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Abstract: To accurately identify slope hazards based on high-resolution remote sensing imagery, 
an improved watershed segmentation algorithm is proposed. The color difference of the Luv color 
space was used as the regional similarity measure for region merging. Furthermore, the area 
relative error for evaluating the image segmentation accuracy was improved and supplemented 
with the pixel quantity error to evaluate the segmentation accuracy. An unstable slope was 
identified to validate the algorithm on Chinese Gaofen-2 (GF-2) remote sensing imagery by a 
multiscale segmentation extraction experiment. The results show the following: (1) the optimal 
segmentation and merging scale parameters were, respectively, minimum threshold constant C for 
minimum area Amin of 500 and optimal threshold D for a color difference of 400. (2) The total 
processing time for segmentation and merging of unstable slopes was 39.702 s, much lower than 
the maximum likelihood classification method and a little more than the object-oriented 
classification method. The relative error of the slope hazard area was 4.92% and the pixel quantity 
error was 1.60%, which were superior to the two classification methods. (3) The evaluation criteria 
of segmentation accuracy were consistent with the results of visual interpretation and the 
confusion matrix, indicating that the criteria established in this study are reliable. By comparing the 
time efficiency, visual effect and classification accuracies, the proposed method has a good 
comprehensive extraction effect. It can provide a technical reference for promoting the rapid 
extraction of slope hazards based on remote sensing imagery. Meanwhile, it also provides a 
theoretical and practical experience reference for improving the watershed segmentation 
algorithm. 

Keywords: Luv color space; watershed segmentation; region merging; slope hazard; remote 
sensing 

 

1. Introduction 

Slope hazards (referring to unstable slopes, landslides, and collapses) are common geological 
phenomena that have strong effects on the environment around the hazard body and on the safety of 
human lives and property [1]. Development of remote sensing technology provides a more efficient 
means for extracting slope hazards. To date, many slope hazard extraction studies have been 
performed based on image classification and segmentation methods. Nevertheless, most of the 
previous extraction methods are still rely on visual interpretation of the images based on the 
Geographic Information System (GIS) software. It not only requires the technicians to be highly 
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experienced in geosciences and interpretation, but also necessitates a large investment of manpower 
and time, leading to low production efficiency and making the extracted information subjective and 
imprecise. This makes it difficult to meet the requirements to apply slope hazard extraction to 
post-hazard emergency investigation and hazard assessment [2]. With the rapid development of 
high-resolution remote sensing image segmentation technology, automatic extraction of slope 
hazard boundaries is becoming increasingly feasible [3–6]. Among the available image segmentation 
techniques, the watershed segmentation algorithm is proposed based on the color differences of 
image pixels. A better segmentation effect can be obtained for those images with more obvious 
contrast [7]. Slope areas have highly consistent textures and spectrums on a high-resolution remote 
sensing image, but the hues are usually different from that of the surrounding background. This 
provides the basis for automatic extraction of slope hazard boundaries using watershed image 
segmentation technology.  

Increasing research efforts have been recently devoted to developing the watershed 
segmentation algorithms. For example, the overflow method [8,9] was proposed and applied. 
Furthermore, the segmentation method was used from grey images to color images [10]. The 
processing speed was also improved by the precipitation watershed segmentation [11]. The 
connected component operator was used to improve the watershed segmentation algorithm [12]. 
Soille systematically summarized the literature on the watershed segmentation algorithm [13]. To 
date, the algorithm has been widely used in the field of remote sensing image information extraction 
[14–16]. In addition, dozens of improved watershed segmentation algorithms have been also 
proposed to solve the problems of image over-segmentation and obvious algorithm noise, such as an 
algorithm based on efficient computation of the shortest paths [17], a texture marker-controlled 
watershed segmentation algorithm [18], an edge embedded marker-based watershed segmentation 
algorithm [19], a wavelet transform in combination with marker-based watershed segmentation 
algorithm [20], and image segmentation including image enhancement and noise removal 
techniques with Prewitt’s edge detection operator [21]. The improved methods include 
pre-improvement, post-improvement, or both; among these, the region merging based watershed 
segmentation algorithm [16,22,23] can be used after segmentation based on the characteristics of the 
region texture, color, and shape information. Chen adopted fuzzy clustering with spatial patterns for 
post-improvement [24]. Additionally, some scholars used prior knowledge for pre-improvement 
and regional combination for post-improvement [25,26]. Studies on image brightness equalization 
based on color space measurement in the lab color space [27] have been performed gradually to 
obtain better segmentation results by developing watershed image segmentation and region 
merging methods. Meanwhile, the red–green–blue (RGB) color model has been used in traditional 
image processing. In such a color model, three components of an image are highly correlated. When 
the brightness is changed, all the three components will be changed. This property of the RGB color 
definition makes the model unsuitable for the image segmentation. Therefore, watershed 
segmentation algorithms based on the intensity–hue–saturation (IHS) color model [28] and 
improved color space [29] were developed, which have been jointly used with clustering algorithms 
for image classification. 

The accuracy of subsequent information analysis and processing has been found to be directly 
affected by the image segmentation quality [30,31]. Therefore, it is necessary to comprehensively and 
objectively evaluate the image segmentation methods [32]. Evaluation of segmentation accuracy is 
considered to be equally important as the image segmentation technology [33]. Various qualitative 
and quantitative methods have been proposed [34–37]. However, there are many uncertainties for 
remote sensing image segmentation. It is recognized as an issue for quantitatively evaluating the 
image segmentation [33,38,39]. To assess the segmentation quality, various indicators were 
proposed [40–47]. Although these methods have supported the evaluation of the segmentation effect, 
the subjective evaluation method is still the most commonly used method [33]. 

It is highly necessary to improve the accuracy and simplify the evaluation criteria for extracting 
slope hazard boundary based on remotely sensed images. A Chinese Gaofen-2 (GF-2) image was 
processed in the Luv color space. The post-processing-based region merging method was used to 
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improve traditional simulated immersion watershed algorithm. At the same time, an improved 
evaluation criterion for watershed segmentation was also proposed. Finally, a complete Luv-color 
space-based region merging watershed segmentation (hereafter refers to as Luv-RMWS) was 
developed to extract slope hazard boundary. The primary sections are arranged as follows: (1) study 
area and preprocessing are shown in Section 2; (2) the technical flowchart and algorithm 
descriptions of Luv-RMWS are presented in Section 3; (3) proposed accuracy evaluation criteria 
including area relative error and pixel quantity error are shown in Section 4.3; (4) comparison of 
segmentation results and evaluation of extraction accuracy and processing time are shown in Section 
5; and (5) corresponding discussions concerning optimal scale parameters and extraction effect are 
given in Section 6. 

