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Abstract: This paper is focused on comparing database replication over spatial data in PostgreSQL
and MySQL. Database replication means solving various problems with overloading a single database
server with writing and reading queries. There are many replication mechanisms that are able to
handle data differently. Criteria for objective comparisons were set for testing and determining the
bottleneck of the replication process. The tests were done over the real national vector spatial datasets,
namely, ArcCR500, Data200, Natural Earth and Estimated Pedologic-Ecological Unit. HWMonitor Pro
was used to monitor the PostgreSQL database, network and system load. Monyog was used to monitor
the MySQL activity (data and SQL queries) in real-time. Both database servers were run on computers
with the Microsoft Windows operating system. The results from the provided tests of both replication
mechanisms led to a better understanding of these mechanisms and allowed informed decisions
for future deployment. Graphs and tables include the statistical data and describe the replication
mechanisms in specific situations. PostgreSQL with the Slony extension with asynchronous replication
synchronized a batch of changes with a high transfer speed and high server load. MySQL with
synchronous replication synchronized every change record with low impact on server performance
and network bandwidth.
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1. Introduction

Replication is a process of copying and maintaining database objects [1]. The replicated databases
are monitored for changes and are synchronized when a change is made [1]. Database replication makes
a copy of data accessible from many various servers instead of accessing one central server, or enables
many servers to behave like one (parallel query processing) [1]. Database replication is not about
joining various data storages into one, which is known as a data warehouse [2,3]. Database replication
creates copies of the whole database or just specific tables on a different database server, and it
creates a connection between them for secure one-way or two-way synchronization [4,5]. There are
typical scenarios where database replications are used, e.g., secure lower latency for long-distance
communication, separate raw data storage and user data storage, secure high availability and
performance. Replication mechanisms are commonly used for web applications (e.g., sensor web and
WebGIS), or as georeplication for lower intercontinental latency [6,7]. Replication can be improperly
considered as a mechanism for creating data backups. Nevertheless, this is not the primary function
of database replications. The essence of database replication is to create a redundant, interconnected
distributed environment.

Keeping all data in one database server is not recommended for many reasons: (a) keeping raw
and publicly available data separate; (b) splitting processed data into specific parts for specific users
and (c) keeping databases in a local place to gain low query latency [1,4].
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Database replication is a means for increasing performance by the scale-out technique [8,9].
An increasing number of servers can help distribute peaks and heavy loads to many servers, which
can respond to users. The replication technique can be used to decrease latency time for user
requests [4,10,11].

The base unit of replication is a node, which represents one database server. A node can act as a
master or as a slave server. There are no standardized names for “master” and “slave” nodes, and
every company can have a different label for them, e.g., for a master these include primary, publisher
and leader, while for a slave these include standby, subscriber and follower. These names can have
a connection with a different type of replication logic, but most of the time the names express the
same behavior of the replication process [12]. The master server should focus mainly on inserting
and updating SQL statements. The slave server should work primarily on a selecting SQL statement.
A minimum of two servers is required to create a replication cluster. There can be many master servers
(multi-master replication) for two-way synchronization, or one master server with one or more slave
servers for one-way synchronization from master to slaves [13], or there can be a master server in the
standby mode. The standby server is in the offline mode and only receives changes from a master
server. The standby server will be activated by the inaccessibility of the first master server (e.g.,
watchdog logic).

There is a typical division among replication types between synchronous vs. asynchronous
and logical vs. physical replication [1,14]. Synchronous replication synchronizes every change
instantly, and after confirmation by the slave server, a master server synchronizes another data
change. The asynchronous replication will synchronize a batch of changes at a defined time step,
e.g., one second, one minute or one day. Almost every company that creates database solutions has
different replication strategies, but they can be placed into these basic categories. For example, the
Oracle Database has multi-master and materialized view replication [1]; Microsoft SQL Server has the
snapshot, merge and transaction replication [15]; MySQL contains statement-based, row-based and
mixed-base replication [16] and PostgreSQL natively (from version 9.0) supports streaming replication.
Many plug-ins and third-party software for PostgreSQL are available that can provide on-demand
functionality (e.g., Slony, PgCluster and Bucardo).

Spatial data are stored in a database as a special type of attribute, e.g., geometry, shape and
geography. The size of a spatial attribute varies. The shortest length is a point, while line and polygon
attributes (closed line) have a length based on a count of edge points.

