Ratio (mRatio) is a normalized similarity between the strings calculated as the Levenshtein
distance divided by the length of the longer string.

• The Partial Ratio (mPR) is an improved version of the previous one. It is the ratio of the shorter
string and the most similar substring (in terms of the Levenshtein distance) of the longer string.

• The Token Sort Partial Ratio (mTSoR) sorts the tokens in the string and then measures the Partial
Ratio on the string with the sorted tokens.

• The Token Set Partial Ratio (mTSeR) creates three sets of tokens:

– N0, the common, sorted tokens from two strings;
– N1, the common, sorted tokens from two strings along with sorted remaining tokens from

the first string; and
– N2, the common, sorted tokens from two inscriptions along with sorted remaining tokens

from the second string.

Then, strings as a combination of tokens in the set are created and the maximum Partial Ratio is
computed according to the equation:

mTSeR = max {mPR (N0, N1) , mPR (N0, N2) , mPR (N1, N2)} (7)

• The Average Ratio (mAVG) is the metric we proposed, calculated as the average value of the Partial
Ratio (PR) and the Token Set Ratio (TSeR):

mAVG (s1, s2) = avg (mPR (s1, s2) , mTSeR (s1, s2)) (8)

Table 1 compares the values of these metrics obtained for the sample strings. The following
notations for individual metrics are adopted in the table:

• mLEV is the Levenshtein measure.
• mJW is the Jaro–Winkler measure.
• mRatio is the Ratio measure.
• mPR is the Partial-Ratio measure.
• mTSoR is the Partial Token Sort Ratio measure.
• mTSeR is the Partial Token Set Ratio measure.
• mAVG is the Average Ratio measure.

ISPRS Int. J. Geo-Inf. 2020, 9, 291 14 of 29

Table 1. Comparison of the values of the analyzed metrics for sample strings.

s1 s2 mLEV mJW mRatio mPR mTSoR mTSeR mAVG

Henryka Kamienskiego 11
Krakow Polska

Generala Henryka Kamienskiego
30-644 Krakow 0.49 0.70 0.70 0.79 0.83 1.0 0.81

Pokoju 44, 31-564 Krakow Zakopianska 62 Krakow Polska 0.25 0.51 0.42 0.46 0.55 1.0 0.51

Cinema City Poland Cinema City 0.61 0.92 0.76 1.0 1.0 1.0 1.0

786934146 48786934146 0.75 0.81 0.86 1.0 1.0 1.0 1.0

http://bestwestern\krakow.pl/en/ http://bestwestern\krakow.pl/ 0.88 0.98 0.93 1.0 0.90 1.0 0.95

4.1.3. Category Distance Metrics

Choosing the right metrics when comparing categories is more complex than in the case of
(simple) attributes such as the Name. This is because their comparison should be based on semantic
rather than textual similarity. This is evident when we take, for example, Hostel and Bed and Breakfast
categories. Semantically, they are very close while their string similarity is close to zero.

In this context, we analyzed several semantic comparison techniques including the
Sorensen algorithm proposed in [5] and semantic similarity metric based on the Wordnet
dictionary (https://wordnet.princeton.edu/) with the implementation provided by NLTK library
(https://www.nltk.org/) [19]. For further experiments and analysis, we selected Wu–Palmer, Lin,
and Path metrics. Additionally, we conducted some experiments using two- and three-element
combinations of these metrics. Since the category is a multi-valued attribute (e.g., “Food”, “Restaurant”,
and “Polish”), we decided to select and compare the last two values for each category. Next, we created
a Cartesian product from these two last categories for the POIs being compared, and used the value of
the most similar pair. Formally,

metricscategory(poi1, poi2) = maxci∈C(poi1),cj∈C(poj2)
(
catsim(ci, cj)

)
(9)

where C(poii) is the set of categories for the point poiiand catsim(ci, cj) is the similarity of the categories
ci and cj.

4.2. Strategies for Dealing with Missing Data

In the experiments, we assessed four strategies for handling the problem of missing and/or
incomplete data:

• S1 is a strategy in which only objects with all attributes are taken for testing and analysis. This is not
an approach that can be used in practice, but it was carried out merely to obtain a reference result.

• S2 is a strategy where, in the training set, we only include objects that have all the attributes, and,
in the test set, we fill in the missing values with a marker value: −1.

• S3 is a strategy where, in both sets, we fill in the missing values with the marker value: −1.
• S4 is a strategy in which missing values are supplemented with the median value of the attributes

in the given set.

4.3. The Classifiers for Points of Interest Matching

The selected classifiers for Points of Interest matching used in our research are briefly
enumerated below:

1. The k-Nearest Neighbor algorithm [20] is one of the most popular algorithms for pattern
determination and classification. The classifier based on this algorithm allows one to assign an
object to a given class using a similarity measure. In the case of the Points of Interest matching
problem, based on the given values of the metrics, the algorithm looks for similar examples
encountered during the learning process. After that, it endeavors to qualify them into one of two
groups—matching or mismatching objects. In our analysis, we used the implementation provided

http://bestwestern\krakow.pl/en/
http://bestwestern\krakow.pl/
https://wordnet.princeton.edu/
https://www.nltk.org/

ISPRS Int. J. Geo-Inf. 2020, 9, 291 15 of 29

by the Scikit Learn Framework [21]. We used the default parameters configuration (https://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html), changing
only the n_neighbors parameter value, which indicates the number of neighbors sought;
we changed it from 5 to 100, due to the large dataset.

2. The Decision Tree classification method [22] is a supervised method, and, on the basis of the
datasets provided, it separates objects into two groups. The separation process is based on a
chain of conditionals, which form a graphical tree. One of the disadvantages of this algorithm is
that the decision tree is very susceptible to the prepared learning model. This is due to overfitting,
and the lack of a mechanism to prevent the dominance of one resultant class. Therefore, we had to
ensure that the training set was well balanced. In our analysis, we again used the implementation
provided by the Scikit Learn Framework [21]. We used the default parameters configuration
(https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html).
In our model, we had six input features (metrics values for two Points of Interest being compared),
and two output classes (objects matched or not).

3. The Random Forest classifier [23] is based on the same assumptions as those of the decision
trees. However, unlike a single decision tree, it does not follow the greedy strategy when creating
the conditionals. In addition, the sets provided for training individual trees are different. As a
consequence, the algorithm is more resistant to overfitting phenomena and is well-suited to
missing data. In our analysis, we once again used the implementation provided by the Scikit
Learn Framework [21]. We used the default parameters configuration (https://scikit-learn.org/
stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html), changing only the
number of trees in the forest (n_estimators parameter) to 100.

