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Abstract: Gullies reduce both the quality and quantity of productive land, posing a serious threat to
sustainable agriculture, hence, food security. Machine Learning (ML) algorithms are essential tools in
the identification of gullies and can assist in strategic decision-making relevant to soil conservation.
Nevertheless, accurate identification of gullies is a function of the selected ML algorithms, the
image and number of classes used, i.e., binary (two classes) and multiclass. We applied Linear
Discriminant Analysis (LDA), Support Vector Machine (SVM), and Random Forest (RF) on a Systeme
Pour I'Observation de la Terre (SPOT-7) image to extract gullies and investigated whether the
multiclass (m) approach can offer better classification accuracy than the binary (b) approach. Using
repeated k-fold cross-validation, we generated 36 models. Our findings revealed that, of these
models, both RFb (98.70%) and SVMm (98.01%) outperformed the LDA in terms of overall accuracy
(OA). However, the LDAb (99.51%) recorded the highest producer’s accuracy (PA) but had low
corresponding user’s accuracy (UA) with 18.5%. The binary approach was generally better than
the multiclass approach; however, on class level, the multiclass approach outperformed the binary
approach in gully identification. Despite low spectral resolution, the pan-sharpened SPOT-7 product
successfully identified gullies. The proposed methodology is relatively simple, but practically sound,
and can be used to monitor gullies within and beyond the study region.

Keywords: linear discriminant analysis; random forest; support vector machine; image
classification; erosion

1. Introduction

Despite decades of focused scientific research and societal concerns [1], soil erosion by water,
remains a major cause of land degradation and increasingly threatens agriculture in both developed
and developing nations [2]. Globally, approximately 12 million hectares of productive land are lost due
to soil erosion [1,3]. Urgent intervention is required to prevent not only further damages to productive
land but also prevent irreversible loss of ecosystem services [3,4]. Soil erosion results from natural
factors but anthropogenic activities including unsustainable land use practices are thought to accelerate
soil erosion [2,5-8]. Soil erosion by water can manifest itself in manifolds, i.e., sheet, rill, and gully
erosion [9]. Gully erosion is the most detrimental of all forms of erosion because it can quickly remove
and transport enormous quantities of soil [10]. Globally, it is reported that gullies contribute around
50%—-80% of total sediment production in semiarid regions [11]. Gullies can damage infrastructure
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such as roads and buildings [12,13]. South Africa, a semiarid country, is among severely eroded
countries in Africa, with over 70% of its land subject to erosion of varying intensities [14]. Soil erosion
has wide reaching implications for South Africa from both the environmental and socio-economic
standpoints. Hoffman and Ashwell [15] reported that South Africa incurs about $836 million USD
a year on erosion-related costs, including off-site costs for purification of silted dam water. Soil
erosion, especially gullies, pose a serious threat to subsistence agriculture in most rural parts of South
Africa [16,17].

Remote sensing, defined as the science or practice of acquiring data about the earth’s surface
features from a distance [18,19], is not only cost-effective and quick compared to traditional field
measurements, but more importantly, the data acquired through remote sensing is readily available in
digital format [20]. From the aspect of accessibility, the benefits of using remote sensing technology
in gully erosion mapping, especially in remote locations, cannot be stressed enough. Studies using
remote sensing have grown rapidly over the past few years [21-26], following the improvement in
computer processing power coupled with increased availability of free remotely sensed data such
as ASTER, Landsat and Sentinel. However, the coarser spatial resolution of these sensors usually
inhibits their ability to automatically detect individual gullies with sufficient detail [27]. Even at
regional scales, some previous attempts to automatically classify erosion from low resolution sensors
generally yielded low accuracies [26]. High spatial resolution sensors like WorldView or GeoEye can
be appropriate to identify gullies, but their relatively high acquisition costs can limit the possible users.
However, there can be a trade-off between accuracy and cost, and a decision as to which sensor to
use is contingent upon the objectives of the study along with the availability of financial resources.
Apparently, low-cost sensors such as the Systeme Pour 1'Observation de la Terre (SPOT) data may
be a reasonable compromise between acquisition costs and sensor accuracy, at least in the context of
developing countries, particularly South Africa, where SPOT data are obtainable at substantially low
costs and even free of charge.