The selection of spatial database management (SDBMS) was established based on criteria shown
in Table 1. All SDBMS support some form of database replication and the most popular and most
used databases are based on these [17]. This is also the case with the Department of Geoinformatics
in Olomouc, Czech Republic, which uses PostgreSQL or MySQL in most of its research projects and
student classes. In addition, at the Department of Geoinformatics PostgreSQL is being used as the
primary database for ArcGIS Enterprise, especially for the ArcGIS Server as data storage. PostgreSQL
also uses the ArcGIS Portal by Esri (also being used at the Department). MySQL is very popular in web
design (e.g., WordPress, Drupal and Wikipedia). MongoDB is the most popular NoSQL database system,
which also supports storing and base-processing of spatial data (three base functions—geoIntersects,
geoWithin and near). MongoDB does not have strong support in GIS desktop applications such as
PostgreSQL, MySQL, Oracle and the MS SQL server.
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Table 1. Criteria for a select database system for the experiment.

Criterion PostgreSQL MySQL Oracle MS SQL MongoDB
Coherence with projects and
students’ lessons

Yes Yes No No No

Multiplatform Yes Yes Yes Yes Yes
Hardware demands Minimal Minimal Higher Higher Minimal
Software demands Minimal Minimal Higher Higher Minimal
Store and process spatial
data

Yes Yes Yes Yes Limited

Interconnection with GIS Yes Yes Yes Yes Limited
User base World-wide World-wide World-wide World-wide World-wide

The replication mechanism used for this experiment was Slony-I v2.2.5 as an extension for
PostgreSQL and the native streaming replication for MySQL. The replication cluster included one
master server and one slave server, created by PostgreSQL using the Slony extension, which enabled
master–slave, asynchronous, logical, trigger-based replication. The replication cluster (one master and
one slave server) for MySQL was created using native streaming master–slave, synchronous, logical,
statement-based replication (SBR).

Slony uses database triggers to collect the events happening in a selected table. The selected table
is configured to the publisher/subscriber technique by Slonik Execute Script [18]. In the configuration
file connection info is set up to all databases in the replication cluster, and table sets that are involved
in the replication process. Slony creates unique tables in PostgreSQL to maintain the whole replication
process. Events (described by origin, type and parameters) are stored and queued in the “sl_event”
table. Data for replication are caught by the triggers and stored in “sl_log_1” and “sl_log_2” tables.
Then, there is a “localListener” thread, which periodically generates a “SYNC” event. This “SYNC”
event triggers the “remoteListener” thread to start synchronization in the replication cluster.

The idea of MySQL Statement-based replication is that there are at least two identical databases
where modifying statements can be executed (i.e., Insert, Update and Delete) instead of transmitting
“raw” data (as Slony or MySQL row-based replication (RBR) do), with SBR transmitting just the SQL
statement for modification of the database. MySQL creates a stream of SQL statements, which are
completed in the master server and then are completed in the slave server [19]. MySQL uses three
threads (Slony uses two) to process a replication. A “Binlog dump” thread sends binary log content
from the master to the slave server. The second thread, “Slave I/O”, runs on the slave server and asks
the master server to send the updates. The last thread, “Slave SQL”, also runs on the slave server
and reads the logs, which were previously written by the “Slave I/O” thread, and executes the event
contained in the log [20].

There are other techniques for increasing performance and robustness, such as load balancing or
high availability. These three techniques are recommended for highly robust, worldwide (geo)data
services [4].

There are many solutions for the evaluation of database performance such as the TPC-x (Transaction
Processing Performance Council), SSB (Star Schema Benchmark) or YCSB (Yahoo! Cloud Services
Benchmark). These tests evaluate the performance of databases in various ways: Number of inserts per
second; response time for a number of users; or 50/50, 100/0, 0/100 reads and update tests [11,21–24].
Evaluation of the performance of the replication cluster is not just about the response time of one
database, but also about the time it takes to synchronize data, the Central Processing Unit (CPU)
workload, the network workload and the impact on computer resources utilization for the replication
itself [13]. Criteria were set for an objective comparison of database replication of spatial data.
These criteria led to results of the suitability of each replication mechanism. The main criterion was
the total processing time of a replication process. The replication processes are highly reliable, with a
success rate of 100%. Hence, the success rate was not considered as one of the evaluation criteria.