4. Isolation Forest is the method of matching objects studied in [5,6]. It is based on the outlier
detection approach. This classifier, unlike those previously presented, is a weakly supervised
machine learning method where, in the training process, only the positive examples are
required. Next, during the classification process, the classifier decides whether the given set of
attributes is similar to those that it has learned in the learning process or not. The algorithm
is very sensitive to the data used and requires appropriate techniques in the case of missing
attributes. In our analysis, we again used the implementation supplied by the Scikit Learn
Framework [21]. We used the default parameters configuration (https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.IsolationForest.html), setting the number of samples used
for training (i.e., the max_samples parameter) to 1000.

5. Neural Network: We prepared two classifiers based on a Neural Networks [24]. The simpler
one, termed a Perceptron, directly receives the values of the metrics, and the two output neurons
are the resultant classes—the decision about any similarity or lack thereof. A more complicated
one, based on deep networks, is the Feed Forward model, which in addition to the input and
output layers, has six additional, arbitrarily set layers, with 128, 64, 32, 16, 16, and 16 neurons,
respectively. In our analysis, we used the implementation provided by the Tensorflow [25] and
Keras [26] frameworks. We trained each of the networks for 50 eras, with the batch size set to 5.

As the input to all classifiers, we provided the vector of six metrics values, normalized into the
range of [0,1] and representing, in turn, geographical proximity, and then the name, addresses, phone
numbers, websites, and categories similarity.

5. Experiments

To compare the selected classifiers with different metrics and strategies for dealing with missing
data, we performed a series of experiments on the experimental dataset. The question is how to
determine which classifier is better than the others. One of the most popular classification quality
indicators is the Receiver Operating Characteristic curve (ROC) [27] along with the Area Under the
ROC field (AUC). An AUC value of 1 means it is an ideal classifier. An AUC equal to 0 is characteristic

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

ISPRS Int. J. Geo-Inf. 2020, 9, 291 16 of 29

of an inverse classifier. An AUC value of 0.5 indicates that we are dealing with a random classifier.
The values of ROC and AUC are presented in later analyses.

5.1. The Analysis of Different Similarity Metrics

The ROC curve along with the AUC value for the geographical closeness estimation metric are
shown in Figure 11. The obtained value of AUC (0.914) shows that the metric proposed is accurate and
can be used for the POI matching classification. The assumed range of 300 m is adequate to make a
fair classification for two objects being compared and reduces the impact of any GPS inaccuracy [28].

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

False Positive Rate [%]

Tr
ue

Po
si

ti
ve

R
at

e
[%

]

AUC = 0.914

Figure 11. Receiver operating characteristics for coordinates.

5.1.1. The Analysis of String Similarity Metrics

The results obtained for different string similarity metrics calculated for different attributes are
presented in the following subsections. In the interests of space and brevity, the reader may refer
to Appendix A to find the detailed characteristics of the ROC curves and the AUC values. Below,
we provide a summary of the results.

The Analysis for the Attribute Name

When it comes to the Name attribute, the best area under the curve value for strategy S1 was
obtained with the Average Token Sort Ratio metric (ATSoR) and is equal to 0.968. The same can
be observed for strategies S2 and S3, whereas, for strategy S4, the best AUC value, equal to 0.942,
was obtained with the Partial Ratio metric. The reason for that is that the Name attribute often appears
in reverse order, for example “Hotel X” and “X Hotel”; thus, it is to be expected that the best value was
obtained with the use of the sorting metric. The same applies when it comes to Partial Ratio metrics,
comparing the similarity of words based on the length of individual tokens. The values obtained are
high, which indicates that the selected metrics are able to classify the strings correctly. For clarity and
ease, the best AUC values obtained, along with the information concerning the metrics for which these
values were obtained, are collected in Figure 12b, while the ROC curves for best cases are presented
in Figure 12a. More detailed characteristics can be found in Figure A1 in Appendix A.

The Analysis for the Attribute Address

In the case of the Address attribute, the best area under the curve value for strategy S1 was obtained
with the Token Set Ratio (TSeR) and equals 0.806. The same metric also yielded the best AUC values
for strategies S2, S3, and S4; it was equal to 0.804 for strategy S2, 0.803 for strategy S3, and 0.763 for
strategy S4. These results stem from the fact that the address is given in a standardized format: Street,
House Number, ZIP code, City, Country. Therefore, the tokens are already sorted, and the comparison

ISPRS Int. J. Geo-Inf. 2020, 9, 291 17 of 29

of strings comes down to the comparison of particular tokens. The values obtained are fairly high,
but this metric does not separate objects as well as in the case of the name attribute because neighboring
places located on the same street may differ only in House Number token, although they are completely
different POIs. The best AUC values gained, along with the information about the metrics for which
these values were obtained, are collected in Figure 13b, and the ROC curves for best cases are depicted
in Figure 13a. Further details are given in Figure A2 in Appendix A.

0 20 40 60 80 100
0

20

40

60

80

100

False Positive Rate [%]

Tr
ue

Po
sit

iv
eR

at
e[

%
]

AUC(S1) = 0.968
AUC(S2) = 0.968
AUC(S3) = 0.968
AUC(S4) = 0.941

(a) The best ROC characteristics

Strategy Best Metrics AUC

S1 ATSoR 0.968
S2 ATSoR 0.968
S3 ATSoR 0.968
S4 PR 0.942

(b) The best AUC values

Figure 12. The best AUC values (b) and best ROC curves characteristics (a) for attribute Name.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

False Positive Rate [%]

Tr
u

e
P

o
si

ti
v

e
R

at
e

[%
]

AUC(S1) = 0.806
AUC(S2) = 0.804
AUC(S3) = 0.803
AUC(S4) = 0.763

(a) The best ROC characteristics

Strategy Best Metrics AUC

S1 TSeR 0.806
S2 TSeR 0.804
S3 TSeR 0.803
S4 TSeR 0.763

(b) The best AUC values

Figure 13. The best AUC values (b) and best ROC curves characteristics (a) for attribute Address.

The Analysis for the Attribute Phone Number

The comparison and matching of the Phone Number attribute is a greater problem than for Name
or Address—as can be seen in the varying results of the metrics and the AUC values. In the case of
strategy S1 (an ideal dataset where all pairs have a phone number), it can be seen that the simple
metric does well—reaching an AUC value above 0.9. The best results (apart from the ideal dataset)
were obtained for the S3 strategy along with the Jaro–Winkler metric—which is based on the number
of modifications of one string as compared to another. This makes sense because a phone number is
already a standardized string of characters without taking the prefixes into account.