Like sensor selection, the selection of a suitable image classification method is as much important.
Deep Learning (DL) has recently become of interest in remote sensing community [28-30]. Some of
the advantages of DL over conventional Machine Learning (ML) algorithms include high level of
automation, adaptability to new challenges in the future, and can solve highly complex problems [31].
Despite its great potential, a major drawback with DL is that it requires huge amounts of data to perform
well and is computationally expensive to train [32-34]. Consequently, ML algorithms such as Decision
Tree (DT), Random Forest (RF), Support Vector Machines (SVM), Artificial Neural Network (ANN),
and Discriminant Analysis (DA) are still widely used [35-37]. Owing to their relatively high speed and
accuracy, together with the ability to accommodate non-linearity and multicollinearity [10,38,39], ML
methods have become popular in soil erosion studies over the past few years [25,40-43]. Among these
ML methods, SVM and RF consistently showed better performance relative to other ML methods [44],
but when compared among themselves (SVM and RF), it is still unclear which method can outperform
the other. Usually, the results vary from one study area to another [41]. This variation, for the most part,
can be attributed to the fact that gully erosion is a complex phenomenon, which varies greatly spatially,
spectrally and even temporally across different study regions [45]. Although the SVM and RF methods
have been widely used, attempts to evaluate their performance in gully feature extraction in two or
more spatially independent study areas (with one area used as training and another as testing) are rare.
This approach eliminates the potential for overfitting, a serious problem associated with powerful
classifiers like ML-based methods, where the classifier maps the training data so precisely that it is
not able to generalize well [46]. Herein, we trained the models on one study area and tested them
with repeated cross-validation on two other spatially independent areas, which can ensure reliable
outcome measures supporting better generalization of these classifications. Whereas this approach
was recently used in sinkhole feature extraction [47] and in gully feature extraction [48], the application
of the SVM and RF methods were not reported. Nevertheless, these studies provide the impetus for
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testing the performance of these ML methods, including the Linear Discriminant Analysis (LDA),
another promising ML method.

In this study, the selected ML methods are applied to a newly launched SPOT-7 multispectral
(pan-sharpened) product whose potential in gully feature extraction has not been tested before until
now. Besides, so far, there has not been any direct attempt to evaluate the impact of the class number
on the classification accuracy of gully erosion. Yet, the class number is among major factors affecting
image classification, thus, the resulting accuracy [49]. We proposed a simple, but practically relevant
methodology consisting of three ML algorithms (RF, SVM, LDA) X two approaches of class numbers
(binary and multiclass) X six combinations of study areas as train and test sets. The primary objective
of this study was to evaluate the accuracy of the LDA, SVM, and RF methods in gully feature extraction
across three spatially independent study areas. Our hypotheses were the following: (i) SPOT-7
pan-sharpened product can offer acceptable classification accuracy of gully erosion, (ii) application of
multiclass approach can results in better classification accuracy in relation to the binary (eroded and
non-eroded) approach.

2. Materials and Methods

2.1. Study Area

Our area of investigation is located in the Eastern Cape Province, South Africa, and consists
of three study areas (s1-s3), each covering 1.26 km? (Figure 1). Extensive erosion features, mainly
gullies, commonly occur in relatively gentle slopes whereas rills are found in steep sloping areas. The
area has a mixture of land use types including the built-up areas characterized by dispersed rural
settlements, unpaved road networks, and agricultural activities. Agriculture, including crop and
animal farming, is common in the region. The climate is semiarid: winter is frequently dry and cold
followed by occasionally intense rainfalls in summer. The average annual rainfall is 671 mm with
yearly temperatures varying from 7 to 30 °C. Topography is highly uneven across the region. It ranges
from approximately 1098 m in the central parts to more than 1500 m in the hilly northern and eastern
parts of the study area. The vegetation is predominantly grassland, distributed across the elevated and
mountainous areas. Low-lying areas with gentle slope, where most human activities like settlement
and farming take place, have sparse vegetation cover.

2.2. Data Acquisition and Pre-Processing

The data used in this study consist of the SPOT-7 image, obtained from the South African National
Space Agency (SANSA). In South Africa, SPOT-7 image is available at no cost for educational purposes
or PhD research, in our case, and/or research projects that are of public interest to the country. The
image contains four multispectral bands: red, green, blue (altogether RGB), and near infrared (NIR)
with 5.5 m geometric resolution and a high-resolution panchromatic band (1.5 m). We improved the
low geometric resolution of the SPOT-7 multispectral image using the panchromatic band from the
same sensor. The Gram—-Schmidt pan-sharpening method was applied, which is a widely used and
accepted image fusion technique for images obtained from the same sensor [50-52]. ENVI software was
used for pan sharpening (ENVI version 5.3—Exelis Visual Information Solutions, Boulder, Colorado).

