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Abstract: Oil palm is the main cash crop grown in Malaysia, and palm oil plays an important
role in the world oil market. A number of studies have used multisource remote sensing data to
conduct research on oil palms in Malaysia, but there are a lack of long-term oil palm mapping studies,
especially when the percentage of oil palm tree cover was higher than other plantations in Malaysia
during the period of 2000–2012. To overcome this limitation, we used the Google Earth Engine
platform to perform oil palm classification based on Landsat reflectance data. The spatial distribution
of oil palms in Malaysia in five periods from 2000 to 2018 was obtained. Then, the planting center of
gravity transfer method was applied to analyze the expansion of oil palms in Malaysia from 2000 to
2018 using Landsat data, elevation data, oil palm planting area, crude palm oil price, and other
statistical data. Meanwhile, the driving factors affecting the change in oil palm planting area were
also analyzed. The results showed that: (1) During 2000–2018, the oil palm planted area in Malaysia
increased by 5.06 Mha (million ha), with a growth rate of 83.50%. Specifically, the increased area
and growth rate for West Malaysia were 2.05 Mha and 62.05% and for East Malaysia were 3.01 Mha
and 109.45%, respectively. (2) Three expansion patterns of oil palms were observed: (i) from a
fragmented pattern to a connected area, (ii) expansion along a river, and (iii) from a plain to a gently
sloped area. (3) The maximum shift of the center of gravity of the oil palms in West Malaysia was
10 km, while in East Malaysia, it reached 100 km. The East Malaysia oil palm planting potential was
greater than that of West Malaysia and showed a trend of shifting from coastal areas to inland areas.
(4) Malaysia’s oil palms are mainly planted in areas below 100 m above sea level; although a trend of
expansion into high altitudes is visible, oil palm plantings extend to areas below 300 m above sea
level. (5) Topography, crude palm oil prices, and deforestation are closely related to changes in oil
palm planted area.
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1. Introduction

Palm oil, pressed from the fruit of oil palms, is one of the most important components of the
world oil market and accounts for more than 30% of global fats and vegetable oil production [1].
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In 2004, palm oil became the most important oil product in the world in terms of production, trade,
and consumption. According to the statistics of the Food and Agriculture Organization (FAO) of the
United Nations, the oil palm planting area in Southeast Asia accounted for approximately 71% of the
total oil palm planting area in the world in 2017 [2].

In the early 19th century, Malaysia established the first oil palm plantation in Southeast Asia [3].
In 1966, Indonesia and Malaysia began to dominate the global palm oil trade [4]. Since the 1990s,
with the implementation of the United Nations framework for “Reducing Emissions from Deforestation
and Forest Degradation (REDD)”, the relationship between crop expansion and deforestation has
become the focus of many experts [5]. In the 21st century, to promote the sustainable development of
the oil palm industry, the round table on sustainable palm oil (RSPO) was established.

The continuous expansion of oil palm plantations not only leads to large changes in land use
types [6], but also seriously threatens the environment, including reduced biodiversity in forest
ecosystems [7], increased greenhouse gas emissions [8], and water pollution [9]. Due to the large-scale
impact of palm oil expansion and the significance of this impact, a number of related studies have
applied remote sensing data for, for example, determining the number of trees planted in oil palm
plantations [10], monitoring changes in the planting area [11], establishing the age of oil palm
trees [12], identifying carbon flux [13] or above ground biomass (AGB) [14], pest detection [15],
yield estimation [16], and assessment of other factors. Previous research has analyzed the opportunities
and challenges that the oil palm industry will face in the future [17] and has explored the sustainable
development of the oil palm plantation industry [18]. Oil palms grow in cloudy and rainy areas.
Previous studies have mostly combined optical data with microwave remote sensing data for oil palm
classification (e.g., Landsat and advanced land observing satellite phased array L-band synthetic
aperture radar (ALOS PALSAR)). For example, Cheng et al. [19] supplemented PALSAR data with
Landsat data; the distribution of oil palms in Malaysia was obtained by using the support vector
machine and Mahalanobis distance methods, and changes in oil palm planting area in Malaysia during
2007–2016 were analyzed in combination with digital elevation model (DEM) data. Tan et al. [13]
combined ALOS PALSAR data with the optical remote sensing data of the Disaster Monitoring
Constellation 2 from the United Kingdom (UK-DMC2) to classify the age of oil palm trees using a
variety of classification techniques, providing a scientific basis for predicting oil palm productivity
and carbon emissions. However, in the case of the natural tree cover had the highest loss percentage
compared to other land cover types between 2000 and 2012 [20], there are a lack of studies focusing on
long-term oil palm mapping in Malaysia, especially. The study of long time series of optical remote
sensing imagery requires a lot of computing resources, especially over large areas, and traditional
stand-alone computing resources have difficulty meeting this demand. The rapid development of
high-performance computing platforms in the field of geosciences, such as Google Earth Engine
(GEE) [21], NASA Earth Exchange (NEX) [22], and Descartes Labs, makes it possible to use the same
type of optical sensor (such as the Landsat series) to map the temporal and spatial distribution of
multiperiod objects on a regional/national scale and to perform the subsequent analysis.