The best AUC values obtained, along with the information concerning the metrics for which
this value was obtained, are collected in Figure 14b, and the ROC curves for best cases are presented
in Figure 14a. Detailed characteristics are shown in Figure A3 in Appendix A.

The Analysis for the Attribute WWW

The worst particular metrics values (compared to those attributes discussed thus far) were
obtained. While, for the ideal dataset (strategy S1), the results are high (AUC = 0.941 for ATSoR
metrics), for the other strategies, the values are close to being random classifiers. This stems from the
fact that only about 30% of objects in the experimental set have a value for this attribute. Nevertheless,
this attribute is still worth taking into account when creating the Points of Interest matching classifier
because, if the object already has the value of this attribute, the relevance of matching is reasonably
high. The best AUC values obtained, along with the information about the metrics for which these

ISPRS Int. J. Geo-Inf. 2020, 9, 291 18 of 29

values were acquired, are collected in Figure 15b, while the ROC curves for best cases are presented
in Figure 15a. Greater detail can be found in Figure A4 in Appendix A.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

False Positive Rate [%]

Tr
u

e
P

o
si

ti
v

e
R

at
e

[%
]

AUC(S1) = 0.905
AUC(S2) = 0.698
AUC(S3) = 0.823
AUC(S4) = 0.741

(a) The best ROC characteristics

Strategy Best Metrics AUC

S1 PR 0.905
S2 TSoR 0.698
S3 Jaro–Winkler 0.823
S4 Jaro–Winkler 0.741

(b) The best AUC values

Figure 14. The best AUC values (b) and best ROC curves characteristics (a) for attribute Phone Number.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

False Positive Rate [%]

Tr
u

e
P

o
si

ti
v

e
R

at
e

[%
]

AUC(S1) = 0.941
AUC(S2) = 0.607
AUC(S3) = 0.616
AUC(S4) = 0.577

(a) The best ROC characteristics

Strategy Best Metrics AUC

S1 ATSoR 0.941
S2 PR 0.607
S3 Jaro–Winkler 0.616
S4 ATSoR 0.577

(b) The best AUC values

Figure 15. The best: AUC values (b) and ROC curves characteristics (a) for attribute WWW.

The Analysis for the Combination of Attributes

Finally, we checked whether the results for individual attributes are reflected in the classifier
using the combination of attributes. The best AUC values obtained, along with the information about
the metrics for which the values have been obtained, are collected in Figure 16b, and the ROC curves
for the best cases are presented in Figure 16a. Analyzing the results, it can be seen that the best results
for individual strategies and attributes do not translate directly into a “mixed” model.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

False Positive Rate [%]

Tr
u

e
P

o
si

ti
v

e
R

at
e

[%
]

AUC(S1) = 0.985
AUC(S2) = 0.947
AUC(S3) = 0.962
AUC(S4) = 0.549

(a) The best ROC characteristics

Strategy Name Address Phone Number WWW AUC

S1 Jaro–Winkler Jaro–Winkler Jaro–Winkler ATSoR 0.985
S2 TSeR TSoR PR ATSoR 0.947
S3 TSeR TSoR Jaro–Winkler Ratio 0.962
S4 TSeR Jaro–Winkler Ratio Jaro–Winkler 0.549

(b) The best AUC values

Figure 16. The best AUC values (b) and best ROC curves characteristics (a) for combination
of attributes.

ISPRS Int. J. Geo-Inf. 2020, 9, 291 19 of 29

5.1.2. The Analysis for Category Distance Metrics

Category metrics were tested for various strategies for dealing with missing data, and a summary
of the results is presented in Figure 17. For strategies S1, S2, and S3, the best AUC values were obtained
with the average of Wu–Palmer, Lin, and Path metrics; these were 0.818 for strategy S1, 0.813 for
strategy S2, and 0.820 for strategy S3. For strategy S4, the best AUC value, equal to 0.746, was attained
with the Sorensen metric.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

False Positive Rate [%]

Tr
u

e
P

o
si

ti
v

e
R

at
e

[%
]

AUC(S1) = 0.818
AUC(S2) = 0.813
AUC(S3) = 0.820
AUC(S4) = 0.746

(a) The best ROC characteristics

Strategy Best Metrics AUC

S1 Avg(Wu-palmer,Lin,Path) 0.818
S2 Avg(Wu–Palmer,Lin,Path) 0.813
S3 Avg(Wu–Palmer,Lin,Path) 0.820
S4 Sorensen 0.746

(b) The best AUC values

Figure 17. The best AUC values (b) and best ROC curves characteristics (a) for attribute Category.

The best AUC values gained, together with the information about the metrics for which these
values were obtained, are collected in Figure 17b, and the ROC curves for best cases in Figure 17a.
More detailed information is in Figure A5 in Appendix A.

5.1.3. The Analysis for Combined Metrics

The last analysis of the metrics focused on checking the quality of the classifier based on the
combination of three kinds of metrics, i.e., metrics for measuring the geographical closeness, string
similarity, and category similarity. In this step, we took the most effective metrics from all three
categories and built a classifier using all three at once. The basic conclusions we can draw based on the
results obtained (see Figure 18) is that, in the case of the S4 strategy, we are close to having a random
classifier, whereas strategy S3 gives results very close to the results for the “ideal” set (strategy S1).

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

False Positive Rate [%]

Tr
ue

Po
si

ti
ve

R
at

e
[%

]

AUC(S1) = 0.961
AUC(S2) = 0.925
AUC(S3) = 0.957
AUC(S4) = 0.549

Figure 18. Receiver operating characteristics for all attributes.

5.2. Comparison of Different Points of Interest Matching Classifiers

With a set of metrics for each strategy for handling incomplete data in hand, we proceeded
to the next stage of our research, which was to compare various approaches of machine learning
classifiers to Points of Interest matching. We selected six different machine learning classifiers and

ISPRS Int. J. Geo-Inf. 2020, 9, 291 20 of 29

tested them on prepared datasets, applying selected metrics and strategies for dealing with incomplete
data. The performance results for each classifier are collected in Table 2.

Table 2. The best accuracy values for different classification algorithms.