Using replication mechanisms is also suitable for real-time scenarios, e.g., storing and publishing
data from wireless sensor networks (WSN) for the measurement of environmental conditions.
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These types of WSN produce a small amount of data (usually in the order of 1 bit to tens of
kilobits). Using just a replication mechanism to secure data high availability to clients is highly
dependent on many input requests into a database and a demanding deadline time for replication.
These limits of a master database can be tested by “inserts per second” tests. Replication mechanisms
are suitable for providing client accessible database (for reading) with processed data by, for example,
big data techniques, stream analytics or data mining.

2. Materials and Methods

Spatial data were stored in PostgreSQL 9.5 with extension PostGIS 2.3.3 and in MySQL 5.7.19.
PostgreSQL and MySQL database servers do not require any specialized hardware. They are
multiplatform software servers, which use computer resources (PC, notebook, mobile phone, Apple
MacOS, GNU Linux and Microsoft Windows).

The main advantages of these database servers are as follows:

• They enable storage and process of spatial data;
• They have native connectors to QGIS software;
• They are standalone solutions with a broad platform of users.

These two database servers contained an identical set of vector layers. The selected datasets are
commonly used in Czech state administration. The data set contained data from ArcCR500 v3.3 (scale
1:500,000, geographic and topographic information about Czechia), Data200 (scale 1:200,000, based
on EuroRegionalMap, a geographic model of Czechia), NaturalEarth v3.0.1 (scale 1:10 m, containing
cultural, physical and raster categories for the whole Earth) and estimated pedologic-ecological unit
(EPEU) for Olomouc region v5.1.2018 (scale 1:5000, absolute and relative production capacity of
agricultural land and the conditions for its most efficient use). The spatial data were stored in databases
as attribute data in standard OGC Simple Features for SQL 1.2.1. as the well-known-binary format
(WKB). The statistical information about spatial layers is shown in Table 2. The layers have a different
number of records ranging from 1 to 31,280 and a different number of edge points (15,092–3,725,023).
These values are essential for a replication mechanism.

Table 2. Information about data layers.

Layer name Dataset Type Number of
edge points

Number of
records

Table size (MB)

EPEU Czech land authority Polygon 3,725,023 31,280 228
City parts ArcCR 500 Point 15,092 15,092 12

Rivers Data200 Line 338,959 14,606 21
Cities Data200 Polygon 672,299 6353 27
World NaturalEarth Polygon 411,132 1 4

A master and a slave server were not installed on the machine (PC or notebook). Hence,
the connection between servers was not only on the network layer (by TCP/IP network model), but the
servers were interconnected through the link layer by a UTP cable. Three possible connections were
set between servers: connection through a router, direct connection and software limited connection.
The direct and through-a-router connections had a maximal transfer speed 100 Mbps. The limited
connection had a transfer speed of 10 Mbps. NetLimiter 4 was used to monitor and limit the network
speed. Currently, modern technologies are capable of operating on at least 10 Gbps transfer speed,
which is the maximum capability of UTP Cat6A and Cat7. The UTP Cat8 is still under development,
and it will offer 40 Gbps up to 30 meters [25]. Even mobile phones currently allow data transmission
through a wireless connection from HSPA+, sometimes marked as 3.5G with a maximum speed of
10 Mbps, to 5G with a maximum speed of up to 10 Gbps [26]. A Wi-Fi connection allows standard
IEEE 802.11b (publish in the 1999) communication with 11 Mbps [27]. Therefore, 10 Mbps is the lowest
data transmission speed and it was used just for this experiment. This restriction of transfer speed
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shows the differences between replication types. The limitation of transfer speed was set for a more
realistic condition where database servers do not have to be a single software or hardware solution in a
network, and one hardware server can serve many software servers, which share internet bandwidth.

2.1. Server Performance

Replication performance is not just about software robustness, but also about hardware. A personal
computer and a notebook were used in this study with different performances, as shown in
Table 3. The replication process was tested in both of the following configurations: PC as a master
server with the notebook as a slave server, and vice versa. The amount of connection influence through
a 100 Mbps router, a direct 100 Mbps connection between servers, and a 10 Mbps limited connection
was tested. The pre-test of replication mechanisms showed that CPU has a significant influence on
some replication processes. For monitoring, a HWMonitor Pro was used, which can create a log file
with results graphs of average CPU load and the load of a single core (for multi-core processors).