2. Study Area and Data Preprocessing 

2.1. Study Area 

The study area is located in Taohuagou, Du'erping Mining Area, Xishan Coalfield, Taiyuan 
City, Shanxi Province, China (Figure 1). The area is characterized by unstable slopes, landslides, 
collapses, and other geological hazards. In this paper, an unstable slope (marked by ★ in Figure 1) 
was selected to extract its boundary based on the proposed Luv-RMWS method. 

 

Figure 1. Geographical map of the study area. 

2.2. Data Sources and Preprocessing 

A GF-2 remote sensing image of 2015 with a spatial resolution of 1 m was selected as the 
experimental data (Figure 2a). Geometric and orthographic corrections were carried out based on 
the 1:10,000 topographic map produced by aerial photogrammetry in 1999. Additionally, image 
fusion, clipping, and contrast enhancement were adopted to highlight the slope information (Figure 
2b). 
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(a) (b)  
Figure 2. GF-2 remote sensing images: (a) original image and (b) contrast-enhanced image. 

3. Methodology 

3.1. Technical Procedure 

Watershed segmentation algorithm can be implemented by many methods. One of the most 
commonly used is the simulated immersion algorithm, first proposed by Vincent and Soille [8]. In 
this study, it is performed using the simulated immersion algorithm (Figure 3). 

Data collection

In-situ slope 
hazard data

GF-2  
image

Ancillary 
data

Selection of optimal scale parameters for region 
merging in the Luv color space 

Improved watershed segmentation algorithm 
based on Luv color space and post-

processing region merging 

Unstable slope boundary was 
extracted by the Luv-RMWS

Unstable slope boundary was 
extracted by maximum likelihood  
classification and object-oriented 

classification methods

Results comparison and precision evaluation
 

Figure 3. Flowchart of processing used in this paper. 

3.2. Luv Color Space and Transformation 

CIE1976 Luv is a color space derived directly from the CIE XYZ space that is used to linearize 
chromatic aberration perception. Here, L ranging from 0 to 100 is the brightness of a pixel that is 
consistent with the L in Lab color space, while u and v are the chromaticity coordinates and range 
from –100 to 100 [48]. CIE1976 specifies the conversion between RGB and XYZ, and XYZ and Luv. 
The conversion procedure is as follows: 
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1. The color value of each channel of the image is denoted as R, G, B, respectively. 
2. Assuming it is the standard RGB color space coordinate, the relatively uniform chromaticity 

coordinate L, u, v can be obtained through the color space conversion [49]. 

X 0.430 0.342 0.178 R
Y = 0.222 0.707 0.071 G
Z 0.020 0.130 0.939 B

     
     
     
          

 (1) 

1/3
nn

nn

If(Y / Y ) > 0.008856166 * (Y / Y ) -16
L =

If(Y / Y ) 0.008856903.3* (Y / Y )

 

 

 

(2) 

 

13 ( ' ')
13 ( ' ')

n

n

u L u u
v L v v
  
  

 (3) 

where 'nu  and 'nv  are the coordinates of CIE standard light source and are the tristimulus 
values given by 

' 4 / ( 15 3 )u X X Y Z    (4) 

' 9 / ( 15 3 )v Y X Y Z    (5) 

' 4 / ( 15 3 )n n n n nu X X Y Z    (6) 

' 9 / ( 15 3 )n n n n nv Y X Y Z    (7) 

In the case of 2° observer and C light sources, 2009.0'nu , 4610.0'nv . 
In the Luv color space, the difference between any two colors is referred to as chromatic 

aberration. Chromatic aberration is the distance between color positions expressed as ∆E, i.e., the 
chromatic aberration between two colors is calculated as: 

2 2 2 1/2( )E L u v      (8) 

where ∆L is the difference in brightness, and ∆u and ∆v are the differences between two colors 
in the u and v directions, respectively. 

3.3. Region Merging Similarity Measure Based on Luv Color Space 

To evaluate the color quality of remote sensing images, Xue evaluated the brightness 
equalization after transforming the RGB color space into the Lab color space. This approach is to 
divide the image to m × n small areas and calculate the mean of the gray value or L for each small 
area image, and then take the mean value as the brightness value to form a new image by a 
resampling procedure. Then, the quadric surface is fitted according to the region block, and the 
mean square deviation σ2 (0, 255) is calculated, which is the image brightness equalization index 
[27,50]. It is clear that this approach is related to region merging. The brightness equalization 
approach seeks to find the brightness difference between image blocks and then evaluate the overall 
brightness deviation of the image, while the region merging approach aims to find the difference 
between segmented regions and then determines whether to merge the regions according to the 
similarity measure. The method used in this study is based on a combination of these research 
findings and differs from the traditional region merging approach. The watershed segmentation 
algorithm usually uses the RGB and IHS color spaces. The Luv color space, similar to the Lab color 
space, is selected as the regional similarity calculation basis of the algorithm, and the algorithm was 
improved based on the homogeneity maximization criterion [51].  
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3.3.1. Optimal Segmentation Scale Parameters 

The key parameter for selecting the scale parameters by the watershed segmentation algorithm 
is the threshold value (Amin) of the minimal region. Defining M as the row value of an image, N as the 
column value, and C as a given constant, and taking the number of pixels as the minimum area to 
determine the threshold, we obtain:  

min ( ) /A M N C   (9) 

It is clear that Amin is not a fixed value and will have different values for different sizes. 
Generally, the optimal Amin can be determined by a trial-and-error test, but it is crucial to properly 
determine the value of constant C. 

3.3.2. Optimal Merging Scale Parameters 

Chromatic aberration is the Euclidean distance between positions of the colors in the Luv color 
space. The color similarity of two positions can be determined using the color difference threshold, 
by integrating the homogeneity maximization criterion and light intensity threshold similarity 
measures. In this paper, the chromatic aberration of Luv color space is used to determine the 
similarity value of regions in the segmentation unit. If the chromatic aberration is within the 
threshold range, the regions are similar and will be merged; otherwise, the regions will not be 
merged. This is carried out to achieve merging of the segmentation results of the image. 