To improve our understanding of long-term spatial variation of oil palms in Malaysia, this study
mapped the spatial-temporal variation of oil palms in five periods (2000–2018) via the land cover
sample collection platform Collect Earth Online (CEO) and the planetary-scale earth science data
and analysis platform GEE. The land cover reference data contained sample points obtained from
2018 field trips and high spatial resolution images in different years, such as Digital Global and Bing
Maps in the CEO platform. Using the classification and regression tree (CART) method, the spatial
distribution of oil palms in 2000, 2005, 2009, 2015, and 2018 was obtained and verified. This study also
compared the results with the statistics of the FAO, the Malaysia Palm Oil Board (MPOB), and the
results from the distribution of former oil palm plantations to verify the results from this study.
Finally, a dynamic spatial and temporal analysis of oil palm distribution changes was carried out,
and the factors affecting the expansion of the oil palm planting area were explored from the aspects of
altitude, price, and deforestation.
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2. Materials and Methods

2.1. Study Area

Located in Southeast Asia, Malaysia is between the Pacific Ocean and the Indian Ocean. It is
divided into East Malaysia and West Malaysia by the South China Sea (Figure 1). Most of Malaysia’s
coastal areas are plains, while the central part is a plateau covered with dense tropical rainforests [23].
West Malaysia accounts for approximately 40% of the country’s land area, and mountains extend from
the interior to the periphery. The tropical rainforest of Kalimantan in East Malaysia is the second
largest tropical rainforest in the world, second only to the tropical rainforests of the Amazon basin
in South America [24]. According to the Köppen climate classification [25], Malaysia has a tropical
rainforest climate with high temperatures and rain throughout the year. The annual precipitation is
over 2000 mm, which produces advantageous conditions for oil palm growth. Malaysia has been
growing oil palms on a large scale since the 1960s. In the mid-1960s, the government encouraged
private individuals to replant arable land, old rubber plantations, and old coconut gardens into oil
palm plantations [26].
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2.2. Data Preprocessing and Platform

The GEE platform—a planetary-scale geospatial analysis platform launched by Google—was
applied to the oil palm mapping in 2000, 2005, 2009, 2015, and 2018. Compared with traditional remote
sensing image processing software, GEE stores data in the cloud and has direct access to multisource
remote sensing data (e.g., from a moderate-resolution imaging spectroradiometer (MODIS), Landsat,
and Sentinel) and high-resolution images, as well as climate, land cover, resource and environment,
geophysical, and socioeconomic datasets. The data can be continuously updated to ensure real-time
analysis and usefulness of the results [21]. The online JavaScript API provided by GEE allows
users to call functions and provides access to a variety of data, such as vector data, raster data,
and charts. Users can employ the GEE algorithms or construct new algorithms for analysis and
visualization, and GEE has been widely used for predicting crop yields, monitoring global forest
changes, and monitoring climate change [27].

The CEO used for sample selection is a tool for geoscience analysis. It provides global high spatial
resolution image data from Digital Global, Planet Lab, and Bing Maps, as well as access to current and
historical changes in land dynamics around the world. It plays an important role in the monitoring
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of land use change, the assessment of natural disasters, and the sustainable management of scarce
resources. It can meet the needs of its users online in terms of, for example, land use classification and
natural disaster prediction [28].

The remote sensing data used in this study were Landsat 4, 5 Thematic Mapper (TM), and Landsat
8 Operational Land Imager (OLI) Tier 1 surface reflectance data (spatial resolution: 30 m; date: 2000,
2005, 2009, 2015, and 2018; cloud coverage percentage: less than 30%). Landsat 7 ETM+ data with Scan
Line Corrector (SLC)-off strips were not used in this study. To capture cloudless images that cover the
study area, the selection date for Landsat image synthesis was extended to one year before and after the
study period. Each pixel of the Landsat synthetic data corresponds to the pixel on the median date in
the available Landsat time series. Figure 2 shows the scenes of annual Landsat synthetic images using
short-wave infrared (SWIR)-near-infrared (NIR)-red as red-green-blue composites. Wherein, each pixel
of the annual Landsat synthetic data is the pixel corresponding to the median date on the available
time series Landsat data.
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Figure 2. Short-wave infrared (SWIR)-NIR-red composite of annual Landsat synthetic image
for classification.

The maximum cloud coverage of the Landsat image used in this study was 30%. The cloud
coverage of images in 2018 and 2015 were less than 15%, in 2000 and 2005 less than 20%, and in 2009
less than 30%.

The elevation data used in this study were from the shuttle radar topography mission
(SRTM v3) [29] with a spatial resolution of 1 arc second (approximately 30 m), which were provided by
The National Aeronautics and Space Administration (NASA), National Geospatial-Intelligence Agency
(NGA), and the aerospace sector in Germany and Italy. SRTM data are widely used in the study of
topography, hydrology, and land cover [30].

In addition to remote sensing data and elevation data, this study also combined spatial data,
such as Malaysian administrative boundaries, and statistical information, such as the Malaysian
statistical yearbook. Malaysia’s national administrative border and state administrative boundaries
were derived from the Office of the American Geographer. The land area of the states of Malaysia and
the oil palm planting area data during 2000–2018 were derived from the FAO and the MPOB. The price
of crude palm oil during 1998–2018 came from the Malaysian Bureau of Statistics.

2.3. Methods

2.3.1. Oil Palm Planting Area Extraction

(1) Sampling design
According to the research of Olofsson et al. [31,32], stratified random sampling was used in this

study. The training and validation sample data were divided into oil palm, forest (including natural
forests, plantations other than oil palm forest, and other vegetation such as bushes), water, and other
land cover types (including construction land, bare land, cultivated land, salt fields, and breeding



ISPRS Int. J. Geo-Inf. 2020, 9, 280 6 of 22

areas). Before selecting the sample points, with reference to the standard error of classification targets
proposed by Olofsson et al [32], we specified a target standard error for overall accuracy of 0.01.
We conjectured that user’s accuracies of oil palms and others land use types would be 85%, and of
forests and water would be 90%. Based on this goal, we calculated the minimum number of sample
points required for each type of land use to ensure that the number of sample points in the actual
sampling was higher than the estimated minimum.