Table 3. Servers configuration.

Parameter PC Notebook
Operation system MS Windows 8.1 MS Windows 10

RAM 8 GB 4 GB
CPU Intel Core i5-4590 Intel Core i3-2330M

Graphic card Nvidia GeForce GTX-960 Nvidia GeForce GT-540M
Network card Realtek RTL8110G Broadcom NetLink
Network cable OEM CAT5E UTP OEM CAT5E UTP

2.2. Testing Procedure

Two primary operations were processed with spatial data. The first operation involved
updating/editing spatial geometry. The second operation was updating/editing attribute values.
The main monitored criteria were CPU loads, speed of data transfer (in Mbps) and time required
for the whole replication transaction. For every spatial layer, ten measurements were done for each
task for each cluster configuration (PC as master and notebook as a slave and vice versa) and every
network setup (with 10 Mbps limitation, connection through a router, direct connection). There was
no significant change in measured values over ten measurements. Database servers run on standard
Microsoft Windows 10 and Microsoft Windows 8.1, as shown in Table 3. Maximum free performance
was secured during experiments for database servers (paused, e.g., Microsoft Windows Update,
antivirus scan, any other software) and for monitoring software (HWMonitor Pro and Monyog).

The first task (update/edit spatial geometry) was completed in QGIS software, where a connection
to the master database server was established. The whole layer was edited by moving every point
or edge point in a spatial layer to a different position at the same time. The movement was random,
but any movement of all edge points of the polygon layer has a significant impact on edge point
coordinates in a polygon geometry. The second task (update/edit attribute values) was carried out by a
pure SQL query (UPDATE epeu SET b5 = 00100 WHERE gid < 30001) in the master database. One
attribute for 30,000 records was updated; this amount was chosen because lower amounts of records
was updated and replicated too quickly.

3. Results

The experiment was completed for different types of replication mechanisms in different SDBMS
to provide a broader perspective on replication mechanisms. The experiment confirmed that database
replications were suitable for spatial data. The different approaches using PostgreSQL and MySQL
show replication mechanism variability and that it can be difficult to choose the right approach for a
specific case. Experimenting with different approaches highlights the advantages and disadvantages
of the Slony and SBR replication mechanisms; we do not try to compare two similar approaches, e.g.,
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Slony and RBR. The analysis resulted in several useful conclusions that can be used to gain a better
understanding of spatial data replication for PostgreSQL and MySQL. These findings are described in
the following section.

Firstly, the average CPU load and CPU cores’ load during replication of the EPEU spatial layer
was tested. Afterwards, the transfer speed during replication of EPEU spatial layer was calculated.
Finally, the replication time for other spatial layers and the average time of replication of attribute
changes were calculated.

Figures 1 and 2 show the CPU loads during the synchronization of changes in layer EPEU for
PostgreSQL and MySQL.
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Figure 1. Average Central Processing Unit (CPU) load during replication of the estimated
pedologic-ecological unit (EPEU) layer by PostgreSQL (Slony).

The PostgreSQL database with a Slony extension (Figure 1) clearly showed Slony using
asynchronous replication. Slony waits for changes to be completed in the master database and
after that changes are synchronized to the slave database. MySQL uses streaming, synchronous
replication; thus, every changed record (in this case, every polygon) was promptly sent to a slave
server as the same modification statement, which was done in the master server (SBR replication).
For PostgreSQL, a master database has an average CPU load of up to 33% at the time of storing changes
into the database. PostgreSQL completes the changes in the master server first and stores all data in a
table. When the master server is not resolving any changes, then Slony sends data to a slave server
(middle part of Figure 1). During the synchronization of changes, the CPU is almost at an idle state.
PostgreSQL is not slowed down by replication threads, which would be sending data to the slave
server. This step (sending data) is done after changes in the master database are finished.



ISPRS Int. J. Geo-Inf. 2020, 9, 249 7 of 20ISPRS Int. J. Geo-Inf. 2020, 9, 249 7 of 20 

 

 

Figure 2. Average CPU load during replication of the EPEU layer by MySQL. 