Suppose that Ri and Rj are the two regions of G image divided by the watershed segmentation. 
To eliminate the impact of the size difference of regions during merging process, an improved 
calculation equation (Equation 10) was proposed to obtain the chromatic aberration of adjacent 
regions in the Luv color space. 

2

, ,

| | | |
( ( ) ( )) 1,2,3 , ; 1,2,3 ,

| | | |
i j

i c i c j
c L u vi j

R R
d F R F R i n j n

R R 


     

 
 

(10) 

where |Ri|, |Rj| are the numbers of pixels contained in image areas Ri and Rj, respectively; 
Fc(Ri), Fc(Rj) are the average colors of image areas Ri and

 
Rj, and n is the number of adjacent areas. 

The color difference is used to determine the similarity between the current minimum region 
and its adjacent regions. If di ≤ 1, the colors of two regions cannot be distinguished, so a smaller di 
indicates greater similarity between the colors [52]. In region merging, it is necessary to determine 
whether the colors of adjacent regions are similar. Therefore, threshold size di is determined by 
theoretical analysis and empirical verification. Let the color difference threshold be D; if the color 
difference threshold is set, region merging of the segmentation results is completed under the 
constraint D  until similar region merging can no longer be performed. 

The region merging algorithm based on the homogeneity maximization criterion of Luv color 
space is given by: 

1. The pixels of in image are converted from RGB values to Luv values after watershed 
segmentation, and the average Luv value in each region is calculated as the Luv value of this region. 
The segmentation result is converted from RGB to Luv color space, which can be used for calculating 
the similarity of region merging. 

2. Four neighborhood arrays of each region with Luv mean value are set as the color of the 
region. 

3. Threshold Amin for determining the minimal area is calculated according to the C and image 
size. All areas are scanned in turn, and the minimal area is found as the initial combined area. If the 
number of pixels of an area is less than the number of image pixels divided by C, it will be 
considered as a minimal area for calibration; otherwise it is not. 

4. To determine the minimal area, all adjacent areas are traversed to obtain the average Luv 
value of adjacent areas. The value of chromatic aberration di is calculated between the minimal area 
and adjacent areas, and regions with the closest similar regions are found to be merged based on the 

judgment method of threshold D of chromatic aberration. When Ddi  , the regions are merged; 
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otherwise, when Ddi  , the regions do not merge. The calculation equation of chromatic 
aberration is shown in Equation (10). 

5. The information of adjacent regions is refreshed to form a new region, after the minimal 
region is merged with similar regions close to it. The Luv value of the new region is the mean value 
of the Luv value of the two regions before merging. 

6. The new area is judged after merging; return to step 4 if it is still a minimal region; otherwise, 
proceed to the next step. 

7. All the areas are judged. If all regions have merged, it ends; otherwise return to step 3. 
8. The Luv values of all merged areas are converted into RGB values for better display effect, so 

the final result of segmentation area in the image is displayed in RGB values. 

4. Comparative Methods and Accuracy Evaluation 

4.1. Maximum Likelihood Classification 

Maximum likelihood classification (MLC) is also known as Bayes classification. To calculate the 
probability (likelihood) for each pixel in each category, the pixels are categorized using the 
maximum likelihood [53]. It is assumed that there are k types of ground objects in the remote sensing 
image, and category i of a ground object is represented by wi, and the prior probability for each 
category is P(wi). Given an unknown category X, the conditional probability appearing in class wi is 
P(X|wi) (also called the likelihood probability of wi). According to Bayes′ theorem, the posterior 
probability of category can be obtained as follows: 



 


1

( | ) ( ) ( | ) ( )
( | )

( ) ( | ) ( )

i i i i
i k

i i
i

P X w P w P X w P w
P w X

P X P X w P w
 

(11) 

where P(X) is a constant for each category, and the discriminant function can be simplified as 
follows: 

( | ) ( | ) ( )i i iP w X P X w P w  (12) 

In the Bayes classifier, the posterior probability of category X is used as the discriminant 
function to determine the specific category. When P(wi|X) > P(wj|X) is satisfied for j = 1, 2, …, k, j ≠ i, 
then X belongs to class wi. 

4.2. Object-Oriented Classification  

A multiscale segmentation algorithm is adopted in object-oriented classification (OOC), the key 
of which is determining the optimal segmentation parameters. At present, repetitive experiments are 
often carried out on images before segmentation, and the best segmentation parameters are visually 
judged a trial-and-error test. The overall heterogeneity of image segmentation objects is controlled 
by spectral and shape heterogeneity parameters [54], and the expression is given by 

color color shape shapeh h h      (13) 

where h 
h

is the overall heterogeneity of the object; hcolor is spectral heterogeneity; hshape is shape 
heterogeneity; ωcolor is the weight of spectral heterogeneity; ωshape

 
is the weight of shape 

heterogeneity, and ωcolor + ωshape = 1. Shape heterogeneity is comprehensively expressed by 
smoothness and compactness, and the equation is given by 

shape com com smooth smoothh h h      (14) 

where ωcom is the custom compactness weight, ωsmooth is the custom smoothness weight, and the 
sum of ωcom and ωsmooth is 1. 

4.3. Accuracy Evaluation Criteria 
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As mentioned above, the existing evaluation methods mainly focus on visual evaluation, or are 
based on the applicable conditions to evaluate the accuracy of the algorithm. How to be simple and 
effective, and quantitatively evaluate the segmentation accuracy of the watershed algorithm is still a 
difficult issue [33,38,39]. Based on the analysis of the existing research results, the area relative error 
criterion was proposed in this paper, supplemented by the pixel quantity error criterion for a 
comprehensive evaluation of watershed image segmentation accuracy. 

(1) Area relative error criterion (accuracy factor: δA) 
Usually, the reference feature value in the reference data is represented by Rf, while the actual 

feature value in the segmented image result is represented by Sf, and then their absolute difference is 
given by [55]. 

 | |f fAUMA R S  (15) 

Here, AUMA is the accuracy factor used for evaluation of the image segmentation results, and 
the characteristic quantity is usually represented by the area. A smaller AUMA corresponds to 
higher segmentation accuracy, and otherwise the accuracy is lower. 

