
 

ISPRS Int. J. Geo-Inf. 2020, 9, 243; doi:10.3390/ijgi9040243 www.mdpi.com/journal/ijgi 

Article 

A Multi-Objective Permanent Basic Farmland 
Delineation Model Based on Hybrid  
Particle Swarm Optimization 

Hua Wang 1,*, Wenwen Li 1, Wei Huang 1 and Ke Nie 2 

1 Zhengzhou University of Light Industry, Zhengzhou 450002, China; 331707040335@zzuli.edu.cn (W.L.); 

hnhw235@zzuli.edu.cn (W.H.) 
2 Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, 

Shenzhen 518034, China; nieke@whu.edu.cn 

* Correspondence:  whuwanghua@163.com; Tel.: +86-18137810605  

Received: 4 March 2020; Accepted: 12 April 2020; Published: 14 April 2020 

Abstract: The delimitation of permanent basic farmland is essentially a multi-objective optimization 

problem. The traditional demarcation methods cannot simultaneously take into account the 

requirements of cultivated land quality and the spatial layout of permanent basic farmland, and it 

cannot balance the relationship between agriculture and urban development. This paper proposed 

a multi-objective permanent basic farmland delimitation model based on an immune particle swarm 

optimization algorithm. The general rules for delineating the permanent basic farmland were 

defined in the model, and the delineation goals and constraints have been formally expressed. The 

model introduced the immune system concepts to complement the existing theory. This paper 

describes the coding and initialization methods for the algorithm, particle position and speed 

update mechanism, and fitness function design. We selected Xun County, Henan Province, as the 

research area and set up control experiments that aligned with the different targets and compared 

the performance of the three models of particle swarm optimization (PSO), artificial immune 

algorithm (AIA), and the improved AIA-PSO in solving multi-objective problems. The experiments 

proved the feasibility of the model. It avoided the adverse effects of subjective factors and promoted 

the scientific rationality of the results of permanent basic farmland delineation. 

Keywords: permanent basic farmland; multi-objective; spatial optimization; particle swarm 

optimization; artificial immune algorithm; Xun County 

 

1. Introduction 

Over the past 60 years, the world has been undergoing rapid urbanization. Since the 1960s, the 

more rapid the economic development and the accelerated urbanization process in a region was, the 

more serious the decline in cultivated land was in the region [1–5]. In particular, some developing 

countries are facing the problems of population growth, increasing food demand, and limited 

agricultural production [6]. As a developing country with accelerating urbanization and 

industrialization in recent years, China has experienced rapid expansion in the urban construction 

area, and the loss in cultivated land area has also increased year by year. Today, China's basic national 

conditions are a large population, low per capita cultivated land resources, and insufficient resource 

reserves of cultivated land. To ensure food security and promote the development of modern 

agriculture, China has always attached great importance to the protection of farmland and began 

planning for basic farmland needs long ago. According to the requirements of the overall plan for 

national land area and the needs of the population, economy, and society, a certain percentage of the 

high-quality farmland on cultivated lands is zoned as a basic farmland protection area. For nearly 40 
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years, the issue of arable land protection has always been of paramount importance. The new land 

management law further upgrades basic farmland to permanent basic farmland [7]. Compared with 

basic farmland, permanent basic farmland has a more prominent status, stricter protections, a more 

stable spatial pattern, and a more important position and role in stabilizing food production. The new 

law will ensure that by 2020, China's basic farmland protection will take shape in a relatively 

complete, powerful, effective, and orderly manner to protect food security in China [8]. 

Currently, to solve the problem of cultivated land loss, countries around the world have 

conducted related research. Mazzocchi et al. [9] used sensitivity index of agricultural land (SIAL) to 

understand the relationship between urban planning and agricultural land and analyzed the 

potential risks of shifting from cultivated land to construction land. Through case studies, the tool 

showed that external factors unrelated to agricultural activities were the main drivers of this shift. 

Terres et al. [10] studied and evaluated the main drivers of farmland abandonment in the 27 member 

states of the European Union. Through analysis, these drivers mainly included lower farm stability 

and viability, smaller farm size, and a negative regional context. In South Korea, the United States, 

India, and China, some scholars [11–16] have confirmed through research that rapid urbanization has 

accelerated the transformation of agricultural land to non-agricultural land, increasing the loss of 

arable land. 

With regard to the delineation of permanent basic farmland, scholars from various countries 

have carried out many studies and simultaneously deepened their understanding of basic farmland. 

In general, the delimitation process should take into account the status of land use and the existing 

land constraints. In addition, attempts should be made to allocate permanent basic farmland 

protection to land with complete infrastructure and good natural resource conditions. Cultivated 

land that is spatially concentrated and not easily occupied by urban or industrial development can 

maximize the comprehensive benefits of arable land protection. Therefore, this can be regarded as a 

multi-objective spatial optimization problem. Based on the existing research, the methods of 

delimiting permanent basic farmland can be divided into three categories. In the first category, 

permanent basic farmland is demarcated mainly through the allocation of administrative indicators, 

which only need to meet the quota quantity requirements. Although some simple guidelines are 

given in the legislation, allocations are usually made in a more casual manner due to the lack of 

quantitative standards and a scientifically effective framework [17]. The second category introduces 

scientific evaluation systems and model analysis methods. Yang et al. [18] selected indicators from 

site conditions, transportation locations, agricultural production, and spatial morphology, 

constructed a comprehensive multifactor evaluation system, and delineated permanent basic 

farmland based on the principle of optimal comprehensive score. Liu et al. [19] used an analytic 

hierarchy process (AHP) network combined with local spatial autocorrelation analysis of basic 

farmland to determine the index weights. Zhang et al. [20] combined the spatial analysis functions of 

ArcGIS and the improved land evaluation and site assessment (LESA) method. Cheng et al. [21] used 

mathematical morphological image processing and GIS analysis technology to establish an 

evaluation index system and develop an analysis model for spatial patterns of farmland morphology. 

Most of the comprehensive considerations have been based on the natural conditions [20,22], 

economic benefits [23], and utilization levels [20,24] of cultivated land. The above methods have 

improved the rigor and scientificity of the delineation of permanent basic farmland to some extent. 