First, according to geographic location, Malaysia was divided into East Malaysia and West
Malaysia. Second, according the Spatial Database of Planted Trees (SDPT) [33], the number of large oil
palm plantations in East and West Malaysia in 2018 was calculated separately. Taking West Malaysia as
an example, we divided the total area of oil palm plantations (data source: FAO) in West Malaysia by
the number of plantations to calculate the average area of one oil palm plantation. Then, the land area
of West Malaysia was divided by the average area of a single oil palm plantation to get the number of
plantations needed to cover the entire territory of West Malaysia. Assuming that oil palms in different
plantations are different ages, at least one sample point should be selected for one plantation to estimate
the number of sample points needed. The same method was applied to obtain the number of sample
points in East Malaysia. Third, referring to Cheng et al. [34], using the global grid system for layering
when selecting sample points, we divided the study area into grids. The number of grids was equal to
the number of calculated samples. One sample point was randomly generated in each grid; this ensures
both the wide distribution and the randomness of sample points. In addition, oil palms of different
ages have different spectral characteristics; thus, to ensure that the selected sample points contain
different ages, the number of sample points were added according to the large oil palm plantation data
in 2018 from SDPT, and the position of the sample points under cloud coverage or the grid lacking
high-resolution images were adjusted.

After manually checking the sample points and removing the sample points from areas with cloud
cover, 2130 available sample points were retained from the 2767 sample points randomly generated by
GEE using simple random sampling and the Malaysia field survey data from 2018. In the other four
periods, the number of sample points was adjusted according to the quality of the high-resolution
images. Seventy percent of the total number of sample points was randomly selected as training points,
and 30% were used as verification points. The number of selected sample points is shown in Table 1.

Table 1. The number of sample points.

Actual Number of Sample Points Minimum Number of Sample Points

2000 2005 2009 2015 2018

Oil palm 542 547 571 590 653 361
Forest 929 1002 1000 1140 1163 613
Water 88 90 91 108 115 19
Others 192 203 185 190 199 46
Total 1751 1842 1847 2028 2130 1039

The distribution of the sample points is shown in Figure 3.
By comparing the high-resolution remote sensing satellite imagery data from companies such as

Digital Global and Airbus in Google Earth, it was found that in Sarawak and central Sabah, to facilitate
the cultivation of oil palm trees and the picking of oil palm fruits, the mountains in tropical forest areas
were redeveloped into stepped artificial forest land. Due to the clustered distribution of 1–3-year-old
oil palms, the young oil palm forest land (Figure 4a,b) was difficult to distinguish from the stepped
forest land (Figure 4c) and bare ground (Figure 4d) in hilly areas. This study was concerned with the
typicality of the selected sample points, and the number of sample sites in complex land cover types in
East Malaysia such as bare land and hilly areas with weeds might not be sufficient. This situation may
have led to some of the bare land and grassland in Sarawak and central Sabah being misclassified into
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young oil palm forestland, which may cause the extracted oil palm area in some areas to be higher
than the statistical area.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 7 of 23 
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and (d) bare ground.

(2) Classification method
There are many methods for classifying remote sensing images. In the classification process,

different classification methods produce different results. To find the classification method most
suitable for this research, three kinds of classification methods—random forest (RF), support vector
machine (SVM), and CART—were used in this study. By comparing the classification results of the five
stages of the three classifiers, the results show that in the five classification periods, the lowest overall
accuracy of RF classification (79%) and of SVM classification (75%) was lower than that of the CART
method (87%). The three classification results were compared with digital images from Digital Global
and Bing Maps, based on which the CART method, which had the best overall classification accuracy,
was selected.
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In the classification process, with reference to the study of oil palm mapping by McMorrow et al. [12],
Lee et al. [35], Morel et al. [36], and Wahid et al. [37], and according to oil palm growth condition
and the features of oil palm planting area in the image, we selected different combinations of feature
information for testing. Finally, this research used spectral information, including blue, green, red,
near-infrared, and shortwave infrared surface reflectance bands, normalized difference vegetation index
(NDVI), normalized difference water index (NDWI), and topographic information, including slope,
aspect, and elevation. In addition, we also used texture information, i.e., the measurement of spatial
correlation through spatial neighborhood analysis in GEE [38].

(3) Post-classification processing and accuracy verification
After obtaining the classification results for 2000, 2005, 2009, 2015, and 2018, this study used a

method based on the mathematical morphology of the model. Eight-neighbor analysis was performed
on a pixel-by-pixel basis, merging the scattered patches obtained after classification. Then, we separately
calculated the area of the four types of land use: oil palm, forest, water, and other.

This research used 30% of the selected sample points as data with which to verify the accuracy of
the oil palm classification results. The number of verification sample points in 2000, 2005, 2009, 2015,
and 2018 were 345, 462, 464, 608, and 639, respectively. A confusion matrix was used to analyze the
classification results, and the accuracy of the oil palm classification results was verified by the overall
accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA).