The PostgreSQL database with a Slony extension (Figure 1) clearly showed Slony using 

asynchronous replication. Slony waits for changes to be completed in the master database and after 

that changes are synchronized to the slave database. MySQL uses streaming, synchronous 

replication; thus, every changed record (in this case, every polygon) was promptly sent to a slave 

server as the same modification statement, which was done in the master server (SBR replication). 

For PostgreSQL, a master database has an average CPU load of up to 33% at the time of storing 

changes into the database. PostgreSQL completes the changes in the master server first and stores all 

data in a table. When the master server is not resolving any changes, then Slony sends data to a slave 

server (middle part of Figure 1). During the synchronization of changes, the CPU is almost at an idle 

state. PostgreSQL is not slowed down by replication threads, which would be sending data to the 

slave server. This step (sending data) is done after changes in the master database are finished. 

MySQL has slightly higher CPU load values than for the idle state (Figure 2). The peaks at 

around 30% processor loads can be a sign of the demanding SQL query or a higher number of edge 

points in a record. Figure 2 shows that the slave database consumes more processor power than the 

master database, and it was caused by the less powerful CPU. For the same task, the CPU needs more 

resources. 

MySQL creates a statement with modification of record, and this statement is sent to the slave 

server in a binary log (in cooperation with three threads) almost immediately. Therefore, both servers 

are busy at the same time, executing the same statement. The process of changes in the EPEU polygon 

layer takes a longer time, but is not so demanding of CPU power. 

  

Figure 2. Average CPU load during replication of the EPEU layer by MySQL.

MySQL has slightly higher CPU load values than for the idle state (Figure 2). The peaks at
around 30% processor loads can be a sign of the demanding SQL query or a higher number of edge
points in a record. Figure 2 shows that the slave database consumes more processor power than the
master database, and it was caused by the less powerful CPU. For the same task, the CPU needs
more resources.

MySQL creates a statement with modification of record, and this statement is sent to the slave
server in a binary log (in cooperation with three threads) almost immediately. Therefore, both servers
are busy at the same time, executing the same statement. The process of changes in the EPEU polygon
layer takes a longer time, but is not so demanding of CPU power.

3.1. CPU Core Load

Each CPU core was monitored by the same method, as an average CPU load. A PC with four CPU
cores was used as a master server for monitoring. This experiment shows how the individual cores
were involved in the replication process. Figures 1 and 2 show the average CPU load of the master and
the slave server. Figures 3 and 4 show the CPU cores of the master server during the replication process.
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Figure 3 shows the loads of each CPU core during the editing and storage of data, and the
subsequent replication process. The graph was divided into three parts (the same as an average CPU
load in Figure 1). The first part of Figure 3 shows the loads of the second and fourth CPU core that
were working on storing the edited data in QGIS. There is an assumption that the second core is using
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QGIS for data changes and the first core is being used to store data in the database. The middle part
represents the replication process of sending binary log files by Slony thread. The third part shows the
idle state of CPU after the whole replication process.

Figure 4 shows the use of CPU cores for the MySQL master server. There was no significant
difference between average core loads. Every core took part in the replication process. Single-core peaks
in Figure 4 are the same as in the average CPU load in Figure 2 (demanding of SQL query or a higher
number of edge points in a record). The full power of CPU was not used because each modification SQL
statement was sent to the slave server immediately after the trigger modification event and executed
the modification statement instead of replacing data in a table (as Slony and RBR do).

3.2. Transfer Speed

The maximum or average transfer speed reached was the next monitored criterion. Figures 5
and 6 show the transfer speed for replication from the PC as a master server to the notebook as a slave
server for PostgreSQL and MySQL. Figures 7 and 8 shows the average transfer speed for all other
server configurations. This experiment shows the differences among configurations in demand for
network bandwidth and robustness.
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There is a definite point in Figure 5 where the data started to upload and download from the
master to slave server. The maximum transfer speed was 70 Mbps (Figure 7) for the configuration
with the PC as a master server and via a connection through a router. A router mainly causes a lower
speed than the accessible maximum (100 Mbps), since with the direct connection between servers the
full 100 Mbps transfer speed was reached. PostgreSQL, after storing changes in a master database,
attempted to send data with maximum speed through the network, as can be seen in Figures 5 and 7.
On the opposite side is MySQL, with streaming replication, where the synchronization speed was
around 10 Mbps (Figures 6 and 8). The difference between speed transfers was caused by replication
technologies, where PostgreSQL with Slony used asynchronous replication (sending raw data after
master server finishes all changes) and MySQL used streaming, SBR, synchronous (sending stream of
the modification SQL statement and executing them in the slave server) replication. Transfer peaks
for MySQL (Figure 6) were caused by a more complex polygon with a bigger record in the EPEU
spatial layer. These results show how demanding network stability, robustness and bandwidth were.
PostgreSQL synchronizes batches of all changes into the slave server. Unlike that, MySQL sends a
stream of SQL modification statements to be executed in the slave server continuously, while making
changes in the master server.