However, the selection of most indicators and the weighting of indicators still have a certain degree 

of subjectivity, and their dependence on the indicator system is too strong to solve a multi-objective 

optimization problem. The third method uses artificial intelligence algorithms that have emerged in 

recent years. Liu et al. [25] combined remote sensing, GIS, and artificial immune systems (AIS) and 

made some modifications to traditional artificial intelligence algorithms to divide farmland 

protection areas under spatial constraints. Zeng et al. [26] established a decision model system 

through the technique for order preference by similarity to an ideal solution (TOPSIS) method and 

constraint factors and classified farmland according to the proximity of the cultivated land to the 

ideal solution. Ma et al. [27] searched for protected areas through a seed expansion algorithm and 
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used human neural networks to predict the protection pressure of basic farmland. These attempts 

provided new directions for the delineation of permanent basic farmland. 

In recent years, artificial intelligence algorithms have had great advantages in solving multi-

objective spatial planning problems and have been successfully applied in problems such as land 

resource allocation [28–33], spatial pattern optimization [34–40], space selection [41–43], and land use 

zoning [44–47]. Among the artificial intelligence algorithms, particle swarm optimization (PSO) is a 

swarm intelligence algorithm that is inspired by bird foraging activities. As an evolutionary 

algorithm, PSO has the advantages of better ability to solve complex problems, higher convergence 

speed, and lower problem dimension. It is very suitable for high-dimensional spatial optimization 

problems, has a fast convergence speed, and can solve multi-objective optimization problems in 

multiple fields. However, the particle swarm algorithm has the disadvantages of premature 

convergence and the possibility of sinking into the local optima of a basic PSO algorithm when 

solving the spatial optimization problem [48]. The artificial immune algorithm (AIA) simulates the 

biological immune process and can ensure the diversity of individuals, help improve the global 

convergence ability of the particle swarm algorithm, and prevent particles from falling into the local 

optimal solution. 

Therefore, an improved particle swarm optimization algorithm is proposed to solve the multi-

objective optimization problem of permanent basic farmland delimitation. Xun county, a major grain 

production base in Henan province, was chosen as the study area for this study. Section 2 introduces 

the study area and data acquisition and processing. Section 3 describes the methodology of a multi-

objective optimization model of permanent basic farmland delimitation based on the hybrid PSO 

algorithm. It defines the general rules and objective function of permanent basic farmland 

delineation, as well as the formal representation of the constraints, and discusses the improvement 

of the PSO algorithm when combined with the artificial immune algorithm. In Section 4, we describe 

the controlled trials that emphasized different subobjectives and compare the performances of the 

three models (PSO, AIA, and improved AIA-PSO) in solving the problem of permanent basic 

farmland delineation. Finally, Section 5 concludes the paper. 

2. Data 

2.1. Overview of The Study Area 

To verify the feasibility of the model, we selected Xun County as the research area. The study 

area (35°26'00" ~ 35°50′42″N, 114°14′52″ ~ 114°45′12″E) is located in northern Henan Province and 

eastern Hebi city and has an area of 954.98 km2 (Figure 1). The geographical location of Xun County 

is shown in Figure 1. The county has 9 townships, 476 villages, and 78,711.18 hectares of agricultural 

land, of which 70,994.60 hectares are arable land. The county's overall topography is relatively flat—

most of the areas are plains, and there are some hills and valleys in the west. Xun County has a 

provincial-level modern agricultural industrial park with an annual grain output of more than 1 

million tons. It has been said since ancient times that "Li Yang harvest can take care of everyone". 
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Figure 1. Geographical location and main utilization statuses of Xun County. 

2.2. Data Processing 

The purpose of delimiting the permanent basic farmland is to select arable land with high soil 

quality to facilitate farming and ensure that the area is protected and not easily occupied by urban 

expansion. The main influencing factors include infrastructure conditions, field conditions, soil 

fertility, and location conditions. This study needed data that included arable land quality, land use 

conditions, topography, climate, water conservancy and transportation conditions, etc., as shown in 

Table 1. To ensure the consistency of the data, the coordinate system of each layer in the study area 

was projected into CGCS2000_3_Degree_GK_Zone_38 using ArcGIS 10.2. The vector data were 

converted into raster data, and the corresponding values of the different influencing factors of the 

same raster cell were obtained. To ensure that the grid unit size was moderate, 100� × 100 � was 

used as the minimum grid unit. The total number of grid units in the study area was 98,360, of which 

the number of cultivated land units was 73,122. Then, the raster cells were encoded to add fields to 

store the corresponding data and allow for numerical mapping. The spatial data of the main impact 

factors are shown in Figure 2. 
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Table 1. Description of data sources. 

No. Data Description of Data Source  
Department of 

Data source  

1 

Soil fertility, topography 

and landforms, irrigation 

facilities, field shape, field 

size 

The latest results of the cultivated land 

quality grades, cultivated land quality 

update evaluation results, and 

agricultural land classification results 

Agriculture Bureau 

2 Land use type 

The land use change survey results, the 

results of the third national land survey, 

three-line delineation results and data 

Natural Resources 

Bureau 

3 
The forest net and shelter 

forest 
The forestry resource survey results Forestry Bureau 

4 

Annual average 

temperature, annual 

average precipitation 

Meteorological monitoring results 
Meteorological 

Bureau 

5 Road accessibility 
Road distribution maps, traffic 

planning, and layout information 

Traffic and 

Transportation 

Bureau 

6 
Ecological red line 

constraint 

The "13th Five-Year Plan" for 

environmental protection 

Environmental 

Protection Bureau 

7 Town bound boundaries 
Industrial and tourism development 

planning 

Development and 

Reform 

Commission 
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Figure 2. Spatial data of the main influencing factors in Xun County: (a) concentration of fields, (b) 

field slope, (c) nitrogen content, (d) available potassium content, (e) net forest and shelter forest, (f) 

irrigation facility quality, (g) tillage distance, and (h) road accessibility. 
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3. Methodology 

3.1. Multi-objective Optimization Model of Permanent Basic Farmland Delimitation 

3.1.1. Objective Functions 

Permanent basic farmland delineation was based on the local natural endowment and was 

combined with the area constraints, farming environment, and site conditions to optimize the 

selection of cultivated land units. To achieve the final delineation of the permanent basic farmland 

protection area, which can achieve the objectives of having better arable land quality and complete 

infrastructure, being centralized and continuous, and not being easily occupied, this study set the 

target system for the permanent basic farmland delineation model as the following three 

subobjectives: the land suitability objective, land continuity objective, and land stability objective. 

Land suitability objective: 

The quality of cultivated land is a combination of factors such as natural conditions, economic 

factors, and water conservancy facilities of cultivated land, and is one of the important reference 

standards for the delineation of permanent basic farmland. 