However, it is not reasonable to use the absolute value of the difference between the target 
segmentation and the reference area to represent image segmentation accuracy in the error theory, 
because the size of the error relative to the reference area is unknown. Theoretically, the area of the 
image segmentation target is the same as the reference area for the optimal segmentation algorithm. 
However, regardless of the quality of the algorithm, the segmentation area will always differ from 
the reference area, and an error will be present. Similarly, it is unknown whether the evaluation area 
is changed by the orthomorphic projection. Therefore, the image segmentation effect can be better 
represented by the ratio of segmentation area to reference area. Similarities between two quantities 
can be effectively evaluated simply by using the ratio between them, but to evaluate accuracy, we 
should use relative error according to the theory of measurement error. 

An inspection of equation (15) shows that AUMA is an absolute error that represents the 
absolute value by which the segmentation result area deviates from the reference value. The 
percentage calculated by AUMA and the reference value can represent the percentage of absolute 
error relative to the true value, and can better reflect the validity and reliability of the segmentation 
precision. Therefore, the area relative error was proposed as a criterion for evaluation of the image 
segmentation accuracy in this paper, and is calculated as follows. 

Let A0 be the target area value in the benchmark data, and AS be the target area value in the 
segmentation image result, then their relative error δA is given by 

0

0

| |
100%s

A

A A

A
 

   (16) 

where δA is the area accuracy factor used for evaluation of the image segmentation result. A 
smaller δA corresponds to higher segmentation accuracy, and otherwise the accuracy is lower. 

(2) Pixel quantity error criterion (accuracy factor: δP) 
Image segmentation accuracy is represented by the number of pixels with incorrect 

segmentation obtained from the overlay of the reference image and the segmentation result divided 
by the total number of pixels. This criterion is consistent with the area relative error and was used to 
evaluate accuracy from a different perspective. In this paper, the pixel number error was also 
selected as an evaluation criterion for image segmentation accuracy. The pixel number error is 
obtained as follows.  

Let Pt and Pw represent the numbers of pixels that are correctly and incorrectly segmented, 
respectively, then the error rate δP is given by 

100%w
P

t w

P

P P
  


 (17) 
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where δP provides an overall evaluation of the image segmentation accuracy. A smaller δP 
corresponds to higher segmentation accuracy, and otherwise the accuracy is lower. 

The criteria for evaluation of the image segmentation accuracy of the watershed algorithm are 
shown in Table 1. At present, the indicators derived from confusion matrix are commonly used to 
evaluate image-based classification. They include overall accuracy ( CP ), user′s accuracy (

iu
P ), 

producer′s accuracy (
jA

P ), and the Kappa coefficient ( hatK ) [56,57]. In order to evaluate the 

reliability of the image segmentation accuracy evaluation criteria proposed in this paper, CP , 
iu

P , 

jA
P , and hatK  of the extraction results of the three methods are calculated simultaneously for 

comparison. 

Table 1. Criteria for evaluating segmentation accuracy of watershed algorithm. 

Indicator Equation Note 

δA %100
||

0

0 



A

AAs
A  Smaller δA indicates higher segmentation accuracy, and 

otherwise the accuracy is lower. 

δP %100



wt

w
P PP

P
  Smaller δP indicates higher segmentation accuracy, and 

otherwise the accuracy is lower. 

5. Results 

5.1. Segmentation Results Based on the Experimental Image 

To compare the segmentation efficiency and effect, contrast enhancement preprocessing was 
performed on the test image. The same C and D values were used in the experiments to ensure that 
the segmentation results were comparable. The segmented images were obtained in Figure 4 were 
respectively based on the original image (Figure 2a) and contrast-enhanced image (Figure 2b) and 
the statistical results of the segmentation process are provided in Table 2. 

(b)(a)  

Figure 4. Comparison of segmentation results between pre- and post-contrast-enhanced images. 

Table 2. Statistical features derived from the Luv-RMWS algorithm. 

Image 
category 

Patch number of 
watershed 

segmentation 

Time of watershed 
segmentation (ms) 

Number of 
patches after 
area merging 

Time of 
area 

merging 
(ms) 

C D 

Original 
image 

103,939 1248 22 74,896 500 400 

Enhanced 
image 

62,716 1076 33 38,626 500 400 
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5.2. Selection of Optimal Scale Parameters 

To select the optimal segmentation and merging scale parameters, multiscale segmentation 
experiments were performed on the test images. The C value varied between 100 and 3000 at 
intervals of 50, and D varied between 100 and 1000 at intervals of 50. The results obtained for 
different combinations of C values and D values are shown in Figure 5. 

 

Figure 5. Segmentation results of the slope hazard boundary using the multiscale Luv-RMWS. 

5.3. Extraction of Slope Hazard Boundary 

The image classification tool in the spatial analysis toolbox of ArcGIS was used to select the 
MLC method. The number of classes was set to 4 and a total of 31 sample areas were selected for 
training. The training results were used as the characteristic data for MLC method, and the results of 
image supervised classification and vector format were obtained (Figure 6a). By repeating the OOC 
method experiments using eCognition and visually comparing the results, the optimal segmentation 
scale parameters were selected as: ωcolor = 0.8, ωshape = 0.2, ωcom = 0.5, and ωsmooth = 0.5, and the vector 
format of the unstable slope body segmentation extraction results was obtained (Figure 6b). Then, 
the boundary of the unstable slope body was segmented and extracted by the RSImage-WS platform 
(Luv-RMWS experimental platform developed based on VC++). The obtained extraction results were 
shown in vector format in Figure 6c. 
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Figure 6. Comparison of extraction of unstable slopes using the three methods: (a) MLC, (b) OOC, and (c) 
Luv-RMWS. 

To evaluate the accuracy of image segmentation and extraction based on the improved 
algorithm described in this paper, ArcGIS was used for visual interpretation of the test images. After 
field verification and correction, the accurate boundary of the target body was obtained as the 
benchmark data. To obtain the continuous boundary, the "Boundary Clean" function in the ArcGIS 
spatial analysis toolbox was used to smooth the boundary. Then, the classification data were 
converted from raster to vector format, and the target map was derived through a comparison of the 
individual files by overlaying the benchmark data and the experimental image (Figure 7). 