2.3. Gully Feature Extraction from Satellite Image

In order to extract gully features, we employed three ML methods: RF, SVM, and DA. Being the
most widely used ML methods, the selected ML methods have been embedded in various software
packages [53]. In this study, we ran all three ML methods in Python programming environment.

2.3.1. Random Forest (RF)

RF is a robust non-parametric classifier, which is independent of assumptions on data distributions
or homoscedasticity. The algorithm uses several hundred of decision trees with bagging [54]. All
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trees have a unique set of cases resampled from the train dataset. Sampling is performed by random
selection and bootstrapping with replacements drawn from original observations, i.e., the same case
can have multiple appearance in the realizations [55]. Furthermore, the number of variables involved
for decision trees is the square root of the total number of variables. Each decision tree contributes a
single vote to the classification, and the class with the majority vote is selected as the final classification
outcome [44,56]. The larger the number of variables, the more diverse the trees become. According
to variable sampling, the algorithm determines variable importance, that is, if an omitted variable
results in large decrease in average accuracy, it will be considered important. RF is considered to be
accurate and was successfully applied for several tasks including but not limited to grassland species
discrimination [57], invasive species identification [58], soil erosion mapping [56,59,60], soil organic
carbon stock mapping [61], tree species classification [62], and extracting water-related features [63].
We employed the RF model to extract gully erosion features. In the RF model, we set the ntree (number
of tress) parameter to 100 and the Gini impurity was selected as the split criterion. The mtry (number of
features in each split) parameter was left at its default value (i.e., mtry = 2).
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Figure 1. Geographical location of the study area.

2.3.2. Support Vector Machines (SVM)

Proposed by Vapnik [64], the SVM model is based on statistical learning theory to overcome
problems relating to regression and classification [65-67]. Since its introduction, the model has been in



ISPRS Int. |. Geo-Inf. 2020, 9, 252 50f19

widespread use in several researches [35,44,56,68]. The model searches for the right boundary surface
among data points belonging to different classes. The aim is to find a flat boundary, called hyperplane,
which can separate the classes into homogeneous partitions where each partition contains only data
points of a given class. The model works well only with linear data space, and in cases of complex
and higher dimensional space, the so-called ‘kernel-trick’ is used to transform the non-linear data to
linear where hyperplanes can be applied [69]. SVM has two important parameters. (i) The C parameter
penalizes the misclassifications: a low C value results in a simple model with soft margin, while a
model with large C value prioritizes the perfect classifications; and (ii) the y parameter defines the role
of a single training pixel: too small values result in constrained models, whereas too large values lead
to overfitting, and both small and large y-values can perform poorly with a test dataset [70]. Several
common kernel functions for the SVM model include linear, Radial Basis Function (RBF), polynomial,
and sigmoid [49]. In the current study, we applied the SVM model with the RBF kernel function.

2.3.3. Linear Discriminant Analysis (LDA)

Discriminant Analysis (DA) is a parametric classification method requiring multivariate normal
distribution, equal covariance matrices and prefers equal number of cases within categories [71]. In
this study, we applied a linear DA (LDA), an ordination technique, i.e., dimension reduction, which
substitutes the original variables (bands) with discriminant functions (DFs). DF scores are calculated in
the m dimensional space defined by the input variables (where m is the number of a priori categories),
in our case it meant land cover types, based on decision boundaries, which can either be of linear or
quadratic functions [51,72]. LDA had been successfully applied in land degradation [73]. We applied
linear functions for the classification of gullies.

2.4. Reference Data Collection and Accuracy Assessment

We collected the reference data based on a field survey, high-resolution SPOT image, and ancillary
data (Google Earth). The reference data is not publicly available but can be provided to anybody on
request. We delineated those areas where the land cover were identifiable both in the field and in the
images; therefore, seven land cover classes had been distinguished: dense vegetation (DV), stressed
vegetation (SV), gully (G), bare soil (BS), mixed bare soil (MS), i.e., exposed rocks, unpaved roads,
bare soils, etc., settlement (S), and the roads (R). Besides, we intended to reveal the case when land
cover was classified only into two classes: gully and non-gully areas; thus, as another approach we
investigated the case when all non-gully classes were reclassified into one class. In the following, we
refer to the seven-class solution as ‘multi-class’ (m), and the two-class solution as ‘binary’ (b) approach.