3.3. Replication Time

One of the main criteria is the time of replication from a master to a slave server. PostgreSQL
replicates changes in one large log file (“sl_log_1” or “sl_log_2”) and tries to use as much network
bandwidth as possible. MySQL replicates changes continuously from the start, where changes are
made in QGIS. The time of each replication was very different because of the replication technology
used. Figure 9 shows the amount of time taken for the replication of the most extensive spatial layer
EPEU. Each situation was measured ten times. The boxplots depict the first and third quartiles, the
median and the absolute minimum and maximum of the time taken.
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Figure 9. Replication time of changes of the EPEU layer.

There was a significant difference in time taken between these two replication mechanisms.
The time differential was mainly caused by the synchronous and asynchronous approaches used by
each database server. Synchronous replication sent every record change instantly after it was saved
in a master database, while asynchronous replication sent a bulk of changes. Slony synchronized
between replication nodes in less than 30 s, while MySQL synchronized in almost 1700 s (56 times
more time) for the same amount of data and changes.

Figures 10 and 11 show the statistical data of all four server configurations for a replication
EPEU layer.
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Figure 11. Replication time of the EPEU layer for different cluster configurations by MySQL.

Differences between PostgreSQL and MySQL were not just in terms of replication time, but
also in the variance of measurements. The specific numbers regarding Figures 10 and 11 are shown
in Table 4. PostgreSQL, unlike MySQL replication, had a significant time increase with a 10 Mbps
limitation transfer speed. Figure 12 provides a visual comparison showing the average replication
time for each condition. As the Slony replication extension tries to use as much connection bandwidth
as possible, the 10 Mbps limitation excessively prolongs the replication time. A router causes a time
difference between a PC (as a master server) connected through a router and direct connection. This is
the consequence of the lower transfer speed through a router. For the replication time with MySQL,
there is a limitation of the CPU power of the master server. When a notebook is the master server and
must process and send an edited layer simultaneously, the replication is slower. The transfer speed
limitation for MySQL is not relevant. The most fundamental statistical analyses of replication time are
shown in Table 4. The average replication times may look more stable for PostgreSQL than for MySQL,
but with a much faster replication process; both database servers had a standard deviation in time of
under 5%. Only PostgreSQL with the PC as a master server configuration had a standard deviation in
time of 12%.

Table 4. Statistics analyses of the replication time of the EPEU layer for both replication solutions.

Solution PostgreSQL (Slony) MySQL
Cluster

conf.
PC as
master
server

PC as
slave
server

Direct
conn.

10 Mbps
lim.

PC as
master
server

PC as
slave
server

Direct
conn.

10 Mbps
lim.

Average 23.00 11.40 14.63 99.14 1633.30 2656.50 1643.70 1628.10
Variance 7.39 0.05 0.07 0.07 926.01 6668.25 370.41 2451.89

Range 8.91 0.82 0.80 0.89 115.00 303.00 73.00 191.00
Standard
deviation

2.72 0.22 0.26 0.26 30.43 81.66 19.25 49.52
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3.4. Replication Time of Other Spatial Layers

The replication time of other spatial layers followed the same methodology used to test the
replication time of the EPEU layer. However, they had fewer edge points, records, and, of course, size.
Hence, it was irrelevant to do the same CPU load and transfer speed test as for the EPEU layer.