Strategy K-Neigh Dec Tree Rnd Forest Isol Forest Perceptron FF Net

S1 97.6% 95.9% 97.6% 95.3% 93.2% 98.2%
S2 92.8% 91.7% 95.1% 74.5% 76.5% 87.4%
S3 92.0% 95.1% 95.2% 91.6% 89.7% 91.2%
S4 54.1% 35.8% 33.2% 93.4% 56.7% 60.0%

The analysis of the results showed that, for the ideal dataset (where all attributes are available),
i.e., for strategy S1, the deep feed-forward neural net works best. The difference and advantage over
the other classifiers is not large, however, since the lowest achieved efficiency is as high as 93.2%.
The approach of S2 and S3, which supplement the missing values with the −1 marker, shows that the
results are not much worse than in the case of strategy S1—especially with regards to “tree-based”
classification algorithms.

Neural nets achieve worse results with S2 and S3 than in the case of strategy S1 because they
are sensitive to the quality of the data provided. The other interesting result, confirming the findings
presented in [5], is that obtained by the isolation forest algorithm for strategy S4. Being the only one
capable of dealing with data with missing values, in this case, it achieved a superior result when
compared to strategies S2 and S3.

In addition, in Table 3, we present the results for individual cities in the best combination achieved,
i.e., random forest with strategy S3. It is worth noting that high results are achieved in most cities,
but there is an anomalous result for Liverpool. This means that selecting the best classification
algorithm and the best metrics also depends on the region of the world (e.g., how the address attribute
is provided, how “dense” the area is, etc.). It also leaves space for continuing research, which will take
into account the use of various metrics and classifiers depending on the specificity of the data.

Table 3. The best AUC and F1 score values for selected cities.

City AUC F1 Score

Krakow 99.5% 99.4%
San Francisco 92.4% 92.2%

Naples 93.8% 92.8%
Liverpool 84.0% 83.5%

Beijing 98.1% 91.3%

6. The Algorithm for Automatic Points of Interest Matching

The final stage of our research involved the preparation of an algorithm proposal that could be
used to match geospatial databases automatically. The algorithm devised consists of several steps,
the first being the selection of candidates that may potentially be a matching Point of Interest for
a particular POI currently under analysis. Based on the results presented in Section 4.1.1, with an
accuracy of 99.9%, we can assume that a possible ”match” for a given point is located within 300 m.
Thus, for candidates selected from the integrated database within a range of 300 m, we calculate
the metrics and pass them on to a trained machine learning classifier. Then, we choose Points of
Interest that have been classified as matching and sort them in descending order by the average value
of the calculated similarity metrics. Finally, as the matching Point of Interest, we take the first one
from the sorted list. If the list is empty, the Point of Interest is marked as “new” (devoid of matching
duplicates), otherwise we merge data for matched POIs. Since the aim of the research reported was
seeking matching Points of Interest, we did not focus on merging data for matched POIs and, at this
stage, when we hit the merging step in the matching algorithm, we applied a few simple rules to

ISPRS Int. J. Geo-Inf. 2020, 9, 291 21 of 29

produce an integrated Point of Interest. Thus, assuming that the poi1 is the POI we seek the matches
for, and the poi2 is the matching POI found, the rules are as follows:

• If the attribute exists in poi1, we use it as the value for merged POI.
• If the attribute is missing in poi1 and exists in poi2, we use the value from poi2 for merged POI.
• The value for category attribute for merged POI is the sum of poi1 and poi2 categories.

The improvement of the merge technique (e.g., how to merge address when, for instance, in poi1
we have a street and in poi2 we have a house number) was not considered in this research and is one
of the future work directions.

The algorithm presented in Algorithm 1 is accurate—it checks all the possibilities and searches
for the best possible solution. This leads to high computational complexity and a long operation time
because metrics and classification are calculated and performed for each pair of POIs, which can be
especially problematic in densely built-up areas. For this reason, we deployed the greedy version of this
algorithm, in which we take advantage of a database engine, namely the full-text search mechanism,
to sort candidate ”matches” using the previously indexed Name. The pseudo-code of this modified
version is presented in Algorithm 2.

For both versions of the POI matching algorithm, the worst-case complexity is: O(∑N
i=1 nimi)

where N is the number of Points of Interest for which we wish to find matching points, ni is the ith
Point of Interest from the list of POIs for which we wish to find matching points, and mi is the -th
candidate POI found within 300 m from POI ni.

Both versions of the algorithm were confronted with a validation set consisting of 4000 manually
annotated points. It gives an overview of the quality of the proposed approach, as well as shows the
impact of the modifications proposed in the greedy version. The Accuracy achieved (in the sense of the
previously defined metric), the percentage of matches not found (even though they existed), and the
percentage of incorrectly made matches by both versions of the algorithm are collected in Table 4.

Algorithm 1: Automatic Points of Interest matching—precise version.
classi f ier = RandomForrest(n_estimators = 100)
missingDataDealingStrategy = f illMissingValues(−1)//S3

geographicDistanceMetric = metricscoord
nameSimilarityMetric = TokenSetRatio
addressSimilarityMetric = TokenSortRatio
phoneNumberSimilarityMetric = Jaro−−Winkler
wwwSimilarityMetric = Ratio
categoryClosenessMetric = Avg(Wu−−Palmer, Lin, Path)
for each poi in pois_to_match do

candidatePOIs = integrated_db. f ind_pois_in_the_range_o f _300m(poi.coordinates)
classi f iedPOIs = []

for each candidatePOI in candidatePOIs do
metrics[] = calculate_metrics(poi, candidatePOI)
classi f ication = classi f ier.classi f y(metrics[])
classi f iedPOIs.append(candidatePOI, metrics[], classi f ication)

end
matchingPOI = classi f iedPOIs.matched.sortDescending_by_avg_metrics(). f irst
if matchingPOI is not NULL then

integrated_db.merge_and_save(poi, matchingPOI)
end
else

integrated_db.save(poi)
end

end

ISPRS Int. J. Geo-Inf. 2020, 9, 291 22 of 29

Algorithm 2: Automatic Points of Interest matching—greedy version.
classifier = RandomForrest(n_estimators=100)
missingDataDealingStrategy = fillMissingValues(-1)//S3

geographicDistanceMetric = metricscoord
addressSimilarityMetric = TokenSortRatio
phoneNumberSimilarityMetric = Jaro–Winkler
wwwSimilarityMetric = Ratio
categoryClosenessMetric = Avg(Wu–Palmer,Lin,Path)
for each poi in pois_to_match do

candidatePOIs =
integrated_db. f ind_pois_in_the_range_o f _300m_and_withFTSSimilarNames(poi.coordinates, poi.Name)
candidatePOIs = candidatePOIs.sortDescending_by_FTSnameSimilarity(poi.name)
f ound = f alse
while not f ound and candidatePOIs.has_next() do

candidatePOI = candidatePOIs.next()
metrics[] = calculate_metrics(poi, candidatePOI)
classi f ication = classi f ier.classi f y(metrics[])
if classi f ication == matched then

f ound = true
integrated_db.merge_and_save(poi, candidatePOI)

end
end
if not f ound then

integrated_db.save(poi)
end

end

Table 4. A comparison of the precise and greedy versions of the algorithm for automatic Points of
Interest matching run on the validation set.