This article refers to the requirements in the " Regulation for Gradation on Agriculture Land 

Quality (GB/T 28407-2012)"a and "Cultivated Land Quality in Henan Province in the Annual Update 

Evaluation Work Training Materials", which is provided by the Department of Natural Resources of 

Henan Province, and according to the " Cultivated Land Quality Analysis Report of Xun County in 

2018", which is provided by the Natural Resources Bureau of Xun County. Henan Province's 

cultivated land use index was divided into 19 grades, with Grade 1 being the highest grade. The 

corresponding land use of Xun County was 5, 6, 7, and 8. For the convenience of calculation, the 

cultivated land use equalization was mapped to the range of [0,1] to obtain ������ , as shown in Table 

2. Based on this value and the decision variable ���  of the selected grid cell, the overall suitability 

could be calculated. Since this model used grid spatial data, there were two possibilities for the 

decision state of each land grid unit. ��� = 1 indicated that the grid cell was selected. If the cell was 

not selected, ��� = 0. Therefore, it was only necessary to calculate the unit in which the decision 

variable was 1. The use of �� to represent the objective of land suitability can be described as Formula 

(1). 

Table 2. Agricultural land quality rating mapping table. 

Land use grade 5 6 7 8 

Mapped value 1.0 0.7 0.4 0.1 

 

�� = � � ��� ∙ ������

�

���

�

���

 (1)

In the formula, � is the total number of grid rows, � is the total number of grid columns, and 

� and � are the values of the row and column. The purpose of the land suitability objective is to 

maximize the value of �� as much as possible. The cultivated land units with better conditions in 

various aspects in the study area were classified into basic farmland protection areas. 

Land continuity objective: 

Spatial continuity refers to the proximity of the spatial locations of the different farmland units 

selected for basic farmland within the same area. Scattered basic farmland affects the farmland's 

efficiency in cultivation, fertilization, and transportation, increases labor costs, and is detrimental to 

food production. In addition, contiguous lands require less infrastructure and other services to 

facilitate management. 

 
a “Regulation for Gradation on Agriculture Land Quality (GB/T 28407-2012)” was released by China Land Consolidation 

and Rehabilitation in 2014 (http://lcrc.org.cn/tdzzgz/bzhjs/gjbz/201412/t20141204_27731.html). 
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To avoid fragmentation of the overall pattern of basic farmland, this study calculated the degree 

of continuous land use of the basic farmland with Formula (2). In the formula, ���� is the sum of the 

perimeter of the delineated permanent basic farmland. When the defined area is circular, the 

permanent basic farmland is the most concentrated, and the minimum perimeter ����  can be 

calculated. Conversely, if the selected units are far apart, the perimeter is the largest, and this value 

is ����. �� can indicate the degree of concentration of land in the study area. The larger the difference 

between ���� and ���� is, the smaller the perimeter sum of the permanent basic farmland, and the 

larger the �� is, the higher the continuity of the selected basic farmland. 

�� =
���� − ����

���� − ����

 (2)

Land stability objective: 

Land stability can be understood as the possibility that land will not be occupied or 

misappropriated within a certain period of time. In recent years, a large number of people and 

resources have flowed into cities and towns, which has led to the rapid expansion of cities and towns 

into the surrounding areas, that has a negative impact on the stability of surrounding farmland. The 

cultivated land near the town center and the main transportation roads are subject to more occupation 

pressure due to low development costs and convenient transportation. However, the protection of 

cultivated land should not restrict the development of the local economy. In the delineation process, 

this was used as a negative factor to improve the stability of permanent basic farmland. 

As in Formula (3), the land development potential of each unit in the grid depended on the 

Euclidean distance between the grid unit and the nearest road, railway, highway, and town center, 

which are expressed in the formula as �������� , ����������� , ������������� , and ����������� , 

respectively. The corresponding weights �� , �� , �� , and ��  respectively, satisfy �� + �� + �� +

�� = 1  and normalize ���  to ��� , which is convenient for subsequent calculations, such as in 

Formula (4). The study assigned 0.3, 0.1, 0.1, and 0.5 to ��, ��, ��, and �� respectively, according to 

the road levels, impacts, and occupation possibilities [49].  

��� = �� ∙ �������� + �� ∙ ����������� + �� ∙ ������������� + �� ∙ �����������  
(3)

��� =
��� − ����

���� − ����
 (4)

where the maximum and minimum values that ���  can reach are ����  and ���� , respectively. The 

larger the values of �������� , ����������� , ������������� , and ������� are in Formula (4), the 

farther the unit is from nearby towns and transportation centers, and the larger the corresponding 

value of ���, which indicates that the land unit is more stable and more suitable for being classified 

as permanent basic farmland. The sum of the product of ���  and the decision variable ���  can 

represent the land stability ��, as shown in Formula (5): 

�� = � � ��� ∙ ���

�

���

�

���

 (5)

In summary, it is clear that the delineation of the permanent basic farmland is a multi-objective 

optimization problem. For the above three subobjectives, the model chooses a linear weighting 

method to process the objective function �(�) , as shown in Formula (6). Max{}  refers to the 

maximum value of the linear weighting function in parentheses. 

�(�) = ���{�� ∙ �� + �� ∙ �� + �� ∙ ��} 

�� + �� + �� = 1 
(6)
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3.1.2. Constraint Conditions 

1. Constraints on the total area of selected cultivated land 

The target of the permanent basic farmland protection provided to Xun County by the general 

utilization plan for land and space in Hebei city was 60,246.67 hectares, with a protection rate of 

84.86%. ������������ indicates the total farmland area selected in Xun County, which must satisfy 

Formula (7), where ��� is the area of each land unit. 

������������ = � � ��� ∙ ���

�

���

�

���

≥ 60246.67 (7)

2. Land use constraints 

Due to the historical rules of land use conversion, it is difficult to convert urban construction 

land into agricultural land, and it cannot be used as an alternative permanent basic farmland. For this 

model, the spatial units of urban construction land were eliminated in advance and were not involved 

in the model calculation. 