 

Figure 7. Comparison of extracted unstable slope using the three methods: (a) MLC; (b) OOC, and (c) 
Luv-RMWS. 

5.4. Processing Time 

The experimental were carried out using an HP 2211f computer with Intel(R) Core(TM) i3 CPU, 
main frequency 3.20 GHz, 6.00 GB memory, and a 64-bit operating system. The running time of the 
MLC method was recorded using an ordinary stopwatch, the OOC method was timed from 
eCognition software, and the Luv-RMWS method used the program's built-in timing variable. The 
obtained experimental times are presented in Table 3. 

Table 3. Comparison of extraction times of unstable slope boundaries in experimental images. 

Method 
Running 

time  
Experimental 

platform 
Note 

MLC 381.000 s ArcGIS Required more than 1 h for the whole process 
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including sample training and classification, and 
post-processing such as debris combination. 

OOC 11.470s eCognition 
Automatic image segmentation and merging, 
where segmentation time is 11.470 s, and the 
number of patches after segmentation was 3. 

Luv-RMWS 39.702 s RSImage-WS 

Automatic image segmentation and merging. 
Watershed algorithm segmentation time was 
1.076 s, number of patches after segmentation 
was 62716; time of region merging was 38.626 s, 
and then the number of patches after being 
merged was 33. 

5.5. Extraction Accuracy 

The area of the target body was extracted from the experimental image extraction information 
and the benchmark data area obtained from visual interpretation, and MLC, OOC, and Luv-RMWS 
methods δA were calculated using Equation (16). Meanwhile, the experimental image extraction 
information and benchmark data were divided into target and non-target objects. The number of 
pixels was used as the measurement unit, and the reference data of the target object was rasterized 
as the reference map. Then, the reference map was superimposed on the target segmentation results 
of the three methods to obtain the numbers of correctly and incorrectly segmented pixels. Equation 
(17) was used to calculate the δP values of the segmentation result, and the obtained results are 
shown in Table 4. 

Table 4. Evaluation of accuracy of unstable slope boundary extraction from experimental images. 

Indicator MLC OOC Luv-RMWS 
A  29.02% 8.71% 4.92% 
P  3.82% 1.90% 1.60% 
CP  96.18% 98.10% 98.40% 
iu

P  99.85% 94.06% 92.90% 

jA
P

 71.03% 91.29% 95.08% 

hatK  80.93% 91.56% 93.05% 

6. Discussion 

6.1. Analysis of Image Segmentation before and after Contrast Enhancement  

It is observed from Figure 4 that the original image was severely under-segmented, and the 
target object, namely the unstable slope, failed to be extracted, while image contrast enhancement 
resulted in a good segmentation result, and the boundary of the extracted unstable slope body was 
highly consistent with the true boundary. The statistical results presented in Table 2 show that after 
image contrast enhancement, the number of image spots segmented by the watershed algorithm 
decreases rapidly, and the time consumption decreases slightly, thus achieving the goals of 
inhibiting over-segmentation and improving algorithm efficiency. Although the number of patches 
after region merging was increased compared to the original image data, time consumption was 
only half that of the original merging. Thus, the computational efficiency of the algorithm was 
greatly improved while obtaining good segmentation results. Therefore, the improvement due to 
contrast enhancement preprocessing on the image has a significant impact on the Luv-RMWS 
method and a significant effect on improving the segmentation efficiency and effect. 

No pre-processing improvement was made to the algorithm described in this paper, with only 
contrast enhancement pre-processing performed on the original image data. Nevertheless, 
experiments show that increasing the image contrast leads to an improvement in the segmentation 



ISPRS Int. J. Geo-Inf. 2020, 9, 246 13 of 17 

 

effect. In particular, when the original image was segmented, the unstable slope body could not be 
extracted due to the severe under-segmentation. Therefore, the contrast enhancement is an effective 
method for solving the problem of under-segmentation in the watershed segmentation algorithm. 
Nonetheless, the contrast enhancement in image pre-processing is usually subjective and random. In 
the future, the algorithm should be further improved by adding image contrast enhancement as the 
pre-processing step, and the effect of the algorithm should be improved by combining the "forward 
+ post" improvements. 

6.2. Analysis of Optimal Scale Parameters 

A comparison of the multiscale Luv-RMWS slope hazard boundary segmentation test results 
with the visual segmentation results shows that the internal fragmented plots of the slope body 
increases with the gradual increase in C value, exhibiting over segmentation. As the D value 
gradually increases, the fragmented plots inside the slope body gradually decreases, and the 
extracted slope boundary stabilizes after D reaches 400. Based on a comparison of these results, the 
best target segmentation effect was obtained for C of 500 and D of 400, showing continuous borders, 
no freckles in the plaque, and a high degree of consistency with the shape of the target. Therefore, 
the optimal constant C for the minimum region decision threshold was set to 500, and the optimal 
value of the chromatic aberration value threshold D was set to 400. 

The research was performed based on a GF-2 image, and the optimal segmentation and 
merging parameters were determined visually using a trial-and-error procedure. The optimal 
C was 500 as determined by the minimum region Amin, while the optimal D  of chromatic 
aberration was 400. The test target had only one unstable slope in this paper. Therefore, the 
algorithm and program should be improved in subsequent research. The optimal decision 
thresholds for different image data and quality data should be determined, scale adaptive 
segmentation should be realized as much as possible, and rapid and automated remote sensing 
extraction of the slope hazard boundary should be achieved. 

6.3. Analysis of Extraction Effect 

As observed from Figure 6a and Figure 7a, the MLC method results were poor, and there were 
many fragments in the classification results, necessitating additional manual intervention for 
post-processing, so it is difficult to achieve automatic extraction. It is observed from Figures 6b,c that 
OOC and Luv-RMWS not only achieved better extraction of the target body but also combined 
fragmentation within the map spot, to obtain boundary extraction results of the unstable slope body 
with less interference from vegetation. However, as shown in Figure 7b,c, some over-segmentation 
and under-segmentation phenomena were still present; some large mis-segmented spots appeared 
at the trailing edge and bottom of the target, affecting the overall extraction effect. 