We evaluated the classification accuracy of the algorithms with repeated 10-fold cross-validation
using three repetitions. We applied stratified random sampling of the whole data sets (20,795, 31,784,
and 22,512 data, respectively, in s1, s2, and s3 areas): we selected 1000-1000 cases for the binary
approach and 350 cases per category for the multiclass approach from the whole reference dataset,
depending on the available number of data per classes and to avoid autocorrelation (selecting adjacent
pixels). This approach did not require a train and test database, as the whole dataset was randomly
split into 10 subsamples and 9 were used to train the models and 1 for testing and the procedure
ends when all subsamples were used as a test set against all the other subsamples [74,75]. Finally;, it
was repeated three times and accuracy measures of 30 models can be used to evaluate the models’
performance with median and quartiles.

Although cross-validation is a reliable tool, it does not provide information on the class level
accuracies; thus, we also used the confusion matrix. This matrix provides class-specific accuracies
like Producer’s Accuracy (PA) and User’s Accuracy (UA), which indicate commission and omission
errors, respectively [18,19,76]. PA is the probability that a pixel of a given class was classified correctly
whereas UA is the probability that a given pixel was predicted to be in the class it was supposed to
be [77-79]. Table 1 provides basic information on the calculation of the accuracy indices used.
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Table 1. Accuracy assessment indices [79].

Accuracy Equation Description

Where nj; is the number of pixels correctly classified in

Producer’s accuracy (PA) PA = nr,t;l each class; and nj.. is the column total representing
reference data.
User’s Accuracy (UA) UA = nzﬁ Where nj;, is the row total representing predicted classes.
L Wh is the total ber of pixels in th fusi
Overall Accuracy (OA) OA — % ni ere N is e total number of pixels in the confusion
iZ1 matrix, and r is the number of rows.

Overall Accuracy (OA), which is a ratio of correctly classified pixels, was also calculated, but on
the usual way: we had three study areas (s1-s3), and one was used to train the model and another to test
it. In other words, train data of one study area (e.g., s1) was used to perform the model generation and
this model was applied on completely independent data of the other two study areas (s2 and s3). We
repeated this procedure in all combinations of the study areas; thus, altogether we had 36 models: 3 ML
algorithms (RF, SVM, LDA) X 2 approaches of class numbers (binary and multiclass) X 6 combinations
of study areas as train and test sets (s1—s2, s2—s1, s2—s3, s3—s2, s1—-s3, s3—s1).

2.5. Statistical Evaluation

Shapiro-Wilk test was used to check the assumption of normal distribution [80]. Reference data
of the land cover classes were skewed, but classification accuracy measures (UA, PA, OA) followed
the normal distribution. We applied hypothesis testing to explore if the land cover classes had the
same medians (HO) or differed from each other (H1); i.e., we evaluated the training datasets from
the aspect of differences in reflectance. For example, if reflectance values differ, we can suppose
that classification of the satellite image can successfully distinguish gullies from other land cover
classes. In case of the binary approach, we applied the Yuen test with 0.2 value of trim and 599 times
bootstrapping [81], while for multiclass approach, robust ANOVA was used with a post hoc test based
on trimmed means (using the WRS2 package of R). For Yuen test, we also evaluated the effect size (£),
which is a standardized measure to quantify the magnitude of difference; therefore, it can be compared
with the analysis performed on different datasets. Calculation of effect sizes for the multiclass approach
is not defined for robust ANOVA. Therefore, we applied the Dunnett’s test [82], using gullies as a
control and all other land cover classes were compared with it. This way, we were able to calculate
the confidence intervals of differences instead of effect sizes, but we were also able to see how the
differences were distributed around zero. At the same time, we limited the number of comparisons
and the degree of freedom (avoiding a full factorial comparison). Besides, considering the aim of this
study, which was to extract gullies, this was a reasonable step.

Model performance conducted on classification accuracy measures was evaluated with General
Linear Modelling (GLM) using the study areas, the number of classes (i.e., binary or multiclass) and
the algorithms as factors in different combinations and the UA and PA as dependent variables. In
this case, we applied the w? as a measure of effect size, which is less biased by the low sample size
(in our case, it was limited to the results of 36 models), as suggested by Levine [83]. Statistical analyses
were performed in R 3.6.2 software [84], with the WRS2 [85], jamovi 1.2. [86], and with the GAML]
module [87].