2.3.2. Calculation of the Center of Gravity of Oil Palm Planting Space

In order to obtain the direction of oil palm expansion between states, we studied the main areas of
oil palm plantation in different periods and calculated the shift path of the oil palm planting center
of gravity. The regional center of gravity is an indicator of the overall distribution of an attribute
in a region [39], and it is usually expressed by some attribute and geographic coordinates of each
sub-area within the region. Suppose an area consists of n sub-areas, where the center of gravity of the
i-th sub-area is (Xi, Yi), and Wi is the quantity of a certain attribute of the sub-area. Then, the mean
geographic coordinate space (X, Y) is the geometric center (the center of gravity) of a certain attribute
in the region. The corresponding center of gravity coordinate migration formula is [40]:

X =

∑
XiWi∑

Wi
, Y =

∑
YiWi∑
Wi

(1)

This study used the spatial center of gravity transfer model to calculate the center of gravity of
the oil palm planting area, compared the locations of the center of the oil palm planting distributions
during the study period, analyzed the change in the center of gravity of oil palm planting areas from
2000 to 2018, and studied its expansion direction.

2.3.3. Curve Fitting

Curve fitting is a data mining processing method that approximates the functional relationship of
discrete point groups by adopting continuous curves [41]. Discrete point group data include scientific
experimental data, and observation data in social or economic activities may be used in scientific
research. The curve equation that reveals the inherent law between the dependent variable y and
independent variable x is [42]:

y = f (x, c) (2)

This study used R2 to represent the goodness of fit of the fitted curve, which refers to how well
the regression line fits the observations. The maximum value of R2 is 1. The closer the value of R2 is
to 1, the better the fit of the regression line to the observed value; on the contrary, the smaller the value
of R2, the worse the fit of the regression line to the observed value [43].
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We used the curve fitting method to study the relationship between oil palm plantation and price
and deforestation. This study used MATLAB to achieve curve fitting and to calculate the goodness
of fit.

3. Results

3.1. Spatial-Temporal Distribution of Oil Palms in Malaysia

3.1.1. Classification Results

According to our classification results, from 2000 to 2018, the oil palm plantation area in Malaysia
increased from 5.59 to 11.56 Mha—an increase of 5.98 Mha with a growth rate of 106.96%. The area of
oil palm plantations in West Malaysia increased by 2.53 Mha, with a growth rate of 82.77%; in East
Malaysia the area increased by 3.45 Mha, with a growth rate of 136.14%. The oil palm planting
distribution during 2000–2018 is shown in Figure 5.
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Figure 5. Oil palm planting distribution during 2000–2018. The letters a, b, c, d, and e represent
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After obtaining the classification results, we adjusted the classification results with reference to
Olofsson’s method [32]. After adjustment, the oil palm plantation area in 2000 was 6.06 ± 0.82 Mha
with a 95% confidence interval, and the area was 11.13 ± 0.81 Mha in 2018. Compared with the results
before the accuracy assessment, the planting area increased by 0.48 Mha in 2000, and decreased by
0.29 Mha, 0.99 Mha, 0.16 Mha, and 0.43 Mha in 2005, 2009, 2015, and 2018. We used the results of the
accuracy assessment as the final results.

According to the growth of oil palm planting areas in various states from 2000 to 2018 and
to the oil palm planting situation in each state (Figure 6), it can be concluded that the overall oil
palm planting area in Malaysia is expanding. The average annual growth rate in the first two stages
(2000–2005 and 2005–2009) decreased. In addition to Perlis and Johor, the other nine states in West
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Malaysia experienced negative growth during 2005–2009. By 2009–2018, the annual growth rate began
to increase. The average annual growth rate of oil palm planted area was 6.31% during 2000–2005,
which is the highest growth rate during the study period. Between 2005 and 2009, Kedah, Negeri, Perak,
Selangor, and other states experienced negative growth, all of which are located in West Malaysia.
The planting area of Selangor decreased from 2548.52 to 2076.07 km2 in 2005–2009, a decrease of 18.54%.
Meanwhile, the planting area in Kedah fell from 3053.47 to 2542.46 km2 in 2005–2009, a decrease of
16.74%. However, the oil palm planting area in Kedah and Selangor increased to varying degrees in
2009–2015. West Malaysia’s expansion during the study period was concentrated in Johor, Pahang,
and Perak and grew at an average annual rate of 3.02%, 2.97%, and 2.08%, respectively. In addition,
the proportion of oil palm planting area in Melaka has historically been the largest among the states;
in 2018, the planting area reached 64.63% of the total area of Melaka.
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Figure 6. Oil palm planting area in (a) each state and (b) annual growth rate of oil palm planting
during 2000–2018.

In contrast, since 2000, the planting area increased at a rate of 6.90% and 1.62% per year in Sarawak
and Sabah, respectively. Although Sabah’s growth rate is slightly lower than Malaysia’s annual growth
rate of 3.42%, the expansion area is still among the highest in the country. As of 2018, the East Malaysia
oil palm planting area reached 5.76 Mha, accounting for 51.72% of the total oil palm planting area
in Malaysia. The state of Sarawak planted 3.48 Mha, accounting for 30.79% of the state’s total area;
Sabah planted 2.27 Mha, accounting for 27.98%.
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3.1.2. Classification Accuracy

To assess the accuracy of the oil palm classification, this study analyzed the following three
aspects: the selection of sample points, the remote sensing image data used for classification, and the
classification method.

First, we considered the typicality of the sample points when selecting them and tried to ensure
that oil palm trees of all ages were covered. However, for land cover types with a small area and
scattered grassland types, such as bare land and weeds, the selected sample points were insufficient.
In some cases, the bare ground and weeds were mistakenly divided into the oil palm forest classification.
In addition, this research selected Landsat images with less than 30% cloud cover and encompassed
all of Malaysia to synthesize the data; however, there were still a small number of cloud-covered
areas in the central part of Pahang, central Sarawak, and Sabah, which reduced the classification
accuracy in these areas. We also conducted experiments on oil palm planting area extracted from three
supervised classification methods, and selected the CART classification method as it had the highest
classification accuracy.