3. Constraints on topographical conditions 

According to the "notice on strengthening and improving the protection of permanent basic 

farmland" of the Ministry of Natural Resources, when the slope of the cultivated land is ≥ 25°, the 

slope is too steep, which greatly limits the use of such cultivated land. It is necessary to gradually 

return steeply sloped farmland to forest and grass. For this type of land, the model marks it as 

������ = 0.9, with the average slope value of the unit represented by �������, as shown in Formula 

(8): 

������ = ������� > 25? 0.9: ������  (8)

4. Urban boundary constraints 

Prioritizing eligible cultivated land at the borders of cities and towns into permanent basic 

farmland can help cities rationalize their spatial layout, promote urbanization in an orderly manner, 

and save land resources while also allowing full utilization of the basic farmland's multiple functions 

of protecting natural ecology, optimizing spatial structure, reducing urban pollution, and beautifying 

the urban environment. We used ��������  to represent the distance from the land unit to the nearest 

road and ������� to represent the distance between the unit and the nearest town center. In the 

calculation of ��������  and �������  for each land unit and weighting of the sum, as in Formula 

(9), the smaller the value was, the greater the probability that the corresponding land unit would be 

classified as permanent basic farmland. According to the possibilities and impacts of construction 

land expansion, we assigned 0.3 and 0.7 to �� and ��, respectively [49].  

��� = �� ∙ ������� + �� ∙ �������  

�� + �� = 1 
(9)

3.2. Design of AIA-PSO Model 

3.2.1. Particle Encoding and Initialization 

Each particle in the PSO is considered a candidate solution for the permanent basic farmland 

delineation problem. The particle guides its own position and speed continuously according to the 

best position of the individual particle it passes through and the global best position experienced by 

the entire group. To facilitate the determination and updated location of the particle's subsequent 

decision variables, binary coding and real number coding were used, respectively. 

There were only two possible values for each candidate unit in the raster data. Binary coding 

was used to mark whether the grid cell was selected as permanent basic farmland. As shown in Figure 

3. If the cell was not involved in the calculation, it was marked as "null" (represented by N in the 

figure 3). For the positions and velocities of the particles, the encoding method of the particles is 

shown in Figure 3(b). In addition, this model defines a particle structure, which contains not only 
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information about the delineation scheme but also information about the particle fitness, the particle's 

current position, the individual best position, and the global best position, as shown in Figure 3(c). 

(a) Before coding (b) After encoding

0 1 2 3 4 … n

0 0 0 1 0 0 … 0

1 0 0 0 0 1 … 0

2 0 1 0 1 0 … 0

3 1 0 1 0 0 … 1

4 0 0 1 0 0 … 0

… … … … … … … …

m N 0 0 0 0 … 0

0 1 2 3 4 … n

0 …

1 …

2 …

3 …

4 …

… … … … … … … …

m …

Fitness

Current 
location

Global best 
location

Personal best 
location

Particle

0 1 2 3 4 … n
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1 0 0 0 0 1 … 0

2 0 1 0 1 0 … 0
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4 0 0 0 0 0 … 0

… … … … … … … …

m N 0 0 0 0 … 0

0 1 2 3 4 … n

0 0 0 0 0 0 … 0

1 0 0 0 0 0 … 0

2 0 0 0 0 0 … 0

3 0 0 0 0 0 … 0

4 0 0 0 0 0 … 0

… … … … … … … …

m N 0 0 0 0 … 0

(c) Particle structure

 

Figure 3. Particle coding strategy: (a) grid cells state before particle encoding; (b) grid cells state after 

particle encoding; (c) Particle structure. 

When the particles were initialized, if particles were generated completely randomly, some 

restricted land units could be selected into permanent basic farmland. Therefore, during the 

initialization process, it was necessary to consider the limitation of the introduced constraint 

conditions and use a random mode with a constraint to initialize the particles. 

In Section 3.2, when the unit slope was greater than 25°, we used Code�� = 0.9 to mark the 

restricted land unit. When the particle starts to initialize, the value of the decision variable ���  is 

determined according to Code�� . First, the randint()  random function was used to generate �� , 

which is a random number between 0 and 1. If �� = 1, a random �� was generated again in the same 

way. If �� > ������ , ��� = 1 , otherwise, ��� = 0 . If �� = 0 , then ��� = 0 . With this method of 

generating random numbers, the probability of �� > ������  was very small, and the probability that 

the unit was selected into permanent basic farmland will be reduced accordingly. 

3.2.2. Particle Position and Velocity Update 

During the search process, particles continuously update their speed and position according to 

the individual optimal solution and the global optimal solution. �(�) represents the speed of the 

particle at the t-th iteration, and �(�) represents the position of the particle at the t-th iteration. The 

updated formula is expressed in Formula (10). In the formula, ω(�) is the dynamic inertia weight, 

�� and �� are the acceleration constants, that is, the individual learning factors and social learning 

factors of the particles, �� and �� are the independent random numbers between [0,1], and ���(�) 

and ���(�) are the individual optimal solutions and global optimal solution of the particles. 

�
���(� + 1) = �(�)���(�) + ���� ����(�) − ���(�)� + ���� ����(�) − ���(�)�

���(� + 1) = ���(�) + ���(� + 1)                                   
 

�(�) = ���� −
�

�������
∙ (���� − ����) 

(10)

where ω���  is the set maximum weight value of ω(�), ω���  is the set minimum weight value, 

������� is the maximum number of iterations, � is the current number of iterations, and they jointly 

determine ω (t). In general, ω(�) changes linearly and gradually. In this way, the global search ability 

of the algorithm was strengthened in the early stages of the iteration, and the local search ability was 

more focused in the later stages. As the number of iterations increases, ω(�) gradually decreases, 

and the impact of the speed of the previous iteration on the current speed is smaller. 
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Due to the different coding methods of the model for the particle position and decision variables, 

the updated particle cannot be guaranteed to be 0 or 1, so it was necessary to improve the position 

update mechanism. Therefore, the fuzzy function �������(�) was introduced. Since the value of ���  

is 0 or 1 is determined by the speed, the fuzzy function �������(�) as expressed as shown in 

Formula (11), and the position update formula was changed to Formula (12): 

������������ =
1

1 + ��������
 (11)

���(� + 1) = �
0,  � ≥ ������� ����(� + 1)�

1,  ��ℎ������             
 (12)

where � is a random number between 0 and 1. According to the above formula, the value range of 

���(� + 1) is controlled to {0,1}. In the binary algorithm, ���  can be regarded as the probability. If 

the value of the probability ������������ is 1, the value of the probability of 1 − ������������ is 0. 