3. Results

3.1. Differences in Reflectance Values

Results confirmed that, generally, all bands had significantly different values in case of the binary
approach; the only exception was observed in case of the blue band, in Study area #1 (Figure 2).
However, effect sizes indicated only small effect for red and blue bands, medium for green and large
for NIR (Table 2). Therefore, NIR band had the largest relevance in discriminating the gullies. Next, we
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repeated the analysis with the multiclass approach (Figure 3), using seven categories, and the robust
ANOVA test confirmed significant models for each combination of bands and study areas (Table 3).
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Figure 2. Distribution of reflectance values of Systeme Pour 1'Observation de la Terre (SPOT-7) image by
bands (red, green, blue (RGB) and near infrared (NIR)), study areas (s1-s3) and classification categories
(NG: non-gully, G: gully).

Table 2. Results of robust independent samples t-test performed on SPOT-7 bands using the binary
(gully—non-gully) approach (study areas: s1-s3, t: value of t-statistic, p: significance, &: effect size).

Bands sl s2 s3
t P g t P g t P g
Red 8.3 <0.001 0.159 9.55 <0.001 0.14 6.74 <0.001 0.11
Green 2.99 0.003 0.062 28.21 <0.001 0.38 15.98 <0.001 0.28
Blue 1.07 0.286 0.02 14.42 <0.001 0.2 9.56 <0.001 0.17
NIR 86.1 <0.001 0.964 171.7 <0.001 0.98 113.3 <0.001 0.98

Table 3. Results of robust ANOVA performed on SPOT-7 bands using the multiclass (7-classes)
approach (study areas: s1-s3, F: value of F-statistic, p: significance).

Bands sl s2 s3
F p F p F P
Red 10105 <0.001 25193 <0.001 12660 <0.001
Green 9309 <0.001 21188 <0.001 10571 <0.001
Blue 9718 <0.001 25694 <0.001 13036 <0.001
NIR 3590 <0.001 10905 <0.001 4317 <0.001

As ANOVA only reports that there is at least one significantly different category, a post hoc test
was needed to reveal the differences among the categories. With seven categories, there are too many
combinations with pairwise comparison; therefore, we focused only on the difference in gully and the
other categories, according to the primary aim of this study. Gullies usually had significant differences,
but mostly in red and green bands, differences were not of significant with the stressed vegetation
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and the roads (Table 3). In this case, we presented the mean differences of the land cover categories.
Confidence intervals were in accordance with the post hoc test, except in the study area #2 (s2) where
the robust post hoc test indicated significant differences (Table 4), while the confidence intervals
(Figure 4, based on Dunnett’s test statistics) showed non-significance between gullies and roads.
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Figure 3. Distribution of reflectance values of SPOT-7 image by bands (RGV+NIR), study areas (s1-s3),
and classification categories (DV: dense vegetation, SV: stressed vegetation, S: settlement, G: gully, BS:
bare soil, MS: mixed bare soil, R: road).

Table 4. Results of robust ANOVA performed on SPOT-7 bands using the multiclass (7-classes)
approach (LC: land cover, study areas: s1-s3, G: gully, DV: dense vegetation, SV: stressed vegetation, S:
settlement, BS: bare soil, MS: mixed soil, R: road).

sl s2 s3
Red Green Blue NIR Red Green Blue NIR Red Green Blue NIR

G-DV  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
G-SV  <0.001 0.275 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.281 0.275 0.883 <0.001
G-S <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
G-BS <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
G-MS <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
G-R  <0.001 0.528 <0.001 <0.001 0.614 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

LC

3.2. Gully Feature Extraction

Gully classification results based on the multiclass and binary approach are presented in Figures 5
and 6, respectively. SVM and RF showed more or less the same results, whereas LDA yielded
completely different results, most notably in study area #1 (s1—s2, s1—s3), study area #2 (s2—s3), and
study area #3 (s3—s2). However, in some cases, i.e., study area #2 (s2—s1) and study area #3 (s3—sl),
LDA showed almost the same results as SVM and RF. Overall, the multiclass and binary approach
appear to have yielded almost the same results in terms of gully extraction, although there are slight
differences in accuracy results, as presented in the sub-sections that follow (Sections 3.3 and 3.4).
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Figure 4. Mean differences between gullies (G) and other land cover categories (mean + 95% confidence
intervals; 95% confidence intervals coinciding with 0 are not significant differences, p > 0.05; DV: dense
vegetation, SV: stressed vegetation, S: settlement, BS: bare soil, MS: mixed bare soil, R: roads) by SPOT
7 bands (columns) and study areas (rows).
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Figure 5. Classification results of the multiclass approach (DV: dense vegetation, SV: stressed vegetation,
S: settlement, G: gully, BS: bare soil, MS: mixed bare soil, R: road).
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Figure 6. Classification results of the binary approach (G: gully, NG: non-gully).