In this study, the classification accuracy of 2000, 2005, 2009, 2015, and 2018 was calculated according
to an error matrix. The OA of the five-year classification reached over 87% each year; meanwhile,
the average PA of oil palms was 80.13% and the average UA was 82.29%. The specific calculation
results are shown in Table 2 and the accuracy of the classification results are shown in Table 3.

Table 2. The error matrix expressed in terms of the proportion of area used for the sample size and
sample allocation planning calculations of 2000, 2005, 2009, 2015, and 2018.

Classification
Verification Oil Palm Forest Water Other Total (Row)

2000

oil palm 0.136 0.029 0.000 0.002 0.168
forest 0.036 0.709 0.000 0.000 0.745
water 0.000 0.000 0.014 0.000 0.014
other 0.009 0.002 0.006 0.057 0.074

total (column) 0.182 0.740 0.019 0.059 1.000

2005

oil palm 0.202 0.045 0.000 0.009 0.256
forest 0.041 0.619 0.000 0.005 0.664
water 0.001 0.001 0.015 0.001 0.018
other 0.003 0.006 0.000 0.053 0.062

total (column) 0.247 0.671 0.015 0.067 1.000

2009

oil palm 0.215 0.065 0.000 0.007 0.286
forest 0.036 0.593 0.000 0.005 0.634
water 0.000 0.000 0.015 0.000 0.015
other 0.006 0.002 0.001 0.055 0.065

total (column) 0.257 0.660 0.016 0.067 1.000

2015

oil palm 0.262 0.038 0.000 0.015 0.315
forest 0.047 0.605 0.004 0.004 0.660
water 0.000 0.000 0.018 0.001 0.019
other 0.001 0.000 0.000 0.005 0.006

total (column) 0.310 0.643 0.021 0.025 1.000

2018

oil palm 0.285 0.059 0.000 0.003 0.347
forest 0.046 0.538 0.002 0.005 0.590
water 0.000 0.000 0.018 0.000 0.018
other 0.004 0.001 0.000 0.040 0.045

total (column) 0.334 0.598 0.020 0.048 1.000
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Table 3. The accuracy of the classification results during 2000–2018 (95% confidence intervals).

2000 2005 2009 2015 2018

Overall accuracy (OA) 0.907 ± 0.026 0.883 ± 0.028 0.877 ± 0.029 0.888 ± 0.026 0.885 ± 0.025

Producer’s accuracy
(PA)

oil palm 0.813 ± 0.023 0.792 ± 0.018 0.750 ± 0.026 0.831 ± 0.116 0.820 ± 0.019
forest 0.951 ± 0.289 0.932 ± 0.103 0.936 ± 0.059 0.917 ± 0.206 0.912 ± 0.039
water 1.000 ± 0.001 0.842 ± 0.000 1.000 ± 0.245 0.923 ± 0.468 1.000 ± 0.252
other 0.769 ± 0.114 0.853 ± 0.151 0.857 ± 0.188 0.857 ± 0.224 0.891 ± 0.175

User’s accuracy (UA)

oil palm 0.804 ± 0.081 0.819 ± 0.073 0.832 ± 0.074 0.827 ± 0.056 0.833 ± 0.053
forest 0.937 ± 0.026 0.902 ± 0.030 0.885 ± 0.030 0.935 ± 0.029 0.908 ± 0.028
water 0.870 ± 0.000 1.000 ± 0.168 0.950 ± 0.000 0.889 ± 0.104 0.958 ± 0.000
other 0.968 ± 0.134 0.881 ± 0.090 0.906 ± 0.093 0.778 ± 0.099 0.891 ± 0.091

The results of the comparison between the oil palm area found in this study and the oil palm area
statistics from the FAO and the MPOB show that the oil palm area extracted between 2000 and 2018
was consistent with the increasing trend of the FAO statistical area, but the extracted oil palm area was
greater overall than the statistical area of the FAO (Figure 7).ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 13 of 23 
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Agriculture Organization (FAO) and (b) the Malaysia Palm Oil Board (MPOB).

The oil palm planting area extracted for the five periods was approximately 1.8 times that of the
FAO statistical area (Figure 7a). The results of the comparison between the extracted 2015 and 2018
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oil palm planting area data for each state with the data for each state published by MPOB were as
follows. The average oil palm planting area extracted for each state was approximately 1.8 times that
of the MPOB statistics (Figure 7b). The oil palm area of the state of Sarawak in 2015 was approximately
2.1 times that of the MPOB statistical area. In 2018, the extracted oil palm area in Sarawak was
approximately 2.2 times that of the MPOB statistical area and higher than the state average.

We studied the Borneo deforestation and plantation data for 1973–2015 by Gaveau et al. [44],
focusing on the expansion of East Malaysia oil palms between 2000 and 2015. Their results showed that
the East Malaysia planting area was approximately 1.3 times that of the MPOB statistical area in 2015,
which was 3.55 Mha. Cheng et al. [19] studied oil palm thematic mapping in Malaysia, and found that
the oil palm planting area in Malaysia increased from 4 Mha in 2007 to 6.77 Mha in 2016, which was
approximately 1.5 times that of the FAO statistic.