The probability change of the particles can be expressed as Formula (13): 

� = ������������ �1 − ������������� (13)

For any particle in the model, ���� was set as the maximum speed to prevent particles from 

flying out of the search area, which was also in the allowable probability range of the binary 

representation algorithm. By calculation, when ���� > 10, �������(����) < 4.53 × 10��, then the 

position update of the algorithm was meaningless. Through the calculation of �������(���) , to 

ensure that the position of the particles can be changed, ����  is set to 6, at this time, 0.0025 <

������������ < 0.9975. 

3.2.3. Improvement of PSO with the Artificial Immune Algorithm 

Particles are randomly assigned initial positions and initial velocities during the initialization 

process and continuously update their individual optimal positions and global optimal positions 

during the search process. This leads to the particles tending to be identical, which reduces the 

diversity, and they fall into a local optimal solution. The artificial immune algorithm is an intelligent 

search algorithm inspired by the biological immune system [50]. Its biggest feature is that it has a 

strong global search ability and can maintain the diversity of antibodies, introducing immune system 

concepts into particle swarm optimization and using its diverse generation and maintenance 

mechanism of the immune system to overcome the premature convergence problem of particle 

swarm optimization. In the course of immunization, the selection of effective antibodies depends on 

the affinity between the antibody and the antigen. Through the "survival of the fittest" mechanism, 

antibodies with high affinity in the cloned population participate in reproduction and mutation, 

while the antibodies with low affinity are inhibited and gradually discarded with each iteration. 

Based on this immune principle, probability�  was used to represent the selection probability of the 

i-th particle, and the formula is as follows: 

������������ =
∑ ��(��) − �(��)�

����
���

∑ ∑ ��(��) − �(��)�
����
���

����
���

�, � = 1,2, ⋯ , � + �� (14)

where N  is the number of particles generated by the particle swarm algorithm, and N�  is the 

number of new randomly generated particles. 

To ensure the diversity of particles and the generation of new antibodies, the model performed 

immune cross-operation on the two antibodies and combines the best retention strategies to obtain 

better antibodies. As shown in Figure 4, two parent antibodies are selected in the particle population: 

particle A (P (A) in Figure 4) and particle B (P (B) in Figure 4). Since it is a replacement operation of 

a certain area between two particles, the same area is randomly selected in the two particles, and 

cross-replacement is performed to obtain new particles, P′(A) and P′(B). The fitness values of the 

parent antibody and the child antibody are calculated separately. If the fitness value of the hybridized 
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child antibody is greater than the corresponding parent antibody, the corresponding parent antibody 

is replaced with the child antibody. Otherwise, it is not updated. 
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Figure 4. Particle immune crossover operation. 

The particle updating in the particle swarm algorithm depends on the individual optimal 

solution to a large extent and the global optimal solution experienced by the particle, but the accuracy 

of this one-way search is not ideal. To cause the particles to more comprehensively search for optimal 

solutions, we chose to improve the particle speed updating formula according to the individual 

optimal solution of the first N�  particles with the best fitness value in the population, such as 

Formula (15), which effectively improved the accuracy of the algorithm search. 

���(� + 1) = �(�)���(�) + � ���� ����(�) − ���(�)�

��

���

+ ���� ����(�) − ���(�)� (15)

3.2.4. Fitness Function Design 

PSO uses the fitness function to judge whether a particle is good or bad. A higher fitness value 

indicates that the particle is closer to the optimal solution. Under the various constraints, to solve the 

multi-objective optimization problem of permanent basic farmland delimitation, not only do the 

three functions for the subobjectives of land suitability, land continuity, and land stability need to be 

combined, but also the constraints, such as the size of the protected area and the boundaries of cities 

and towns, must be considered. Therefore, this model uses the most commonly used external penalty 

functions to deal with the constraints of permanent basic farmland delineation, which is transformed 

into a part of the objective function, which becomes an unconstrained optimization problem. The 

external penalty function is expressed in Formula (16): 

�(�) = �(�) ± �� ����(�)

�

���

+ � ����(�)

�

�����

� (16)

In Formula (16), �� and �� are positive penalty coefficients, and ��(�) and ��(�) are functions 

of the inequality constraint ��(�) and the equality constraint ℎ�(�), respectively. Generally, � and 

� in the formula take values of 1 or 2. 

��(�) = ���[0, ��(�)]�  

��(�) = �ℎ�(�)�
�
 

(17)
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3.2.5. Flow of AIA-PSO Model 

Based on the above ideas and the construction of the permanent basic farmland objective 

function and the constraint condition system combined with the introduction of artificial immune 

concepts, and the particle swarm algorithm to improve the particle speed and location update 

strategy when solving the permanent basic farmland demarcation problem, the overall flowchart is 

shown in Figure 5. 
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Figure 5. Model flow chart. 

4. Analysis of the Permanent Basic Farmland Demarcation Results 

4.1. Setting PSO Model Parameters 

The parameters of the permanent basic farmland delineation model based on the particle swarm 

algorithm mainly included particle size � , maximum iterations ������� , inertial weight � , 

acceleration constants �� and ��, random numbers �� and ��, and maximum particle velocity ���� . 

Among these, the inertia weight � depended on its maximum value ω���, minimum value ω���, 

and maximum number of iterations, �������. We referred to the typical parameter values of PSO 

proposed by Carlisle and Dozier [51] to set the main parameters of this model. The specific settings 

are shown in Table 3. 

Table 3. Parameter value settings of the model. 

N ������� ���� ���� �� �� �� �� ���� 

30 100 0.9 0.4 2.8 1.3 [0,1] [0,1] 6 

 

To eliminate land that was not suitable for basic farmland in advance and improve the 

calculation efficiency of the model, we reclassified the grid cells into six categories: cultivated land, 

other agricultural land, unused land, urban and rural construction land, transportation land, and 

water areas. During the model initialization process, the construction land and land units that did 

not meet the basic site conditions were preprocessed. These land units were not considered during 

the model operation. 
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4.2. Comparison of the Different Schemes 

This model needs to be comprehensively considered from three aspects of land suitability, 

continuity, and stability. The weight coefficients corresponding to the subobjective functions were 

set in advance. To explore the difference in the impact of different weighting schemes on the 

delineation results of the permanent basic farmland protection areas, this paper set up three sets of 

optimization schemes based on three subobjective functions: quality assurance schemes (weight ratio 

of 8:1:1), spatial optimization schemes (weight ratio of 1:8:1), layout stability schemes (weight ratio 

of 1:1:8), as well as multiple sets of control experiments. 