An examination of the data presented in Table 3 shows that the MLC method required 381.000 s 
for extracting the target object, and the Luv-RMWS method required 39.702 s. The OOC method 
required merely 11.470 s, showing great time efficiency. It should be noted that the statistical time of 
MLC only specifies the time used for direct classification, and the classification result also contains 
many fragments that must be post-processed, which is an extremely time-consuming technical step. 
For this MLC test, the post-processing took more than 1 h. The comparison shows that OOC and 
Luv-RMWS carry out the splitter merger while completing the segmentation, and post-processing 
only converts raster data into vector data and makes a simple manual correction that requires no 
more than 0.5 h. Therefore, although the time efficiency of Luv-RMWS is slightly lower than OOC, it 
is much higher than MLC. 

As observed from the data in Table 4, the δA and δP of the MLC method were 29.02% and 3.82%, 
and the δA and δP of OOC were 8.71% and 1.90%, both of which were larger than the δA (4.92%) and 
δP (1.60%) of Luv-RMWS, indicating that Luv-RMWS has higher extraction accuracy for an unstable 
slope boundary. At the same time, it can be seen from the PC and Khat that the Luv-RMWS method 
had the highest segmentation accuracy, followed by OOC, and the worst was MLC, which is 
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consistent with the evaluation results of δA and δP [56,57], indicating that the evaluation criteria 
proposed in this paper are reliable. 

6.4. Analysis of the Proposed Method 

To date, many studies of landslide information extraction through image classification 
technology have been carried out [3–6]. SPOT 5, GF-1, ZY-3, and Unmanned Aerial Vehicle (UAV) 
images and other data have been often used as the data sources, while unsupervised and supervised 
classifications have been used as the technical means of performing the studies. In this paper, a GF-2 
image was selected as the data source, and the MLC method was used for comparing the algorithm 
described in this paper. The performed experiments show that the Luv-RMWS method has obvious 
advantages regarding the information extraction time, avoids the complicated post-processing of 
MLC, and shows greatly improved time efficiency. Meanwhile, the initial segmentation results were 
automatically merged by Luv-RMWS, avoiding the subjectivity of artificially merging and 
processing fragments after MLC, and performed well in terms of comprehensive extraction 
efficiency and the objectivity of the extraction results. 

Although current research in the field of image segmentation is based mostly on object-oriented 
multi-resolution segmentation methods [56,57], and the mature eCognition software is used as the 
test platform, the data are mainly concentrated in high-resolution remote sensing images such as 
GF-1, GF-2, and QuickBird. By contrast, the algorithm proposed in this paper does not need to 
establish the rules for the segmentation process, the merging process is simple, the algorithm is easy 
to understand, and the segmentation results are highly objective and reliable. The results of the 
multi-scale segmentation experiment using the proposed algorithm for extraction of the unstable 
slope boundary in experimental images show that Luv-RMWS performs well regarding the 
reliability of object extraction, the consistency of the object boundary, and the extraction details. 
Additionally, the calculated segmentation accuracy evaluation criteria show that the extraction 
results obtained by Luv-RMWS are more accurate, and the two accuracy factors used in this paper 
are superior to those obtained by the MLC and OOC methods. This is consistent with the results of 
visual evaluation and the results based on CP , 

iu
P , 

jA
P and hatK , indicating that the evaluation 

criteria factor results for the image segmentation accuracy of the proposed watershed algorithm are 
reliable. 

7. Conclusion 

An improved watershed segmentation method (Luv-RMWS) is proposed for extracting slope 
hazard based on a high-resolution GF-2 remote sensing image. Additionally, the evaluation of 
extraction accuracy based on our proposed criteria of δA and δP is proven to be consistent with visual 
evaluation and a confusion matrix. It provides new accuracy evaluation indicators for evaluating the 
image watershed segmentation algorithm. The experimental results show the effectiveness of 
extracting the slope hazard boundary based on the Luv-RMWS. The post-improved Luv-RMWS 
algorithm was found to have a good effect in extracting slope hazard boundaries and a high time 
efficiency. It can obtain reliable and satisfying segmentation accuracy compared to MLC and OOC 
methods. Our methodology greatly improves the accuracy and processing time for slope hazards, 
and expands the application field of watershed segmentation algorithms. 

Author Contributions: Conceptualization, Mingmei Zhang and Yongan Xue; methodology, Mingmei Zhang 
and Yongan Xue; validation, Yongan Xue; formal analysis, Mingmei Zhang and Yonghui Ge; data curation, 
Mingmei Zhang and Yongan Xue; resources, Mingmei Zhang; writing—original draft preparation, Mingmei 
Zhang; writing—review and editing, Yongan Xue and Jinling Zhao; supervision, Yonghui Ge and Jinling Zhao; 
funding acquisition, Mingmei Zhang, Yongan Xue, and Jinling Zhao. All authors have read and agreed to the 
published version of the manuscript. 

Funding: This research was funded by the Youth Foundation of Shanxi Provincial Applied Basic Research 
Programme (201901D211451), the Scientific Research Foundation of Shanxi Institute of Energy (ZZ–2018001), 
the Open Research Fund of National Engineering Research Center for Agro-Ecological Big Data Analysis and 



ISPRS Int. J. Geo-Inf. 2020, 9, 246 15 of 17 

 

Application, Anhui University (AE2018002), Innovative Science Program for Higher School of Shanxi Province 
(201802112), and the Natural Science Research Project of the Anhui Provincial Education Department 
(KJ2018A0009). 

Acknowledgments: We also gratefully acknowledge the anonymous reviewers for their valuable comments 
that helped to considerably improve the manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Kalantar, B.; Pradhan, B.; Naghibi, S.A.; Motevalli, A.; Mansor, S. Assessment of the effects of training data 
selection on the landslide susceptibility mapping: A comparison between support vector machine (SVM), 
logistic regression (LR) and artificial neural networks (ANN). Geomat. Nat. Hazards Risk 2018, 9, 49–69. 

2. Peng, L.; Xu, S.N.; Mei, J.J.; Su, F.H. Earthquake-induced landslide recognition using high-resolution 
remote sensing image. J. Remote Sens. 2017, 4, 509–518. 

3. Hervás, J.; Barredo, J.I.; Rosin, P.L.; Pasuto, A.; Mantovani, F.; Silvano, S. Monitoring landslides from 
optical remotely sensed imagery: The case history of Tessina landslide, Italy. Geomorphology 2003, 54, 
63–75. 