3.2. Shift in the Center of Gravity of Oil Palm Planting

According to the regional center of gravity statistics (Figure 8), the shift in the center of gravity
of the West Malaysian oil palm plantation is not obvious. It moved slightly southward from 2000
to 2009, and the longest distance moved was only 10.75 km. The distribution then moved slightly
northward, but the shifts were all located in the Temala district of Pahang. In general, the focus of oil
palm planting in West Malaysia was relatively stable during the 18 years studied. The results show
that the expansion rate of oil palm planting area in the states of West Malaysia remained stable.
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Figure 8. Oil palm planting center of gravity transfer path.

As shown in Figure 8, the focus of East Malaysia oil palm planting was located in the Igan River
Basin in Sarawak in 2000. With the expansion of the oil palm planting area, the planting center of
gravity continued to move to the eastern inland area. In 2009, the location of the center of gravity was
100 km from the center of gravity in 2000. After 2009, the planting center of the East Malaysia region
moved around the Bajang River, indicating that the oil palm plantations gradually expanded from
the coastal plains to the inland areas along both sides of the river. In the process of inland expansion,
the elevation of the planting area gradually increased and formed two expansion modes: expansion
along the river and expansion from the plain to the gently sloped area.

3.3. Relationship between Oil Palm Planted Area and Natural Environment, Socioeconomic, and Deforestation

Oil palm planting is mainly affected by factors such as annual average temperature, annual rainfall,
and topography. Oil palms can grow in various tropical soils that are not suitable for growing other
vegetation and require fewer soil nutrients and other resources [45]. Based on the influence of
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temperature and humidity during the growth of oil palms, this study selected representative altitude
factors to study their effect on oil palm expansion. The oil palm classification results were analyzed at
different altitudes by dividing the 30 m resolution DEM into different elevation zones. The results are
shown below (Figure 9).
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zones and (b) spatial distribution of oil palms.

The planting area of oil palms is affected by various social factors, such as political, economic,
and social development levels. The formulation of policies is generally influenced by economic factors,
and the level of social development is also reflected in the economic situation. Therefore, this study
selected the price of crude palm oil in 2000–2018 to represent the economic development of the oil
palm industry and to reflect the impact of socioeconomic factors on the oil palm planting area.

As shown in Figure 10, during the study period, the prices experienced fluctuations, and the price
of crude palm oil (CPO) from 2000 to 2018 rose from $240.12/ton to $538.21/ton. The price of CPO
increased the most from 2000 to 2011 and reached the highest price ($776.04/ton) in 2011. Between 2011
and 2015, the price of crude palm oil gradually decreased until it reached the 2009 price. The price
gradually recovered after 2015. In short, from 2000 to 2018, the price of CPO rose in fluctuations,
and the oil palm plantation area also increased.
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Figure 10. The changes in oil palm planting area and the price of crude palm oil.

By fitting the oil palm planting area of the five periods with the palm oil price for the current year
(Figure 11), the previous year, and the previous two years, we found that the goodness of fit coefficients
(R2) of the curves were 0.82, 0.83, and 0.04, respectively.
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Figure 11. The curve fitting of the crude palm oil (CPO) price and oil palm planting area. Points refer
the oil palm planting area vs. the price of CPO; fitting curve represents the fitting result of the oil palm
planting area and the price of crude palm oil. (a)–(c) refer the current year, previous year, and previous
two years, respectively.

Based on the comparison of the area of forest loss in Malaysia with the price change for crude palm
oil in 2001–2017 (Figure 12), it was concluded that as the price of crude palm oil increased, the area of
forest loss also showed an increasing trend. The trend of the two changes was fitted and analyzed;
the goodness of fit coefficient (R2) was 0.41, indicating a positive correlation.
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4. Discussion

4.1. Oil Palm Planting Pattern

Based on our classification results and previous research on Malaysian oil palms [19], we speculated
that the FAO may have underestimated the expansion of Malaysian oil palms since 2000, especially the
expansion area of East Malaysia. From the classification results of oil palms from 2000 to 2018, the oil
palm planting potential of East Malaysia was greater than that of West Malaysia. The main reason is
that Sarawak and Sabah are sparsely populated and suitable for large-scale development of oil palm
plantations. The large-scale oil palm forest in East Malaysia is conducive to the intensive production
of palm oil and has gradually developed into two states with the largest oil palm planting areas
in Malaysia.

From 2000 to 2018, the oil palm planting area in Malaysia increased, but the movement of
the planting center of gravity was limited, and the center of gravity was always located near a
river. East Malaysia’s planting center of gravity was the farthest from the Bajang River in 2009,
at approximately 40 km. The oil palm planting area of West Malaysia was largely filled in the expansion
process. East Malaysia’s oil palms are distributed near rivers, oil palm land cover ranges from plains to
a gently sloped area; as such, the expansion rate of the East Malaysia planting area was higher than that
of West Malaysia. The transfer distance of the oil palm planting center of gravity for East Malaysia was
also longer than that of West Malaysia. In the process of oil palm expansion, three patterns were found:
(i) from a fragmented pattern to a connected area, (ii) expansion along a river, and, and (iii) from a
plain to a gently sloped area. West Malaysia was dominated by pattern (i), while East Malaysia was
dominated by patterns (ii) and (iii).

In the early 20th century, the coastal plain was economically developed. Palm oil plants and wide
roads were built in the plain, which were conducive to the cultivation of oil palms and the foreign
trade of palm oil, resulting in a large number of oil palm plantations [46]. Due to the Malaysian
government’s encouragement to transform private plantations into oil palm plantations and to the
introduction of multinational companies [25], there was a lack of planning and relative dispersion in
the oil palm planting process. With the continuous expansion of the oil palm plantation, the expansion
of the size of single plantations, and the increase in the area, different plantations were gradually
merged, resulting in the change from a fragmented pattern to a connected area.