1. Comparative analysis with quality assurance schemes 

Because the quality assurance comparison plan focused on optimizing the quality of cultivated 

land, scheme A sets the target weight of land suitability to 0.8, and the other two target functions had 

a weight of 0.1. Since permanent basic farmland should be high-quality agricultural land, and 

therefore the suitability of the weight cannot be 0, scheme D was set to only consider the suitability 

of land in extreme cases, and its weight was set to 1.00. In schemes E and F, the land continuity target 

and the land stability target were given higher weight values. In comparison with scheme A, the ratio 

of schemes E and F was set to 2:1:1. Scheme H balanced the three goals and assigned weight factors 

with a ratio of approximately 1:1:1. The above weight distribution schemes are shown in Table 4, and 

the experimental results of the objective function values of each subfunction are shown in Table 5. 

Table 4. Combination scheme of weighting factors for quality assurance type. 

Scheme 
Weight of 

Land Suitability �� 

Weight of 

Land Continuity �� 

Weight of 

Land Stability �� 

D 1.00 0.00 0.00 

A 0.80 0.10 0.10 

E 0.50 0.25 0.25 

H 0.34 0.33 0.33 

Table 5. Objective function values under different weighting schemes for quality assurance types. 

Scheme Land Suitability �� Land Continuity �� Land Stability �� 

D (1.0:0.0:0.0) 39,353.9 0.7923 41,763.87 

A (0.8:0.1:0.1) 39,027.4 0.8481 41,879.81 

E (0.5:0.25:0.25) 36,891.8 0.8864 43,312.71 

H (0.34:0.33:0.33) 34,988.9 0.9102 44,836.75 

 

It can be seen from scheme D that when only the land suitability target was considered, �� 

reached a maximum value of 39,353.9, but the land continuity and land stability index were low. In 

a comparison of scheme A with schemes D, E, and H, as the continuity and stability weights 

increased, their corresponding function values increased by up to 14.88% and 7.06%, respectively. At 

the same time, the suitability values decreased by up to 11.09%, and the average level decreased from 

6.17 to 6.52. The land suitability goals drive particles to choose land units with higher grades, but 

these land units were not necessarily continuous. However, some cultivated lands with higher grades 

were closer to urban roads, so as the weight ratio changed, the suitability index gradually decreased, 

and continuity and stability improved accordingly. 

2. Comparative analysis of the spatial optimization schemes 

In the spatial optimization comparison schemes, the focus was on the degree of continuity of the 

cultivated land, so scheme B set the weight of land continuity to 0.8, and the other two objective 

function weights to 0.1. In scheme F, based on the emphasis on continuity, the weights of land 

suitability and land stability were increased to analyze the impact of the change in weight on the 

continuity index. The above weighting scheme is shown in Table 6, and the running result of each 

subobjective function is shown in Table 7. 



ISPRS Int. J. Geo-Inf. 2020, 9, 243 15 of 25 

 

Table 6. Combination of weighting factors for spatial optimization scheme. 

Scheme 
Weight of 

Land Suitability �� 

Weight of 

Land Continuity �� 

Weight of 

Land Stability �� 

B 0.10 0.80 0.10 

F 0.25 0.50 0.25 

H 0.34 0.33 0.33 

D 1.00 0.00 0.00 

Table 7. Objective function values under different weighting schemes for spatial optimization 

scheme. 

Scheme Land Suitability �� Land Continuity �� Land stability �� 

B(0.1:0.8:0.1) 33,828.2 0.9646 42,174.14 

F(0.25:0.5:0.25) 34,314.2 0.9293 43,617.10 

H(0.34:0.33:0.33) 34,988.9 0.9102 44,836.75 

D(1.0:0.0:0.0) 39,353.9 0.7923 41,763.87 

 

Scheme B was the spatial optimization scheme set in this study, and the land continuity index 

reached 0.9646. In a comparison of scheme B with schemes F and H, as the suitability and stability 

weights increased, the corresponding objective function values increased by up to 3.43% and 6.31% 

respectively, and the continuity of the land decreased by up to 5.64%. The continuous objective guides 

particles towards the area with concentrated space, but it inevitably falls into land with poor 

cultivated land quality or adjacent urban area activity, which leads to a decrease in the land suitability 

objective and cultivated land stability. A typical area in the study area was selected for observation 

and analysis, as shown in Figure 6. As the weight of the continuous target gradually increased, this 

area also produced a more obvious concentrated continuous effect. 

 

 

Figure 6. Changes in the spatial pattern of typical regions affected by contiguous weights. 

3. Comparative analysis of the layout stability schemes 

The layout stability comparison scheme mainly analyzed whether the cultivated land in the 

permanent basic farmland protection area could remain stable for a long time without being 

occupied. Therefore, in scheme C, the land stability parameter �� was set to 0.8, and the remaining 

two objective function weights were also set to 0.1. Schemes G and H were compared with scheme C 

to analyze the impacts of changes in the land suitability and continuity weights on the stability. On 

the basis of emphasizing the stability coefficient, the weights of the first two were increased to analyze 
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their impact. The weighting schemes are shown in Table 8, and the running results of the objective 

values of each subobjective function are shown in Table 9. 

Table 8. Combination scheme of weighting factors for the layout stability scheme. 

Scheme 
Weight of 

Land Suitability �� 

Weight of 

Land Continuity �� 

Weight of 

Land Stability �� 

C 0.10 0.10 0.80 

G 0.25 0.25 0.50 

H 0.34 0.33 0.33 

D 1.00 0.00 0.00 

Table 9. Objective function values under the different weighting schemes for the layout stability 

scheme. 

Scheme Land Suitability �� Land Continuity �� Land Stability �� 

C (0.1:0.1:0.8) 33,414.2 0.8273 49,230.57 

G (0.25:0.25:0.5) 34,014.2 0.8775 47,161.21 

H (0.34:0.33:0.33) 34,988.9 0.9102 44,836.75 

D (1.0:0.0:0.0) 39,353.9 0.7923 41,763.87 

 

Scheme C was the best layout stability scheme set in this article, and the stability index reached 

49,230.57 for the study period. Comparing scheme C with schemes G and H, as the weights of 

suitability and continuity increase, their corresponding values increase by 4.71% and 10.02% 

respectively, and the stability decreased by up to 9%. The stability objective guides particles away 

from the areas with developed transportation and densely populated cities and towns, thereby 

avoiding the possibility of occupation of cultivated land, but these areas may conflict with the other 

two objectives. Increasing the stability weight moves particles far away from towns and roads, but 

this contradicts the town boundary constraints, and the two restrict each other. 