3.3. Owverall Model Performance Evaluation

Overall accuracies, based on three times, repeated 10-fold cross-validation (i.e., results of 30 models),
showed that gully identification can be successful if we use RF or SVM classification algorithms. Both
RF and SVM provided similar accuracies; medians were between 92%-96%. Binary approach resulted
in better OA values; nevertheless, the multiclass (m) classification was only 2% worse than the binary
(b) (Figure 7). The rank was the same in all study areas in the first three places: SVMb, RFb, LDADb
with the binary approach, then the multiclass classifications had some mixing on the 4th place between
SVMm and RFm, but LDAm always had the worst performance. Regarding the first two places, SVMb
had only a slight superiority (<0.5%) and, additionally, lower quartiles were higher for RFb; thus,
generally, these models can be regarded as more reliable. Furthermore, the multiclass approach was
not as effective as the binary approach, even the LDADb’s lower quartiles were higher in all study areas
than the best multiclass solution’s upper quartile, and differences were 2%—8%.

3.4. Model Performance Evaluation on Class Level

Class level evaluation was performed only with the accuracy metrics of gullies. Results showed that
most classifiers failed to produce both high PA and UA values (Figure 8). Worst performances belonged
to the LDA algorithm, UA values of the multiclass classification was under 30%, misclassifications
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meant large number of commission error, large number of pixels were classified as gullies, which
belonged to other categories; although, we also have to note that there were also successful models
(L-m-2-1 was as good as some RF and SVM models). Regarding the best 80-80% quarter (Figure 8),
there were 4 RF and 3 SVM models, 2 binary and 5 multiclass types. In this quarter, where the errors
were within a reasonable measure, highest UAs belonged to R-b-2-3 (86.0%) and R-m-2-3 (83.8%), while
PAs were 95.1% and 96.1%, respectively. Nevertheless, highest PA belonged to the R-b-3-2 (93.7%) but
the corresponding UA was only 79.4%. Best PA belonged to an LDA model (L-b-2-3) with 99.5% but its
UA was only 18.5%.

s1

SVMb E SVMb H SVMb ]
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Figure 7. Classification results of the applied algorithms ranked by overall accuracies of 30 models

(10-fold cross-validation with three repetitions) by study areas (LDA: Linear Discriminant Analysis, RF:

Random Forest, SVM: Support Vector Machine; b: binary, m: multiclass).
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Figure 8. Class level accuracy metrics of different classifications of gullies by algorithms, number of
categories and study areas (S: SVM, R: RF, L: LDA; b: binary, m: multiclass; first number: number of
area where the models was applied, second number: number of area where the model was trained;
dashes line sections (upper right) indicate >80% accuracy quarter).
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3.5. Statistical Evaluation of Factors Biasing Class Level Performance

GLM revealed that study areas and the algorithms can provide explanations for the different
efficiency of the classification models; adjusted R?s indicated 59.3% explained variance for UA and
56.1% for PA (Tables 5 and 6). Study area had significant effect on both the PA and UA results, but the
applied algorithm had significant direct effect only on PA.

Table 5. Summary of General Linear Modelling (GLM) performed with PA as independent variable
(Alg: algorithm, type: binary or multiclass approach, stud: Study area; SS: Sum of Squares, df: degree
of freedom, F: F-statistic, p: significance, w?: effect size; p < 0.05 is highlighted with bold).

Source SS df F P w?
Model 3200.5 17 3.632 0.005 0.554
Alg 174.9 2 1.687 0.213 0.017
type 25.5 1 0.493 0.492 0.006
stud 1431.9 2 13.811 <0.001 0.317
Alg x type 946.7 2 9.132 0.002 0.201
Alg x stud 323 4 1.558 0.228 0.028
type x stud 99.1 2 0.956 0.403 0.001
Alg X type X stud 1994 4 0.962 0.452 0.002
Residuals 933.1 18
Total 4133.6 35

Table 6. Summary of GLM performed with UA as independent variable (Alg: algorithm, type: binary
or multiclass approach, stud: Study area; SS: Sum of Squares, df: degree of freedom, F: F-statistic, p:
significance, w?2: effect size; p < 0.05 is highlighted with bold).