Precise Algorithm Greedy Algorithm

Accuracy 84.73% 81.23%
Matches not found 0% 11.52%

Invalid matches 15.27% 7.25%

The greedy algorithm achieves a lower value on the Accuracy metric (although this is only a slight
decrease—3.5%). However, it reduces, almost by half, the percentage of wrong matches (by reducing,
among other items, the number of “false candidates” and unnecessary comparisons). The disadvantage
of the greedy version is certainly seen in the significant increase in the number of “matches not found”,
even though they existed in the validation set. This is due to the limitations of the full-text search
engine used, which in no way had been optimized for the problem being solved, and, for instance,
supported only one alphabet (the Latin one). Research related to improving the quality of this aspect
(optimization of the full-text search engine for the problem being solved) is one of the directions of
future work.

The modifications in the greedy version slightly affected the quality of the algorithm, as mentioned
above. However, the main purpose for implementing this version of the algorithm was to reduce
its computational complexity and the number of operations performed (including quite complex
classifications). As a consequence, this speeded up the process and reduced the time needed to
complete the matching process. In the rest of this section, we look at several selected characteristics
describing the reduction in the algorithm’s complexity.

In Table 5, we can see the number of operations (understood as evaluating the metrics and running
the classification procedure) for 20,000 matching and non-matching cases, and the same for just the
subset of 7000 matching cases. As shown, for the subset of matching Points of Interest, the greedy

ISPRS Int. J. Geo-Inf. 2020, 9, 291 23 of 29

algorithm achieved a 62% reduction in operations (24,000 in the greedy version versus 64,000 in the
precise version). Similarly, for all 20,000 Points of Interest, there is a 57% reduction in operations
(30,000 in the greedy version versus 70,000 in the precise version).

Table 5. The number of operations performed by the precise and greedy versions of the automatic
POIs matching algorithm.

Precise Algorithm Greedy Algorithm % of Reduced Classifications

Number of classifications required
for 20,000 matching and

non-matching cases
69,783 29,979 57%

Number of classifications
required for 7000 matching cases 63,928 24,124 62%

One of the differences between the precise and the greedy versions of the proposed algorithm is
that, in the greedy version, the set of candidate Points of Interest does not include all those located
within the given radius (in our case, 300 m). Instead, it includes only those POIs located in the given
range whose Name is similar to the Name of the Point of Interest we are seeking matches for. Hence,
the number of candidates is reduced in comparison to the precise version, and thus the number of
potential operations (i.e., metrics calculations and classifications) is also reduced. Note that we used
the term ’potential operations’ here, since, in the greedy version, candidates are sorted in descending
order by Name similarity. Therefore, the chances are that the actual number of operations will be
much lower, since the matching Point of Interest is often one of the first candidates from the sorted list.
Figure 19a presents the average number of such potential operations as a function of matching point
distance. Clearly, there is a great reduction in potential operations in favor of the greedy algorithm
(from one order of magnitude for POIs with a distance close to 0, up to three orders of magnitude
for POIs with distances between 400 and 500 m). One more important observation emerging from
this chart is that, for the precise algorithm, the average number of potential operations noticeably
increases as the distance between the matching points grows. In contrast, in the greedy version, this
value is almost constant. In Figure 19b, we present the average time expended by both algorithm
versions until the matching point was found. It shows that, in terms of computation time, on the
ordinary PC employed in the tests with a 3.2 GHz quad-core Intel i5-4460 processor, 16 GB of RAM
and 256 GB of solid-state storage, an advantage of two orders of magnitude can be observed for the
greedy version. To make this contrast in results even more stark, the ratio between the number of
potential operations to be performed by the precise and greedy versions for candidate Points of Interest
located in the range of 0–500 m was calculated. The results are presented in Figure 19c (the violet
line). Similarly, the ratio between the average time spent by the precise and greedy algorithms to find
the matching point (for all considered distance ranges of 0–500 m) was calculated. The results are
presented in Figure 19c (the green line). Finally, in Figure 19d, the correlation between the percentage
of reduced operations and the number of matched pairs (i.e., how many pairs have reduced operations
of at least X percent) is presented. It shows that, after sorting candidate POIs in descending order by
Name similarity, for almost 31% of Points of Interest no additional operations were required. This is
because the matching point was the first result from the sorted list, and for 80% of pairs, the number of
operations was reduced by at least half.

The results confirm that modifications introduced into the greedy version are justified since, at a
cost of just 3.5% in terms of accuracy, the time spent by the algorithm on Points of Interest matching
was reduced by two orders of magnitude.

ISPRS Int. J. Geo-Inf. 2020, 9, 291 24 of 29

0 100 200 300 400 500

100

101

102

103

104

Precise version

Greedy version

The distance between matching points [m]

T
he

av
er

ag
e

nu
m

be
r

of
op

er
at

io
ns

(a)

0 100 200 300 400 500

10−1

100

101

102

Precise version

Greedy version

The distance between matching points [m]

T
he

av
er

ag
e

ti
m

e
of

op
er

at
io

ns
[s

]

(b)

0 100 200 300 400 500
0

100

200

300

400

500

600

700

Time

Operations

The distance between matching points [m]

M
ul

ti
pl

es
(P

re
ci

se
/G

re
ed

y)

(c)

10090807060504030

20

40

60

80

100

Min. % of reduction in
operations for a given

% of dataset

[%] of matching set

[%
]o

fr
ed

uc
ed

op
er

at
io

ns

(d)

Figure 19. The average number of operations to be performed by the precise and greedy algorithm
versions as a function of matching point distance (a); the average time of operations performed by the
precise and greedy algorithm versions as a function of matching point distance (b); the ratios of the
number of operations and time (c); and the minimum percentage of reduced operations for the given
percentage of POIs in the validation set (d).