Two groups of typical areas were selected in the study area: the periphery of the town and the 

periphery of the main traffic road. Among these, the areas marked in pink are urban areas, and the 

areas marked in dark gray are road areas (shown in Figure 7). From the results of scheme D (with a 

stability weight of 0), scheme H (with a stability weight of 0.33), scheme G (with a stability weight of 

0.5), and scheme C (with a stability weight of 0.8), it can be seen that when the stability weight values 

are small, the movement of the particle is more dependent on the quality of the land. At the same 

time, due to the limitation of urban boundaries, the selected farmland mostly gathered around cities 

and roads. As the weight of stability gradually increases, the selected area gradually moves away 

from the towns and roads, which has the effect of moving away from urban traffic and reducing the 

possibility of encroachment. 
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Figure 7. Changes in the spatial patterns of typical regions as a result of the stability weights. 

In summary, the difference in objective function values produced by the different weight 

combinations were more obvious. The experiment reflected that the three subobjective functions of 

the model were mutually restricted. Decision makers can weigh the allocation coefficients according 

to the need to obtain a suitable result for a specific decision. 

4.3. Analysis of the Impact of Improvement on the Model 

To analyze the impact of the introduction of immune system concepts on the model and to 

compare the efficiency of particle swarm optimization (PSO), artificial immune algorithm (AIA), and 

immune particle swarm optimization (AIA-PSO) in solving multi-objective optimization problems, 

this study conducted experiments from the aspects of model convergence ability, optimization ability, 

and stabilization ability. 

1. Convergence ability of the model 

To compare the efficiency of the three models in solving the problem of permanent basic 

farmland delineation, the experimental results were compared by using multiple test values. Since 

scheme H was a balanced solution of three subobjective functions, we used this scheme for the 

experiments. At the same time, considering that the results had a certain randomness, the three 

models were run 100 times each, and the average number of iterations and the average convergence 

times were calculated, as shown in Table 10, and the corresponding convergence curve was plotted 

as shown in Figure 8. 

 

Table 10. Mean convergence times and running times of the three models under scheme H. 

Model 
Average Convergence 

Iterations 

Mean Convergence Time 

(h) 

PSO 79 1.7 

AIA 86 2.3 

AIA-PSO 52 4.1 
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Figure 8. Convergence plots of the three models under scheme H. 

As seen from the graph and table, the AIA-PSO model required the lowest number of iterations, 

but the calculation took longer. In terms of the convergence speed, AIA required the most iterations, 

while AIA-PSO had the lowest number of iterations on average. This showed that PSO had a faster 

optimization speed compared to the AIA. The introduction of immune system concepts further 

improved the optimization speed of the AIA-PSO model. From the perspective of running time, the 

running time required by AIA-PSO was much longer than those of the other two models. This was 

because it increased the immune process of the AIA during the running process and improved the 

particle positioning and speed update mechanism, which greatly increased the complexity of the 

calculation, thereby consuming more time. In general, compared with PSO and AIA, AIA-PSO had a 

higher convergence efficiency and faster optimization speed, so the loss of time was acceptable. 

2. Optimization ability of the model 

To compare the optimization capabilities of the three models for the three subobjectives when 

solving the multi-objective optimization problem, the following experiments were performed in this 

study: scheme H was still used, and three models were used to solve the three subobjective functions 

100 times, and the optimal value results were recorded and averaged, as shown in Table 11. 

 

Table 11. Average subobjective function values calculated by the three models. 

Model �� �� �� 

PSO 34,988.8 0.9102 44,836.75 

AIA 38,268.3 0.9273 45,397.92 

AIA-PSO 36,163.4 0.9561 46,934.68 

 

It can be seen through comparison of the average values in the table that for the three 

subobjective functions, the optimization ability of the AIA was better than that of PSO, and the AIA-

PSO model had also improved to a certain extent after the introduction of immune system concepts . 

Especially under the two subobjectives of stability and stability, the optimization ability of AIA-PSO 

exceeded the PSO and AIA models, and the solving ability was significantly improved. Compared 

with the PSO model, the average objective function values calculated by AIA-PSO increased by 3.36%, 

5.04%, and 4.68%, respectively. 

3. Stability of the model 

To analyze the stability of the three models, we still chose scheme H, ran the three models 100 

times each, calculated the optimal solution of the three subobjective functions under the three models, 

and plotted the result curve, as shown in Figure 9. The mean and standard deviation were then 

calculated, as shown in Table 12. 
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Table 12. Means and standard deviations of the calculation results of the three models. 

Model 
Mean Value Standard Deviation 

�� �� �� �� �� �� 

PSO 34,984.81 0.91006 44,836.769 174.56 0.00406 86.948 

AIA 38,255.35 0.92736 45,703.902 277.52 0.00682 153.377 

AIA-PSO 36,127.13 0.95574 46,923.043 179.63 0.00604 103.046 

 

 

 

Figure 9. Graph of subobjective function values for 100 runs of three models. 
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According to the above calculation results, compared with the average value, the three 

subobjective function values of the AIA-PSO model were higher than those of the PSO, which 

indicates that the addition of immune system concepts strengthens the global search ability of the 

original algorithm, and the optimization ability was better. However, it can be seen from the standard 

deviations that those of the AIA and AIA-PSO were higher than that of PSO, indicating that the two 

models were more volatile and that the algorithm was less stable than PSO. From the result curve 

drawn in Figure 9, we can see more clearly that the stabilization ability of the AIA-PSO model was 

less effective at solving basic farmland delineation problems than PSO but was more effective than 

the AIA. The addition of immune operations improved the problem of the PSO falling into a local 

optimal solution but reduced the stability of the model. Although AIA's optimization ability was 

higher than that of PSO, the stability of the model is also an important indicator that cannot be 

ignored when solving multi-objective problems. The AIA-PSO model combined the stability of the 

PSO and the global search ability of the AIA and can obtain more satisfactory calculation results. 

4.4. Analysis of the Pattern of Permanent Basic Farmland in Xun County 

In combination with the comprehensive needs of the model, we chose the abovementioned 

scheme H to delimit the permanent basic farmland in Xun County. According to the results of the 

experiment, the area of permanent basic farmland selected by each township and its corresponding 

grade were counted and recorded. Figure 10 shows the results of the delineation of permanent basic 

farmland in Xun County. The demarcation results of the permanent basic farmland in Xun County 

are shown in Table 13. 