Figure 13 shows the average replication time (based on ten measurements) for every layer and
every replication configuration. If we focus on the replication time for PostgreSQL, we can see there
was a definite time development that depended on a number of edge points (in Table 2) with the
10 Mbps speed limitation. Other layers were influenced by the number of edge points, which were also
edited (by a movement to another place in QGIS). On the other hand, the MySQL replication time
(Figure 14) relied on a number of records. With an increased number of records, the time of replication
increased. This is the result of sending each change of record almost immediately as the record was
changed in the master server to the slave server, where the record modification was created again (by
executing the SQL statement).
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Figure 14. Average replication time of layers with different cluster configuration by MySQL.

There was no difference between point, line or polygon spatial layers for PostgreSQL and MySQL
replication mechanisms. Figures 13 and 14 show the opposite behaviors of the PC as a slave server,
where for PostgreSQL the replication was the quickest, while for MySQL the replication was the
slowest. For MySQL, SBR replication demands more from the master server. This is because the master
server has to store data and simultaneously transfer it to the slave server.

For PostgreSQL, there were considerable differences between the servers’ configurations. If the
slave server is more powerful than the master server, then the replication is made faster (faster data
processing in a faster machine). Configurations of the MySQL replication cluster showed almost the
same results (same time of replication for PC as master server, direct connection and 10 Mbps limitation).

3.5. Replication Time of Decimal Attribute Data

The last test was done to prove the difference between attributes with a spatial data format and
attributes with a decimal format. There is, of course, a difference in the length of attribute records.
The decimal or text attribute data should respect at least the first three relational database normalization
rules proposed by Codd [28]. Results were a much smaller size of single decimal or text attribute record
compared to attributes containing spatial information.

Figures 15 and 16 show the average times for replication of 30,000 updated records in both
database servers. For PostgreSQL, the database replication of decimal attribute records was quickest
with the configuration with the PC as a slave server. The speed limitation for PostgreSQL did not have
an impact on replication time. By contrast, MySQL was affected by the speed limitation, and it was
almost five times slower compared with PostgreSQL. The direct connection or speed limitation had a
negligible influence on replication.
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Figure 16. Average replication time of layers with different cluster configurations by MySQL.

For PostgreSQL, it is again proved that a more powerful slave server could decrease the time for
the replication process. For MySQL, it seems that it was optimized for replication of classical data
structures rather than spatial data. The 10 Mbps limitation was almost five times slower than a direct
connection of servers. There could be an optimization of the transfer process of decimal attributes:
it was faster to execute and then update spatial data to the slave server. Hence, 10 Mbps limitation
would always slow down the whole replication process.
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4. Conclusions and Discussion

This study aimed to describe and test available database replication solutions that provide
replication functionality over spatial data. The results from tests performed of the replication
mechanisms confirmed that there were available replication mechanisms of spatial databases for the
distribution of spatial and sensor data. Spatial data replications were more specific and required a
specific approach compared to the replication of common data types.

This paper presents a comparison of two database replication mechanisms for PostgreSQL and
MySQL. This selection was based on criteria shown in Table 1. One of the main reasons to test
PostgreSQL and MySQL over Oracle and Microsoft was the price of these solutions. Oracle does not
require any exclusive license for Oracle Spatial and Graph from 5 December 2019, and it is included in
the Oracle Database. Oracle offers the Standard Edition 2 for a minimum of $21,000. The Microsoft
SQL Server is cheaper than Oracle, but it is still $3717 per core. Both systems are out of range of the
Department of Geoinformatics. Nevertheless, the suggested experiment is reproducible for any SDBMS.

Both database servers (PostgreSQL and MySQL) are conventional in a GIS application. Creating a
robust, secure and fast distributed environment should be part of every more extensive project.
Except for replication, setting up a load balancer and high availability solutions (e.g., using PgPool for
PostgreSQL and MySQL Router for MySQL) should be considered. The comparison was made under
real conditions and on real spatial data. Spatial data from publicly available datasets were used, and
servers with different performance. From the graphs produced, it can be seen that to swap between a
master and a slave server from PC to notebook generated a different result based on master or slave
server performance. We also tested the behavior with a speed limitation, a different number of edge
points or records, and servers connected through a router, directly or with a 10 Mbps limitation.

The times of replication (Section 3.3) were related to transfer speed (Section 3.2) and with CPU
load (Section 3.1), and of course, with replication technique. PostgreSQL and MySQL use different
replication approaches, and this experiment shows that each replication technique had advantages
and disadvantages.