4. Mondini, A.C.; Guzzetti, F.; Reichenbach, P.; Rossi, M.; Cardinali, M.; Ardizzone, F. Semi-automatic 
recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sens. 
Environ. 2011, 115, 1743–1757. 

5. Zhan, Z.Q.; Lai, B.H. A novel DSM filtering algorithm for landslide monitoring based on multi constraints. 
IEEE J. STARS 2015, 8, 324–331. 

6. Zhang, M.M.; Xue, Y.A.; Li, J.; Shang, C.S. Identification of landslides and collapses based on remotely 
sensed imagery and DEM. Mine Surv. 2016, 44, 28–31. 

7. Mohammad, D.H.; Chen, D.M. Segmentation for object-based image analysis (OBIA): A review of 
algorithms and challenges from remote sensing perspective. ISPRS J. Photogramm. 2019, 150, 115–134. 

8. Vincent, L.; Soille, P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. 
IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 583–598. 

9. Hagyard, D.; Razaz, M.; Atkin, P. Analysis of watershed algorithms for grey scale images. In Proceedings 
of the 3rd IEEE International Conference on Image Processing, Lausanne, Switzerland, 19 September 1996; 
Volume 3, pp. 41–44. 

10. Shafarenko, L.; Petrou, M.; Kittler, J. Automatic watershed segmentation of randomly textured color 
images. IEEE Trans. Image Process. 1997, 6, 1530–1544. 

11. Smet, P.D.; Pires, R.L. Implementation and analysis of an optimized rain falling watershed algorithm. In 
Image and Video Communications and Processing International Society for Optics and Photonics; 
Proceedings of SPIE: San Jose, CA, USA, 2000. 

12. Bieniek, A.; Moga, A. An efficient watershed algorithm based on connected components. Pattern Recogn. 
2000, 33, 907–916. 

13. Soille, P. Morphological Image Analysis-Principles and Applications (2nd edition); Springer: Berlin, Germany, 
2004; pp. 268–276. 

14. Yu, Y.; Li, B.F.; Zhang, X.W.; Liu, Y.P.; Li, H.Q. Marked watershed segmentation algorithm for RGBD 
images. J. Image Graph. 2016, 21, 145–154. 

15. Zhang, J.T.; Zhang, L.M. A watershed algorithm combining spectral and texture information for high 
resolution remote sensing image segmentation. Geomat. Inf. Sci. Wuhan Univ. 2017, 42, 449–455. 

16. Yan, P.F.; Ming, D.P. Segmentation of high spatial resolution remotely sensed data using watershed with 
self-adaptive parameterization. Remote Sens. Technol. Appl. 2018, 33, 321–330. 

17. Osma-Ruiz, V.; Godino-Llorente, J.I.; Sáenz-Lechón, N.; Gómez-Vilda, P. An improved watershed 
algorithm based on efficient computation of shortest paths. Pattern Recognit. 2007, 40, 1078–1090. 

18. Xiao, P.F.; Zhao, S.H.; She, J.F. Multispectral IKONOS image segmentation based on texture 
marker-controlled watershed algorithm. MIPPR 2007: Remote Sensing and GIS Data Processing and 
Applications and Innovative Multispectral Technology and Applications, International Society for Optics 
and Photonics, Wuhan, China, 2007. Int. Symp. Multispectr. Image Process. Pattern Recognit. 2007. 
doi:10.1117/12.747680. 



ISPRS Int. J. Geo-Inf. 2020, 9, 246 16 of 17 

 

19. Li, D.R.; Zhang, G.F.; Wu, Z.C.; Yi, L.N. An edge embedded marker-based watershed algorithm for high 
spatial resolution remote sensing image segmentation. IEEE Trans. Image Process. 2010, 19, 2781–2787. 

20. Rizvi, I.A.; Mohan, B.K.; Bhatia, P.R. Multi-resolution segmentation of high-resolution remotely sensed 
imagery using marker-controlled watershed transform. In Proceedings of the International Conference 
and Workshop on Emerging Trends in Technology, Mumbai, Maharashtra, India, 25–26 February 2011. 

21. Bala, A. An improved watershed image segmentation technique using MATLAB. Int. J. Sci. Eng. 2012, 3, 
1–4. 

22. Ng, H.P.; Ong, S.H.; Foong, K.W.C.; Goh, P.S.; Nowinski, W.L. Masseter segmentation using an improved 
watershed algorithm with unsupervised classification. Comput. Biol. Med. 2008, 38, 171–184. 

23. Xu, T.Z.; Zhang, G.C.; Jia, Y. Color image segmentation based on morphology gradients and watershed 
algorithm. Comput. Eng. Appl. 2016, 52, 200–203. 

24. Chen, G. Image segmentation algorithm combined with regularized PM de-noising model and improved 
watershed algorithm. J. Med. Imaging Health Inform. 2020, 10, 515–521. 

25. Grau, V.; Mewes, A.U.J.; Alcaniz, M.; Kikinis, R.; Warfield, S.K. Improved watershed transform for 
medical image segmentation using prior information. IEEE Trans. Med. Imaging 2004, 23, 447–458. 

26. Li, B.; Pan, M.; Wu, Z.X. An improved segmentation of high spatial resolution remote sensing image using 
marker-based watershed algorithm. In Proceedings of the 20th International Conference on 
Geoinformatics, Hong Kong, China, 15–17 June 2012. 

27. Xue, Y.A.; Zhang, M.M.; Zhao, J.L.; Guo, Q.H.; Ma, R. Study on quality assessment of multi-source and 
multi-scale images in disaster prevention and relief. Disaster Adv. 2012, 5, 1623–1626. 

28. Wang, Y. Adaptive marked watershed segmentation algorithm for red blood cell images. J. Image Graph. 
2018, 22, 1779–1787. 

29. Jia, X.Y.; Jia, Z.H.; Wei, Y.M.; Liu, L.Z. Watershed segmentation by gradient hierarchical reconstruction 
under opponent color space. Comput. Sci. 2018, 45, 212–217. 