7. Conclusions and Future Work

The problem of matching POI objects arising from various sources is an emerging area of research.
Although it is partially addressed in the literature, no comprehensive survey exists as yet. Moreover,
the research that has been done thus far, was conducted on relatively small and disjunctive sets of
data, making it difficult to draw comparisons and conclusions. In this paper, a comprehensive analysis
is reported and an algorithm for automatic Points of Interest matching is proposed. For this purpose:

• We analyzed a selection of the most popular data sources—their structures, models, attributes,
number of objects, the quality of data (number of missing attributes), etc. (see Section 3 for details).

• We defined the unified Point of Interest model and then implemented mappers for downloading
data from different services and storing them in one, single, common model (see the first part of
Section 3).

• We prepared a fairly large experimental dataset consisting of 50,000 matching and 50,000
non-matching points, taken from such diverse geographical, cultural and language areas as
Liverpool, Beijing, and Ankara (see Section 3.2).

• We reviewed metrics that can be used for calculating the similarity between Points of Interest. For
this, we analyzed three groups i.e., geographical distance, string similarity distance and semantic
distance metrics (see Section 4.1).

ISPRS Int. J. Geo-Inf. 2020, 9, 291 25 of 29

• We verified four different strategies for dealing with missing attributes (see Section 4.2 for details).
• We reviewed and analyzed six different machine learning classifiers (k-Nearest neighbor, decision

tree, random forest, isolation forest, and two neural net classifiers) for Points of Interest matching.
• We performed experiments and made comparisons taking into account different similarity metrics

and different strategies for dealing with missing data (see Sections 5.1 and 5.2 and Appendix A).

The combination of random forest algorithm with the marking of missing data and the mixing
of different similarity metrics for different POI description attributes seems to be the best, and thus
recommended, classifier for Points of Interest matching. Simultaneously, the best combination of
POI attributes similarity metrics is using Token Set Ratio for POI Name, Token Sort Ratio for Address,
Jaro–Winkler for Phone number, Ratio for WWW, and average of Wu–Palmer, Lin, and Path for POI
category. With such a combination of classification algorithm, strategy for dealing with incomplete
data and similarity metrics, the highest efficiency (95.2%) on a 100,000-POIs experimental dataset was
achieved. This result is better than one of the best-known results as reported in [5], where the authors
tested an Isolation Forest classifier coupled with the S4 strategy.

Next, based on the results obtained in the analytical part of the research, an algorithm for automatic
Points of Interest matching was proposed. First, we proposed an exact algorithm (see Algorithm 1)
which works competently, but involves high computational complexity (for both the worst- and the
average-case). Next, we proposed a slightly modified version (see Algorithm 2), characterized by the
same worst-case complexity, but allowing for significant average complexity reduction (by as much as
two orders of magnitude). Importantly, it achieved almost the same matching results (the value of the
Accuracy metric deteriorated only by 3.5% in comparison to the precise version).

The next step in our work will be research into a hybrid classifier, which will apply the appropriate
matching methods depending on the quality of the data provided. Subsequent work will also address
the problem of applying the appropriate metrics depending on the geographical, cultural or language
area the data come from (this particular problem was apparent in the results for Liverpool). We also
intend to work on Full-Text Search instrumentation to address the problem reported at the end of
Section 6. Solving these issues should bring us very close to a universal algorithm for automatic Points
of Interest matching, one which will be completely independent of where the data are sourced from.

Author Contributions: Conceptualization, Mateusz Piech, Aleksander Smywinski-Pohl, Robert Marcjan,
and Leszek Siwik; methodology, Mateusz Piech, Aleksander Smywinski-Pohl, Robert Marcjan, and Leszek
Siwik; software, Mateusz Piech and Aleksander Smywinski-Pohl; validation, Aleksander Smywinski-Pohl, Robert
Marcjan, and Leszek Siwik; formal analysis, Robert Marcjan and Aleksander Smywinski-Pohl; data preparation,
Aleksander Smywinski-Pohl and Robert Marcjan; writing—original draft preparation, Mateusz Piech and Leszek
Siwik; writing—review and editing, Leszek Siwik and Mateusz Piech; visualization, Leszek Siwik and Mateusz
Piech; and supervision, Leszek Siwik and Robert Marcjan. All authors have read and agreed to the published
version of the manuscript.

Funding: The research presented in this paper was supported by the funds of the Polish Ministry of Science and
Higher Education assigned to AGH University of Science and Technology.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Figures A1–A5 show receiver operating characteristic curves, along with AUC values, obtained
for the training set (100,000 POIs), for all considered distance metrics for all four considered strategies
for handling missing data (S1 . . . S4) for attributes Name, Address, Phone number, WWW, and Category.

ISPRS Int. J. Geo-Inf. 2020, 9, 291 26 of 29

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100
Tr

ue
 P

os
iti

ve
 R

at
e

[%
]

ROC curve for Name with strategy s1

levenshtein_metric, auc=0.924
jarowinkler_metric, auc=0.918
ratio_metrics, auc=0.946
partial_ratio_metrics, auc=0.954
token_sort_ratio_metrics, auc=0.945
token_set_ratio_metrics, auc=0.961
avg_ratio_sort_metrics, auc=0.968
avg_ratio_set_metrics, auc=0.967

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Name with strategy s2

levenshtein_metric, auc=0.924
jarowinkler_metric, auc=0.918
ratio_metrics, auc=0.946
partial_ratio_metrics, auc=0.954
token_sort_ratio_metrics, auc=0.945
token_set_ratio_metrics, auc=0.961
avg_ratio_sort_metrics, auc=0.968
avg_ratio_set_metrics, auc=0.967

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Name with strategy s3

levenshtein_metric, auc=0.924
jarowinkler_metric, auc=0.918
ratio_metrics, auc=0.946
partial_ratio_metrics, auc=0.954
token_sort_ratio_metrics, auc=0.945
token_set_ratio_metrics, auc=0.961
avg_ratio_sort_metrics, auc=0.968
avg_ratio_set_metrics, auc=0.967

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Name with strategy s4

levenshtein_metric, auc=0.898
jarowinkler_metric, auc=0.913
ratio_metrics, auc=0.932
partial_ratio_metrics, auc=0.942
token_sort_ratio_metrics, auc=0.930
token_set_ratio_metrics, auc=0.932
avg_ratio_sort_metrics, auc=0.916
avg_ratio_set_metrics, auc=0.913

Figure A1. A receiver operating characteristics for all considered string similarity metrics for all four
strategies for dealing with missing data for attribute Name.