PostgreSQL with a Slony extension uses asynchronous logical replication and the replication time
depends on the server performance and connection bandwidth. Slony-I allows replication of one or
more tables among PostgreSQL servers. PostgreSQL can handle larger dataset processing than MySQL
and replicate it in a shorter time, although Slony can create an inconsistency between a master server
and a slave server for a certain amount of time (time-step synchronization). PostgreSQL servers must
have an excellent connection to each other and appropriately powerful hardware. The advantages of
PostgreSQL with Slony replication are that Slony enables replication between different PostgreSQL
major versions and different operating systems, and replicates only some of the tables to some of the
slaves (cascade replication) [18]. Its disadvantages include that it can be harder to set up and can be
hard to synchronize the change in a schema.

MySQL uses native streaming, synchronous logical replication, where the performance and
connection bandwidth is not as crucial. The replication depends on a number of edited records because
synchronous replication synchronizes every record separately. The master server sends a binary log
with a statement (SBR mechanism) to the slave server when it is executed. These binary logs can be
used for auditing. The Monyog reveals that the record was firstly deleted from a slave server and
then was inserted into a new record. Although synchronous replication should secure master–slave
consistency, the time taken to finish the replication was much greater than for PostgreSQL. Whether
one should use this method is very use-case dependent; Slony replication would be an advantage if
there is no need for record consistency for some amount of time (in order to record Slony finish changes
in the master and then send them into slave server), e.g., long-term analyses in the master server.
Alternatively (MySQL), if it is better to synchronize every record in the slave server immediately as a
record changes in the master server, e.g., real-time mapping (city passporting of trees).

Overall, the right configuration of a whole distributed environment, including database replication
in collaboration with load balancing and high availability techniques, will lead to an improvement in
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reliability and availability of data in the database cluster for a client (web page, desktop GIS). This creates
a distributed environment, where an application can access the datastore independently of the location
of the sources. With an increasing number of replication nodes, the complexity of the system increases,
as do the management demands and potential data fragility. The comparison of PostgreSQL with Slony
replication and MySQL native streaming replication shows the difference between asynchronous and
synchronous logical replication. Slony is more suitable for a large dataset and can handle extensive data
edits. MySQL replicates a data change slower but maintains data consistency in the whole replication
cluster at all times. The MySQL replication time is mainly influenced by the number of records and CPU
power of the master server. MySQL replication does not require as much CPU power as PostgreSQL
and is less demanding on network bandwidth.

PostgreSQL with Slony database replication can be used in a cluster, where a lot of changes in
data (edge points) are made, but where it is not crucial to have every change in a whole cluster at the
same time (delay from seconds to minutes). The Slony replication time depends on the power of the
slave server and the quantity of edge points in the replicated data.

For concurrent work over an extensive spatial database storage, where every GIS expert completes
long-term analysis, the right solution would be to work on a local copy of the database and synchronize
results and changes between themselves by database replications. PostgreSQL with Slony is usable
everywhere and is modified by the included layers. Every layer in the spatial database is one table, and
Slony does not modify a schema for replication automatically. For adding new layers in the database,
it is better to use native PostgreSQL streaming replication or streaming MySQL SBR or RBR replication.
Slony is useful for the database in production, where there are changes in data (Update, Insert and
Delete) and some delay between the master and slave server is irrelevant. Slony replication can be
used in a sensor network, which uses Low Power Wide Area Network (LPWAN) technologies for
communication, where data transfer is not counted with precise time deadlines and it is not necessary
to replicate every record immediately or how it was received into the master server. On the other
hand, MySQL SBR-type replication is useful to show instant changes in spatial data. Any solution
for movement tracking or online collaboration over one dataset (e.g., passporting trees using mobile
phones) is necessary to synchronize every change in the dataset between databases for consistency.

Both replication mechanisms in this experiment proved that they were able to handle a small
amount of data without overloading the network or CPU and were able to finish data replication in
the order of seconds. During real-time cooperation, where users modified record by record (creating
new points, updating record attributes), both replication mechanisms were able to provide a powerful
distributed environment for this type of work.

Practically, these replication mechanisms have been primarily used for these research tasks [29–31].
The purpose of deployment of replication mechanisms for these research tasks was using an extensive
spatial dataset; hence, the benefits of a distributed database network for load balancing between
the master database (to write changes) and slave database (for solving analytical problems) were
utilized [5].
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