30. Yasnoff, W.A.; Mui, J.K.; Bacus, J.W. Error measures for scene segmentation. Pattern Recognit. 1977, 9, 
217–231. 

31. Dorren, L.K.A.; Maier, B.; Seijmonsbergen, A.C. Improved Landsat-based forest mapping in steep 
mountainous terrain using object-based classification. For. Ecol. Manag. 2003, 183, 31–46. 

32. Ming, D.P.; Luo, J.C.; Zhou, C.H.; Wang, J. Research on high resolution remote sensing image 
segmentation methods based on features and evaluation of algorithms. Geoinf. Sci. 2006, 8, 107–113. 

33. Chen, Y.Y.; Ming, D.P.; Xu, L.; Zhao, L. An overview of quantitative experimental methods for 
segmentation evaluation of high spatial remote sensing images. J. Geoinf. Sci. 2017, 19, 818–830. 

34. Huang, Q.; Dom, B. Quantitative methods of evaluating image segmentation. In Proceedings of the 
International Conference on Image Processing, Washington, DC, USA, 23–26 October 1995. 

35. Jozdani, S.; Chen, D.M. On the versatility of popular and recently proposed supervised evaluation metrics 
for segmentation quality of remotely sensed images: An experimental case study of building extraction. 
ISPRS J. Photogramm. 2020, 160, 275–290. 

36. Debelee, T.G.; Schwenker, F.; Rahimeto, S.; Yohannes, D. Evaluation of modified adaptive k-means 
segmentation algorithm. Comput. Vis. Media 2019, 5, 347–361. 

37. Zhang, H.; Fritts, J.E.; Goldman, S.A. Image segmentation evaluation: A survey of unsupervised methods. 
Comput. Vis. Image Underst. 2008, 110, 260–280. 

38. Xiao, F.P. High Resolution Remote Sensing Image Segmentation and Information Extraction; Science Press: 
Beijing, China, 2012; pp. 151–156. 

39. Zhu, C.J.; Yang, S.Z.; Cui, S.C.; Cheng, W.; Cheng, C. Accuracy evaluating method for object-based 
segmentation of high resolution remote sensing image. High Power Laser Part. Beams 2015, 27, 37–43. 

40. Hoover, A.; Jean-Baptiste, G.; Jiang, X.Y.; Flynn, P.J.; Bunke, H.; Goldgof, D.; Bowyer, K.; Eggert, D.W.; 
Fitzgibbon, A.; Fisher, R. An experimental comparison of range image segmentation algorithms. IEEE 
Trans. Pattern Anal. Mach. Intell. 1996, 18, 673–689. 

41. Chen, H.C.; Wang, S.J. The use of visible color difference in the quantitative evaluation of color image 
segmentation. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal 
Processing, Montreal, QC, Canada, 17–21 May 2004. 

42. Hay, G.J.; Castilla, G.; Wulder, M.A.; Ruiz, J.R. An automated object-based approach for the multiscale 
image segmentation of forest scenes. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 339–359. 



ISPRS Int. J. Geo-Inf. 2020, 9, 246 17 of 17 

 

43. Cardoso, J.S.; Corte-Real, L. Toward a generic evaluation of image segmentation. IEEE Trans. Image Process. 
2005, 14, 1773–1782. 

44. Hofmann, P.; Lettmayer, P.; Blaschke, T.; Belgiu, M.; Wegenkittl, S.; Graf, R.; Lampoltshammer, T.J.; 
Andrejchenko, V. Towards a framework for agent-based image analysis of remote-sensing data. Int. J. 
Image Data Fusion 2015, 6, 115–137. 

45. Zhang, X.L.; Feng, X.Z.; Xiao, P.F.; He, G.J.; Zhu, L.J. Segmentation quality evaluation using region-based 
precision and recall measures for remote sensing images. ISPRS J. Photogramm. 2015, 102, 73–84. 

46. Wei, X.W.; Zhang, X.F.; Xue, Y. Remote sensing image segmentation quality assessment based on 
spectrum and shape. J. Geoinf. Sci. 2018, 20, 1489–1499. 

47. Li, Z.Y.; Ming, D.P.; Fan, Y.L.; Zhao, L.F.; Liu, S.M. Comparison of evaluation indexes for supervised 
segmentation of remote sensing imagery. J. Geoinf. Sci. 2019, 21, 1265–1274. 

48. Chen, L.F.; Liu, Y.M.; Liu, Y. Color image segmentation by combining improved watershed and region 
growing. Comput. Eng. Sci. 2013, 35, 93–98. 

49. Lin, F.Z. Foundation of Multimedia Technology, 3rd ed.; Tsinghua University Press: Beijing, China, 2009; pp. 
104–106. 

50. Gao, W.; Xue, Y.A.; Zhao, J.L. Design and implementation of remote sensing image production quality 
quantitative evaluation system. J. Taiyuan Univ. Technol. 2014, 45, 776–779. 

51. Hansen, M.W.; Higgins, W.E. Watershed-based maximum-homogeneity filtering. IEEE Trans. Image 
Process. 2002, 8, 982–988. 

52. Wei, D.F. There Search on the Methods of Landslide Edge Automatic Extraction Based on Remote Sensing 
Image. Master’s Thesis, Southwest Jiaotong University, Chendu, China, 2013. 

53. Bruzzone, L.; Prieto, D.F. Unsupervised retraining of a maximum likelihood classifier for the analysis of 
multitemporal remote sensing images. IEEE Trans. Geosci. Remote Sens. 2001, 39, 456–460. 

54. Baatz, M.; Schäpe, A. Object-oriented and multi-scale image analysis in semantic networks. In Proceedings 
of the 2nd International Symposium on Operationalization of Remote Sensing, Enschede, The Netherlands, 
16–21 August 1999. 

55. Zhang, Y.J. A classification and comparison of evaluation techniques for image segmentation. J. Image 
Graph. 1996, 1, 151–158. 

56. Huang, T.; Bai, X.F.; Zhuang, Q.F.; Xu, J.H. Research on Landslides Extraction Based on the Wenchuan 
Earthquake in GF-1 Remote Sensing Image. Bachelor Surv. 2018, 2, 67–71. 

57. Li, Q.; Zhang, J.F.; Luo, Y.; Jiao, Q.S. Recognition of earthquake-induced landslide and spatial distribution 
patterns triggered by the Jiuzhaigou earthquake in 8 August 2017. J. Remote Sens. 2019, 23, 785–795. 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

. 

 