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Address with strategy s1

levenshtein_metric, auc=0.748
jarowinkler_metric, auc=0.733
ratio_metrics, auc=0.764
partial_ratio_metrics, auc=0.734
token_sort_ratio_metrics, auc=0.786
token_set_ratio_metrics, auc=0.806
avg_ratio_sort_metrics, auc=0.763
avg_ratio_set_metrics, auc=0.784

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Address with strategy s2

levenshtein_metric, auc=0.749
jarowinkler_metric, auc=0.731
ratio_metrics, auc=0.764
partial_ratio_metrics, auc=0.739
token_sort_ratio_metrics, auc=0.783
token_set_ratio_metrics, auc=0.804
avg_ratio_sort_metrics, auc=0.764
avg_ratio_set_metrics, auc=0.784

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Address with strategy s3

levenshtein_metric, auc=0.748
jarowinkler_metric, auc=0.727
ratio_metrics, auc=0.763
partial_ratio_metrics, auc=0.739
token_sort_ratio_metrics, auc=0.784
token_set_ratio_metrics, auc=0.803
avg_ratio_sort_metrics, auc=0.762
avg_ratio_set_metrics, auc=0.784

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Address with strategy s4

levenshtein_metric, auc=0.716
jarowinkler_metric, auc=0.714
ratio_metrics, auc=0.745
partial_ratio_metrics, auc=0.710
token_sort_ratio_metrics, auc=0.756
token_set_ratio_metrics, auc=0.763
avg_ratio_sort_metrics, auc=0.745
avg_ratio_set_metrics, auc=0.747

Figure A2. A receiver operating characteristics for all considered string similarity metrics for all four
strategies for dealing with missing data for attribute Address.

ISPRS Int. J. Geo-Inf. 2020, 9, 291 27 of 29

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Phone Number with strategy s1

levenshtein_metric, auc=0.893
jarowinkler_metric, auc=0.904
ratio_metrics, auc=0.902
partial_ratio_metrics, auc=0.905
token_sort_ratio_metrics, auc=0.902
token_set_ratio_metrics, auc=0.902
avg_ratio_sort_metrics, auc=0.905
avg_ratio_set_metrics, auc=0.905

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Phone Number with strategy s2

levenshtein_metric, auc=0.672
jarowinkler_metric, auc=0.667
ratio_metrics, auc=0.698
partial_ratio_metrics, auc=0.694
token_sort_ratio_metrics, auc=0.698
token_set_ratio_metrics, auc=0.698
avg_ratio_sort_metrics, auc=0.694
avg_ratio_set_metrics, auc=0.694

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Phone Number with strategy s3

levenshtein_metric, auc=0.818
jarowinkler_metric, auc=0.823
ratio_metrics, auc=0.816
partial_ratio_metrics, auc=0.812
token_sort_ratio_metrics, auc=0.816
token_set_ratio_metrics, auc=0.816
avg_ratio_sort_metrics, auc=0.813
avg_ratio_set_metrics, auc=0.813

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Phone Number with strategy s4

levenshtein_metric, auc=0.733
jarowinkler_metric, auc=0.741
ratio_metrics, auc=0.739
partial_ratio_metrics, auc=0.738
token_sort_ratio_metrics, auc=0.740
token_set_ratio_metrics, auc=0.741
avg_ratio_sort_metrics, auc=0.734
avg_ratio_set_metrics, auc=0.734

Figure A3. A receiver operating characteristics for all considered string similarity metrics for all four
strategies for dealing with missing data for attribute Phone Number.

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Website with strategy s1

levenshtein_metric, auc=0.885
jarowinkler_metric, auc=0.920
ratio_metrics, auc=0.895
partial_ratio_metrics, auc=0.936
token_sort_ratio_metrics, auc=0.886
token_set_ratio_metrics, auc=0.915
avg_ratio_sort_metrics, auc=0.941
avg_ratio_set_metrics, auc=0.929

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Website with strategy s2

levenshtein_metric, auc=0.573
jarowinkler_metric, auc=0.569
ratio_metrics, auc=0.599
partial_ratio_metrics, auc=0.607
token_sort_ratio_metrics, auc=0.590
token_set_ratio_metrics, auc=0.603
avg_ratio_sort_metrics, auc=0.603
avg_ratio_set_metrics, auc=0.600

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Website with strategy s3

levenshtein_metric, auc=0.591
jarowinkler_metric, auc=0.616
ratio_metrics, auc=0.598
partial_ratio_metrics, auc=0.608
token_sort_ratio_metrics, auc=0.596
token_set_ratio_metrics, auc=0.603
avg_ratio_sort_metrics, auc=0.607
avg_ratio_set_metrics, auc=0.606

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Website with strategy s4

levenshtein_metric, auc=0.533
jarowinkler_metric, auc=0.536
ratio_metrics, auc=0.532
partial_ratio_metrics, auc=0.564
token_sort_ratio_metrics, auc=0.568
token_set_ratio_metrics, auc=0.566
avg_ratio_sort_metrics, auc=0.577
avg_ratio_set_metrics, auc=0.568

Figure A4. A receiver operating characteristics for all considered string similarity metrics for all four
strategies for dealing with missing data for attribute Website.

ISPRS Int. J. Geo-Inf. 2020, 9, 291 28 of 29

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Categories with strategy s1

sorensen, auc=0.786
wup, auc=0.784
lin, auc=0.801
path, auc=0.786
wup_lin, auc=0.801
wup_path, auc=0.806
lin_path, auc=0.805
wup_lin_path, auc=0.818

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Categories with strategy s2

sorensen, auc=0.789
wup, auc=0.777
lin, auc=0.803
path, auc=0.775
wup_lin, auc=0.798
wup_path, auc=0.797
lin_path, auc=0.803
wup_lin_path, auc=0.813

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Categories with strategy s3

sorensen, auc=0.789
wup, auc=0.786
lin, auc=0.799
path, auc=0.782
wup_lin, auc=0.803
wup_path, auc=0.806
lin_path, auc=0.808
wup_lin_path, auc=0.820

0 20 40 60 80 100
False Positive Rate [%]

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
[%

]

ROC curve for Categories with strategy s4

sorensen, auc=0.746
wup, auc=0.694
lin, auc=0.701
path, auc=0.694
wup_lin, auc=0.696
wup_path, auc=0.721
lin_path, auc=0.693
wup_lin_path, auc=0.684

Figure A5. A receiver operating characteristics for all considered category similarity metrics for all
four strategies for dealing with missing data for attribute Category.