As the economy developed, the road gradually extended to the inland areas, and land use
efficiency in coastal areas increased. The limited land and increased demand for palm oil caused oil
palm plantations to gradually expand into inland areas. However, human activities are affected by
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the location of the river, and oil palms are inseparable from the influence of human activities during
planting. The result was an expansion that extended along both sides of the river and upstream of the
river during the inland expansion of oil palms.

Areas with higher altitudes and lower temperature are not conducive to the growth of oil palms.
Therefore, as the altitude increased, the temperature and humidity, the oil palm planting area, and the
expansion speed all gradually decreased. In this study, we found that oil palms were mainly planted
at an altitude of 0–100 m, with a tendency to expand to 100–300 m, and an expansion pattern from a
plain to a gently sloped area gradually formed.

4.2. Factors Affecting the Spatial-Temporal Variation of Oil Palm Planting in Malaysia

4.2.1. Natural Environment

Most of Malaysia has a tropical rainforest climate, and a small part has a tropical monsoon climate.
The difference between the two climate types in terms of the annual average temperature and annual
rainfall is not obvious. Therefore, this study mainly analyzed the natural factors affecting oil palm
planting area in Malaysia from topographical aspects. First, the distribution of oil palms in the vertical
zone of the mountain is affected by different factors, such as latitude, altitude, and illumination,
and each factor has different effects on the growth of oil palms with increasing altitude. This effect is
particularly evident in temperature and humidity. The temperature decreases by 0.6 ◦C per 100 m
altitude gain, and the air humidity and soil moisture gradually increase to a certain level with increasing
altitude, then gradually decrease [47]. Second, the oil palm fruit has a short shelf life, and the fruit
needs to be delivered to the palm oil plant for processing within two days [48]. Therefore, the presence
of flat and wide terrain that is convenient for transportation also has a great impact on the cultivation
of oil palms.

As shown in Figure 9, the expansion area in West Malaysia was less than that in East Malaysia
during 2000–2018. In West Malaysia, the expansion on the east coast of Pahang is clear, while the
expansion in East Malaysia was mainly concentrated in the coastal plain of Sarawak. In 2000–2009,
the oil palms of West Malaysia and East Malaysia were mainly distributed below 100 m. After 2009,
the area planted above 100 m above sea level gradually expanded and was mainly concentrated in
the central areas of Sabah, Negeri Sembilan, Kelantan, and East Malaysia. The economy of Negeri
Sembilan was developed, the industry was in a state of agglomeration, and the economy was mainly
based on secondary and tertiary industries [49]. Kelantan mainly produces rice, and large areas of
rice fields occupy the vast plains [50]. In Sabah, oil palms were widely planted in the coastal plains
between 2000 and 2009, and oil palm plantations in the plains were relatively saturated. As a result,
these three states gradually expanded into high altitudes during the oil palm expansion process.

From the altitude of the oil palm expansion, it can be seen that more than 90% of the plantings
were concentrated in areas below 100 m above sea level from 2000, and areas above 300 m above sea
level were longer suitable for oil palm planting. Although our classification results show that oil palms
are still planted in areas above 300 m above sea level, based on the growth environment of oil palms
and visual verification combined with high-resolution images, we speculate that oil palms above 300 m
were classified as our misclassifications. For example, the expansion of the planting area of oil palms in
West Malaysia became slower and more saturated. The analysis found that the central mountain range
of the central Malay Peninsula restricted the expansion of oil palms in this area. The oil palm planting
in East Malaysia gradually extended from the coastal plain to the inland high-altitude area, and the
expansion occurred faster than that in West Malaysia, despite being restricted by the central mountain.

In addition, we found that as altitude increased, human activity decreased, and sparse roads and
inconvenient transportation in high-altitude areas hindered the timely delivery of oil palm fruit to palm
oil plants for processing. Therefore, we speculated that the expansion of oil palms to high-altitude
areas was not only affected by the natural environment, but also related to the traffic conditions in the
area. For example, the altitude of the tropical rainforest in central East Malaysia gradually increased,
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and the conditions for the development of transportation were also limited. During the field trip, it was
found that there are no suitable roads to transport goods extending into the central part of Kalimantan
Island in East Malaysia, and there are many nature preserves in this area. Therefore, oil palms in the
central part of East Malaysia are sparsely distributed.

4.2.2. Social Development Status

According to the relationship of the price of crude palm oil and oil palm planting area (Figures 10
and 11), there was a positive correlation between the area under oil palm cultivation and the price
of crude palm oil—namely, the expansion of oil palm planting area was relatively accelerated as the
rate of increase in crude palm oil prices increased. For example, the price of crude palm oil increased
by $203.50/ton between 2005 and 2009, and the oil palm planting area increased by 11.98% during
this period. In 2009–2015, the magnitude of the price change was larger, but in 2015, it was down by
$20.04/ton compared with that of 2009. During 2009–2015, the oil palm planting area only increased by
4.06%, and the growth rate decreased by 7.92% compared to that of the previous period. Compared the
increase in oil palm plantation area and the changes in prices of CPO, there may be a lag in changes in
planted area.