Source SS df F P w
Model 20,720.3 17 4.0014 0.003 0.586
Alg 17,390.9 2 28.547 <0.001 0.633
type 82.6 1 0.2711 0.609 0.008
stud 2413.4 2 3.9615 0.038 0.068
Alg X type 98.6 2 0.1618 0.852 0.019
Alg x stud 666.8 4 0.5473 0.703 0.021
type x stud 18.7 2 0.0307 0.97 0.022
Alg X type X stud 494 4 0.0405 0.997 0.044
Residuals 5482.8 18
Total 26203.1 35

In case of PA, the interaction between the algorithms and study areas was not significant. Effect
size (w?) indicated large effect for the study areas for PA, and for the algorithms for UA. Furthermore,
the interaction was significant between the applied algorithms and the type (number of categories),
i.e., classification algorithms perform differently with the binary or multiclass approaches.

4. Discussion

Despite the spectral heterogeneity of gullies, spectral differences of SPOT-7 bands showed that
gully mapping with remote sensing data can be reasonable. The average OA results obtained by the
binary (93.68%) and multiclass (74.27%) approach justifies this assertion. Almost all bands, except for
blue band in study area #1, had significantly different values in case of the binary approach, hence, high
OA. However, it is worth noting that merely relying on statistical significance can be misleading. In
spite of significant differences: effect sizes were only small (sometimes moderate) in case of RGB bands,
only the NIR band indicated large (nevertheless, in this case very large) effect. Accordingly, while
p-values only show that differences can be regarded as significant or not significant, effect sizes express
the magnitude, and as standardized measures proved the relevance of differences with land cover
categories, too: even with larger interquartile ranges, differences can be significant, but in classifications
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these small differences (indicated by effect sizes of <0.3) lead to misclassifications. Such interpretation
is in accordance with the findings of Szabé et al. [88].

Although effect sizes were not calculated to land cover pairs of the multiclass approach, confidence
intervals provided valuable information on the differences. Usually, all pairs had significant differences,
and the confidence intervals were within a small range except some land cover categories: gullies and
stressed vegetation and roads had non-significant differences in RGB bands (mostly in red and green
bands), but the NIR band always reported significant differences. However, according to the confidence
intervals, NIR band was so successful to discriminate the roads and gullies: 95% confidence ranges
were close to the “zero” line, which indicated non-significance (Figure 9). This was not signed by the
p-values (all of them were p < 0.001); however, if we use confidence ranges and their distance from
zero as an effect size, these cases indicate low values with lower efficiency to distinguish categories.
However, despite the critics of the statistical evaluation, considering the results, we can accept that
reference dataset contained reliable data about land cover categories, and presumably, can be used in
classification models.
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Figure 9. PA (a) and UA (b) values (median + quartiles) of gullies by classification algorithms
(Alg: algorithm; L: LDA, R: RF, S: SVM), number of classes (b: binary; m: multiclass) and study areas
(1-3).

As different classifiers were applied, we evaluated their overall performance. RF and SVM are
robust algorithms, as data distribution does not bias the results, i.e., outliers have only slight effect on
the classification accuracy, while LDA assumes multivariate normality and balanced element number
in the categories [89,90]. This was also true in our study as both RFb and SVMm outperformed the LDA.
But it should be noted, LDAD had better classification results in case of binary approach than RFm and
SVMm. Multiclass classifications” OA values were below the binary; thus, one can think that it is more
reasonable to use only categories when possible, i.e., in our case the gully and non-gully categories.
Beygelzimer et al. [91] also found that the binary approach can perform better than the multiclass. To
gain this result, the authors developed a new “weighted one-against-all” method. However, in our
case, the reality is that this result is only generally true, on category level, the multiclass approach was
more efficient regarding the gully identification. These findings are in high agreement with those of
Allwein et al. [92]. Our findings revealed that multiclass solutions with the 7-class classification had
better performance, only two binary approach models were in the best 80% quadrant (delineated by
UA and PA) with RF and SVM classifiers. LDA’s performance varied and models provided ambiguous
results: first three within the 36 models were LDA using the binary approach, and the second best was
an LDA in the multiclass types based on the PA; however, the corresponding UA values were very low
(e.g., the best PA, 99.51%, belonged to L-b-2-3 and the UA was only 18.5%). Thus, in these study areas
with these reference datasets, we found that LDA models were severely biased by the outliers, while
RF and SVM overcame this issue and provided accurate outcomes with the same input train data.