References

1. Scheffler, T.; Schirru, R.; Lehmann, P. Matching Points of Interest from Different Social Networking Sites. In
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; pp. 245–248._24. [CrossRef]

2. Yujian, L.; Bo, L. A Normalized Levenshtein Distance Metric. IEEE Trans. Pattern Anal. Mach. Intell. 2007,
29, 1091–1095. [CrossRef] [PubMed]

3. McKenzie, G.; Janowicz, K.; Adams, B. A weighted multi-attribute method for matching user-generated
Points of Interest. Cartogr. Geogr. Inf. Sci. 2014, 41, 125–137. [CrossRef]

4. Novack, T.; Peters, R.; Zipf, A. Graph-Based Matching of Points-of-Interest from Collaborative Geo-Datasets.
ISPRS Int. J. -Geo-Inf. 2018, 7, 117. [CrossRef]

5. Almeida, A.; Alves, A.; Gomes, R. Automatic POI Matching Using an Outlier Detection Based Approach.
In Advances in Intelligent Data Analysis XVII; Springer International Publishing: Berlin/Heidelberg, Germany,
2018; pp. 40–51._4. [CrossRef]

6. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation Forest. In Proceedings of the 2008 Eighth IEEE International
Conference on Data Mining, Pisa, Italy, 15–19 December 2008. [CrossRef]

7. Factual Crosswalk API. Available online: https://www.factual.com/blog/crosswalk-api/ (accessed on 1
September 2019).

8. Herzog, T.H.; Scheuren, F.; Winkler, W.E. Record linkage. WIREs Comput. Stat. 2010, 2, 535–543. [CrossRef]
9. Li, L.; Xing, X.; Xia, H.; Huang, X. Entropy-weighted instance matching between different sourcing points of

interest. Entropy 2016, 18, 45. [CrossRef]
10. Kim, J.; Vasardani, M.; Winter, S. Similarity matching for integrating spatial information extracted from

place descriptions. Int. J. Geogr. Inf. Sci. 2017, 31, 56–80. [CrossRef]
11. Deng, Y.; Luo, A.; Liu, J.; Wang, Y. Point of Interest Matching between Different Geospatial Datasets.

ISPRS Int. J. Geo-Inf. 2019, 8, 435. [CrossRef]
12. Haklay, M. How good is volunteered geographical information? A comparative study of OpenStreetMap

and Ordnance Survey datasets. Environ. Plan. B Plan. Des. 2010, 37, 682–703. [CrossRef]

http://dx.doi.org/10.1007/978-3-642-33347-7_24
http://dx.doi.org/10.1109/TPAMI.2007.1078
http://www.ncbi.nlm.nih.gov/pubmed/17431306
http://dx.doi.org/10.1080/15230406.2014.880327
http://dx.doi.org/10.3390/ijgi7030117
http://dx.doi.org/10.1007/978-3-030-01768-2_4
http://dx.doi.org/10.1109/icdm.2008.17
https://www.factual.com/blog/crosswalk-api/
http://dx.doi.org/10.1002/wics.108
http://dx.doi.org/10.3390/e18020045
http://dx.doi.org/10.1080/13658816.2016.1188930
http://dx.doi.org/10.3390/ijgi8100435
http://dx.doi.org/10.1068/b35097

ISPRS Int. J. Geo-Inf. 2020, 9, 291 29 of 29

13. Hochmair, H.H.; Juhász, L.; Cvetojevic, S. Data quality of points of interest in selected mapping and social
media platforms. In Proceedings of the LBS 2018: 14th International Conference on Location Based Services,
Zurich, Switzerland, 15–17 January 2018; pp. 293–313.

14. Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z. Dbpedia: A nucleus for a web of open
data. In The Semantic Web; Springer: Berlin/Heidelberg, Germany, 2007; pp. 722–735.

15. OpenStreetMap TagInfo. Available online: https://taginfo.openstreetmap.org/ (accessed on
1 September 2019).

16. OpenStreetMap Wiki. Available online: https://wiki.openstreetmap.org/ (accessed on 1 September 2019).
17. Cohen, W.W.; Ravikumar, P.; Fienberg, S.E. A Comparison of String Metrics for Matching Names and

Records. In Proceedings of the KDD Workshop On Data Cleaning and Object Consolidation, Washington,
D.C., USA, 24–27 August 2003.

18. FuzzyWuzzy: Fuzzy String Matching in Python. Available online: https://chairnerd.seatgeek.com/
fuzzywuzzy-fuzzy-string-matching-in-python/ (accessed on 1 September 2019).

19. Blanchard, E.; Harzallah, M.; Briand, H.; Kuntz, P. A Typology of Ontology-Based Semantic Measures.
In Proceedings of the EMOI-INTEROP 2005, Porto, Portugal, 13–14 June 2005; Volume 160.

20. Fix, E.; Hodges, J.L., Jr. Discriminatory Analysis-Nonparametric Discrimination: Consistency Properties; Technical
Report; University of California: Berkeley, CA, USA, 1951.

21. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011,
12, 2825–2830.

22. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
23. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
24. Zhang, G.P. Neural networks for classification: A survey. IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev.

2000, 30, 451–462. [CrossRef]
25. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.;

Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), Savannah, GA,
USA, 2–4 November 2016; pp. 265–283.

26. Keras: The Python Deep Learning library. Available online: https://keras.io/ (accessed on
1 September 2019).

27. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
28. August, P.; Michaud, J.; Labash, C.; Smith, C. GPS for environmental applications: Accuracy and precision

of locational data. Photogramm. Eng. Remote Sens. 1994, 60, 41–45.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://taginfo.openstreetmap.org/
https://wiki.openstreetmap.org/
https://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/
https://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1109/5326.897072
https://keras.io/
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Data Sources, Unified Data Model and Experimental Datasets
	Unified Data Model
	Experimental Dataset

	Crucial Elements of Points of Interest Matching Classifiers: Similarity Metrics, Handling Strategies for Missing Data and Classification Algorithms
	Similarity Metrics
	Distance Metrics
	String Distance Metrics
	Category Distance Metrics

	Strategies for Dealing with Missing Data
	The Classifiers for Points of Interest Matching

	Experiments
	The Analysis of Different Similarity Metrics
	The Analysis of String Similarity Metrics
	The Analysis for Category Distance Metrics
	The Analysis for Combined Metrics

	Comparison of Different Points of Interest Matching Classifiers

	The Algorithm for Automatic Points of Interest Matching
	Conclusions and Future Work
	
	References