Since it was affected by price changes, the oil palm area growth rate during 2000–2018 experienced
corresponding fluctuations (Figure 10). From 2000 to 2005, the price increased, the oil palm planting
area increased by 52.69%, and the average annual growth rate reached 8.83%. After 2005, to prevent
the impact of excessive growth of oil palm planting area on other cropping industries and natural
forests, Malaysia introduced a series of measures to regulate oil palm plantations [51]. This may be
the main reason why the average annual growth rate decreased to 2.87% despite the continued price
increases in 2005–2009. The price of crude palm oil fell slightly after volatility in 2009–2015. In response
to the impact of the policies, the average annual growth rate fell to 0.66%. The price of crude palm oil
remained stable in 2015–2018, and the average annual growth rate of oil palms gradually returned to
approximately 5%.

4.2.3. Deforestation

According to satellite data and some previous research, the deforestation rate of tropical forests
is related to the growth of urban populations, agricultural product prices, and the development of
agricultural import and export trade [52]. Large-scale forest conversion in Malaysia and Indonesia is
related to global demand for palm oil [53]. Therefore, there is an inseparable relationship between palm
oil prices and deforestation, and since the introduction of oil palms in Malaysia in the 19th century,
the area and distribution of tropical forests in Malaysia have changed dramatically [54].

Comparing the development of rubber trees deforestation, which have similar economic and
ecological benefits to those of oil palms [55], it was found that the relationship between the price
change for natural rubber and deforestation is similar to the relationship between the price change
for crude palm oil and deforestation. This shows that there is a close relationship between the price
of cash crops and the areas of cultivation deforestation [54]. As a typical tropical rainforest country,
Malaysia’s forest loss reached 8.77 Mha from 2000 to 2017, of which 68.17% was redeveloped into oil
palm plantations. This indicates that the expansion of oil palms has a great impact on forest coverage.

In addition, the cultivation of oil palms causes excessive consumption of soil nutrients. In the
process of increasing oil palm production, people use pesticides, herbicides, and fertilizers, resulting in
the loss of habitats of animals and plants that originally grew in tropical rainforests, in addition to
deforestation [56]. Especially in the Sabah and Sarawak regions, the replacement of tropical forests
with oil palm plantations has led to the irreplaceable loss of biodiversity [57]. Although the RSPO
has established policies related to oil palms, the European Union (EU), some environmental and
biodiversity conservation organizations, etc., still hold opposing views on the deforestation effects of
oil palm plantations. These challenges pose risks to the future development of oil palm plantations.
As shown in Figure 12, the forest loss and oil palm expansion area in Malaysia were closely related to
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the price of palm oil. As the price of palm oil increased, the rate of expansion of oil palm plantations
increased, and the rate of deforestation increased—these three factors form a cyclical relationship.

4.3. Limitations and Future Work

The results of this study can provide scientific support for future predictions of oil palm planting
areas, estimations of palm oil production, calculations of oil palm age, oil palm planting areas, and price,
and the determination of the relationship between oil palm plantations and deforestation. Nevertheless,
there were some limitations to this research. First, only five years from 2000 to 2018 were selected to
study the distribution of oil palms; thus, more frequent and earlier years could be added to improve
the understanding of oil palm planting variation. Second, the accuracy of oil palm classification
might be affected by cloud cover only using Landsat data. Therefore, microwave remote sensing
data (e.g., Sentinel-1), which are not affected by cloud cover, might be taken into account in future
research. Last, limited factors affecting the distribution of oil palm planting were analyzed in this
study; more parameters could be used in future, such as distance to roads, labor, and gross domestic
product (GDP).

5. Conclusions

This study used GEE to extract the oil palm planting distribution in Malaysia during five periods
from 2000 to 2018 and analyzed the typical factors affecting the distribution of oil palm planting. The oil
palm planting area in Malaysia increased from 6.06 in 2000 to 11.13 Mha in 2018—a total increase of
5.06 Mha with a growth rate of 83.50%. West Malaysia increased by 2.05 Mha, accounting for 33.83% of
the increase, with a growth rate of 62.05%. East Malaysia increased by 3.01 Mha, accounting for 109.45%
of the increase, with a growth rate of 136.14%. Furthermore, the FAO may have underestimated the
growth status of oil palm planted area since 2000. In the process of expansion, oil palms may be affected
by factors such as the natural conditions (represented by topography), human activities under the
influence of natural factors (represented by traffic conditions), and social and economic development
status (represented by the price of palm oil and deforestation).

Malaysia has the advantage of good natural conditions, such as temperature and humidity,
for planting oil palms throughout the country. However, oil palms are still affected by factors such
as topography, economic development, and environmental conditions during the expansion process.
During the expansion process, oil palms show a trend of expanding from low-altitude to high-altitude
areas and from coastal to inland areas. It was found that only approximately 10% of the oil palms
were distributed between 100 and 300 m above sea level during the expansion process, and there were
almost no oil palm planting areas above 300 m above sea level.

During the expansion of oil palms from coastal to inland areas, the direction of oil palm planting
in West Malaysia and East Malaysia showed significant differences. The focus of planting in West
Malaysia from 2000 to 2018 shifted toward the Temeru district of Pahang. However, from 2000 to 2009
in East Malaysia, the center of gravity of oil palm planting shifted 100 km inland from the coast, and in
2015 and 2018, it shifted to the coastal area, for a total of 10 km. The overall trend was to expand into
inland areas.

With the increase in demand for palm oil, the price of crude palm oil has fluctuated and risen
over the years, and the price in 2018 was 2.1 times that in 2000. Similar to the rising trend of crude
palm oil prices, the area of oil palm plantation continued to rise from 2000 to 2018. Except to the
price, the area of oil palm plantation was also closely related to deforestation. The deforestation area
caused by oil palm planting in 2001–2017 reached 5.98 Mha, accounting for 68.17% of the total amount
of deforestation.
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