We applied GLM to investigate the reliability of the train datasets with applying the models
trained with them on two other areas. All areas were similar regarding their spectral characteristics,
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but the six combinations revealed that in case of Study area #2, PAs were above the other two areas,
but it was not true for UAs where Study area #3 had the largest values (Tables 5 and 6; Figure 9).
Although the study areas had differences regarding the reference data, both RF and SVM provided
PAs and UAs above 75%, which is relatively high, considering the lack of ancillary data (e.g., a digital
elevation model). LDA models had large dependency on training data quality and, therefore, the error
of commissions was very large (medians indicated >50% errors).

GLM revealed the multivariate effects on PA and UA and confirmed the relevance of the
classification algorithms. Number of classes (binary or multiclass) did not have significant effect;
although results of 10-fold cross-validation suggested that binary classifications had better performance,
class-level comparisons did not support this finding in case of gullies. Nevertheless, this study showed
that space-borne images like SPOT-7 can be successfully applied to automatically detect gullies using
relevant ML algorithms. Although the spectral bands of SPOT-7 played a key role in discriminating
gullies among other land cover categories, pan sharpening too, to some extent, contributed to successful
extraction of gullies. Automatic detection of gullies with remote sensing is a challenge, because gullies
do not generally differ from the surfaces they incise [23]. As a result, visual interpretation of
high-resolution images has been preferred for monitoring gullies over large areas. On a country scale,
Mararakanye and Le Roux [27] performed visual interpretation of SPOT-5 image to monitor gully
erosion in South Africa. Recently, Karydas and Panagos [93] performed a preliminary assessment
on the presence of ephemeral gullies in Greece through visual interpretation of Google Earth images.
Undoubtedly, there is a need for more reliable methods, which can help to automatically identify the
areas affected by gullies [22,23]. This in turn ensures consistent monitoring of gully development over
space and time. The use of appropriate ML algorithms and satellite images seems to be adequate
for these surveys, but without digital elevation models (DEMs), the simple classifications can be
flawed. However, in areas where gullies can be identified visually, the spectral reflectance permits the
discrimination of gullies from other land cover categories, as was the case in the present study. For
example, most gullies were located on bare soil surface but with the improved geometric resolution,
the applied pan-sharpened product successfully discriminated gullies from bare soil although there
is still a room for improvement. Where available, future research should incorporate ancillary data
(i.e., DEM) to accurately discern gullies from paved/unpaved road network. A major limitation in this
study was to discriminate unpaved roads from bare soil and exposed rocks. Instead, these land cover
types were grouped into one class, called mixed bare soil (MS), but this did not affect gully, the target
class. Although this study was conducted in small areas, the methodology applied could be adopted
for application in larger areas.

5. Conclusions

Gully erosion is a crucial problem confronting sustainable agriculture today and cannot be left
unabated, if sustainable agriculture is to be achieved. This study employed three commonly used ML
algorithms including DA, SVM, and RF in gully feature extraction. Using these ML algorithms, we
relied on two different approaches of class number: binary and multiclass. Based on the findings of
this study, we drew the following conclusions:

e  Despite having a small number of bands (RGB and NIR), the pan-sharpened product from SPOT-7
multispectral image successfully discriminated gullies (with OAs >95%).

e Repeated k-fold cross-validation was an efficient tool to analyze the representativeness of the
reference data as reflected in different classification algorithms. It showed that the binary approach
performed better (i.e., higher OAs with narrow interquartile ranges) with all classifiers than the
multiclass approach.

e  GLM effectively identified the biasing factors of a given class, in this case gullies, accuracy metrics
(PA and UA), with the option of statistical interaction Accordingly, we revealed that algorithms
performed differently with the binary or multiclass approach in case of PA, while there was no
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interaction in case of UA, i.e., the number of classes did not influence UAs in the function of
different classifiers.

e LDA can accurately identify gullies at least from the PA’s perspective, but had usually low
corresponding UA values.

e SVM and RF showed better performance compared to LDA in identifying gullies, usually with
>80% of PA and UA in different areas.

Overall, we conclude that the application of different study areas for training and prediction
ensures independent circumstances for models, which allow to assess the possibilities of generalization
of the case studies. OAs can be misleading as the accuracy can be different at class level. In our case, the
classifiers showed best performance with the binary approach, according to the OA, but the multiclass
approach was more efficient in gully identification based on the PA and UA on class level. Our aim
was to obtain the best representation of gullies; therefore, we suggest the use of several classes instead
of only two classes (i.e., binary) for better gully feature extraction.
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