 

 

Figure 10. Map of the permanent basic farmland protection area in Xun County. 

Due to the randomness of the particle swarm algorithm in searching for a solution space, the 

distribution of particles becomes more spatially dispersed. After introducing constraint conditions 

that consider the continuity and stability goals, although the final delineation scheme of the 

experiment still had some unsatisfactory spatial areas, the overall continuity was already satisfactory. 

In terms of quality assurance, due to the guidance of the land suitability objective function, the 
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delineated permanent basic farmland had a specific approach to higher-level farmland. Almost all 

level five cultivated land and level six cultivated land were classified as permanent basic farmland. 

In terms of the spatial continuity, the concentrations of land and contiguous land around the 

neighboring towns and near traffic roads were poor in the study area. The cultivated land in these 

areas is mostly fragmented and disconnected, so it was not classified as permanent basic farmland. 

In terms of the stability of the spatial pattern, the land stability objective conflicted with the land use 

constraints in Section 3.2. The cultivated land around the towns with dense roads played a role in 

controlling the further expansion of the urbanization to a certain extent, and the remaining areas 

avoided the township center and the surrounding roads. The experimental results not only ensured 

the quality of the cultivated land but also ensured the continuous extent and long-term stability of 

the cultivated land. 

Table 13. Statistical table of the delimitation results of the permanent basic farmland in each township 

of Xun County (ha). 

No. 
Administrative Regions Type of Cultivated Land Average 

Grade Code Name of Town Irrigated Dry Subtotal 

1 410621100 Chengguan  0 0 0  

2 410621101 Shantang  
10,827.3

9 
0 10,827.39 7.03 

3 410621102 Tunzi  9071.26 313.53 9384.79 6.42 

4 410621104 Xinzhen  8847.94 2.69 8850.63 6.18 

5 410621105 Xiaohe  7687.47 0 7687.47 6.05 

6 410621106 Liyang  3190.08 0 3190.08 6.48 

7 410621107 Weixian  6073.82 7.71 6081.53 5.73 

8 410621200 Wangzhuang  5858.45 4.62 5863.07 6.15 

9 410621201 Baisi  8249.82 67.27 8317.09 6.2 

10 410621203 Liyang  0 0 0  

11 410621204 Xun County woodland 0 0 0  

12 410621205 Shantang township woodland 0 0 0  

13 410621206 Xun County farm 13.81 0 13.81 8 

14 410621208 Original forest farm six team 11.93 0 11.93 8 

15 410621209 Original forest farm six team 37.48 0 37.48 6 

16 410621210 
Disputed areas of Dongzhu, 

Zhongzhu and Xizhu 
0 0 0  

Total 
59,869.4

5 
395.82 60,265.27 6.32 

 

It can be seen from the data that Shantang town, Tunzi town, and Xinzhen town had the largest 

cultivated land area selected for permanent basic farmland. The selected cultivated land area of these 

three towns was more than 8000 hectares. The three towns all had flat topography, and the cultivated 

land was contiguous. However, there were problems with insufficient irrigation facilities and traffic 

congestion. In addition, in some areas of Shantang town and Xinzhen town, the cultivated land had 

a long cultivation distance, and the quality of cultivated land was low. The irrigation facilities in 

Weixian town were also lacking, and the protection of cultivated land was poor. Chengguan town is 

the seat of the Xun County government and is surrounded by Liyang town. It is the county's political 

center and economic core. The large inflow of population and rapid economic growth have led to the 

rapid expansion of Chengguan town and complicated roads, so no cultivated land was selected as 

permanent basic farmland. The results showed that the area designated in Xun County for permanent 

basic farmland was 60,265.27 hectares, which met the protection target of 60,246.67 hectares. The land 

had an average grade of 6.32 and a protection rate of 84.89% was achieved, which was 18.6 hectares 

more than planned. 
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The permanent basic farmland delimitation model based on the hybrid particle swarm 

optimization algorithm comprehensively considered the land conditions, spatial patterns, 

development potential, and other factors, along with constraints such as the area, land use, and 

terrain, so that the delineation results were able to meet the requirements of optimal farmland quality. 

The model guaranteed the characteristics of a concentrated and continuous spatial pattern and 

improved the long-term stability of basic farmland protection areas, effectively guaranteeing regional 

food security. 

5. Conclusions 

Permanent basic farmland is the basic guarantee of China's food security and an important part 

of China's strategic security measures. Permanent basic farmland delineation is essentially a multi-

objective spatial optimization problem. In this study, based on the three subobjectives of land 

suitability, land continuity, and land stability, and with the use of particle swarm optimization, the 

artificial immune algorithm was introduced, and immune operations were added to the algorithm 

flow. A permanent basic farmland delineation model based on a hybrid particle swarm optimization 

algorithm was constructed, and the model was verified with Xun County of Henan Province as the 

research area. 

1. The results of the experimental comparative analysis showed that there were conflicts between 

land suitability, land continuity, and land stability. The improvement in the value of any one 

subobjective function was at the expense of the other two subobjective values. The 

corresponding weights �� , �� , and ��  were allocated according to the specific decision 

objectives to obtain a more satisfactory delineation scheme. 

2. With the increase in the weights �� and �� corresponding to the continuity and stability in the 

experiment, the consistency target guided the particles to find the area where the spatial 

concentration was formed and gradually produced a more obvious concentration effect. The 

stability objective caused the selected area to gradually move away from towns and roads from 

the periphery of the town, reducing the possibility of land occupation due to the renewed 

expansion of the town. 

3. The PSO algorithm has a strong spatial search ability and global optimization ability to solve 

multi-objective problems. Combined with the spatial processing capabilities of GIS, which 

reduced manual intervention and improves work efficiency, it has strong operability and 

provides a favorable guarantee of permanent basic farmland demarcation results and quality. 

4. The global search capability of the artificial immune algorithm was used to compensate for the 

shortcomings of particle swarm optimization, which easily falls into a local optimal solution. A 

hybrid particle swarm optimization algorithm was constructed to improve the efficiency of the 

model. Compared with the original model, the number of iterations was reduced by 34.2%, and 

the optimization ability of the three subobjective functions was increased by 3.36%, 5.04%, and 

4.68%. However, the improved AIA-PSO had 2.4 times the running time of PSO and had large 

fluctuations. 
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