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Abstract: Geospatial sensors are generating increasing amounts of three-dimensional (3D) data.
While Discrete Global Grid Systems (DGGS) are a useful tool for integrating geospatial data, they
provide no native support for 3D data. Several different 3D global grids have been proposed; however,
these approaches are not consistent with state-of-the-art DGGSs. In this paper, we propose a general
method that can extend any DGGS to the third dimension to operate as a 3D DGGS. This extension
is done carefully to ensure any valid DGGS can be supported, including all refinement factors
and non-congruent refinement. We define encoding, decoding, and indexing operations in a way
that splits responsibility between the surface DGGS and the 3D component, which allows for easy
transference of data between the 2D and 3D versions of a DGGS. As a part of this, we use radial
mapping functions that serve a similar purpose as polyhedral projection in a conventional DGGS.
We validate our method by creating three different 3D DGGSs tailored for three specific use cases.
These use cases demonstrate our ability to quickly generate 3D global grids while achieving desired
properties such as support for large ranges of altitudes, volume preservation between cells, and
custom cell aspect ratio.

Keywords: discrete global grid system; 3D global grid; polyhedral grid; volume preservation

1. Introduction

The near-ubiquity of certain smart technologies (smartphones, LIDAR, autonomous vehicles,
UAVs, drones) is leading to an increasing amount of spatial information and data being generated [1].
Because of this, the development of technologies and tools for managing these types of data, along
with other conventional geographic information, is more important than ever. Geographic information
systems (GIS) have traditionally been used for this task, where different datasets are represented
as individual layers in a two-dimensional (2D)—or if altitude is represented a three-dimensional
(3D)—coordinate system, which acts as a proxy for the Earth [2,3]. However, the distortion and map
edges that result from projecting the surface of the Earth to a plane can affect the accuracy of certain
analyses [4,5] and also result in misleading visualizations if one is not careful [6]. Furthermore, when a
large volume of data is present, overlaying operations such as intersection and data extraction become
computationally expensive [7].

An alternative to the coordinate-based approach of GIS for managing geospatial data is an
area, or cell, based system. A partitioning of the Earth into a set of non-overlapping cells allows
information to be associated with the cell(s) that correspond with the appropriate region(s) of the Earth.
Such partitionings are termed discrete global grids. To accommodate different resolutions of data, a
hierarchy of these discrete global grids at successively finer resolutions, referred to as a discrete global
grid system (DGGS), can be used [8]. Current state-of-the-art DGGSs make use of an approximating
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polyhedron as an initial discretization of the Earth’s surface [9–11], and are the class of DGGS this
work will focus on.

Many of the geospatial sensors mentioned above, along with other technologies such as numerical
weather prediction, generate 3D geospatial data, that is, data with an associated altitude in addition to
the surface coordinates. While DGGSs are effective for integrating and managing geospatial data on the
surface of the Earth, they have no inbuilt mechanisms for supporting 3D data. Because of this, there has
been a recent push toward developing technologies for 3D global grids and grid systems [12]. While
most 3D geospatial data are located in a relatively small region above and below the surface of the
Earth, vital processes such as seismic wave propagation and the magnetosphere extend much beyond
this narrow region. Additionally, satellites in high Earth orbit have altitudes exceeding 35,000 km.
Therefore, in order to support the full range of human activity and interest, there may be a need for 3D
global grids to extend far beyond the atmosphere and toward the centre of the Earth.

Approaches for creating 3D global grid systems exist [13–15], however current methods are
typically based on latitude-longitude coordinates and are not consistent with current state-of-the-art
DGGSs. Ideally, a new 3D global grid system should leverage the research, development, and data
collection achieved with conventional DGGS. One way to create such a grid is by extending an existing
DGGS to the third dimension to operate as a 3D global grid system. However, there are many different
DGGSs with various desirable properties [16–19], and as such, the ideal DGGS to be extended depends
on the application. Instead of extending a single DGGS to 3D, a more versatile approach is to create
a general method that works for any arbitrary DGGS. This extension should be done in such a way
that the resulting 3D grid is fully compatible with the conventional (2D) one, meaning that it allows
efficient and straightforward transference of data between the two grids, both from 2D to 3D and
from 3D to 2D. The 3D grids should also preserve—as best as possible—desirable properties of the
conventional DGGS such as area, or in 3D volume, preservation.

Figure 1. Overview of how the input Discrete Global Grid System (DGGS) is used to define the
geometry of the three-dimensional (3D) DGGS. The faces of the initial polyhedron of the input DGGS
are first extruded to create the prismatoid base cells of the 3D DGGS. For refinement, the bases of these
prismatoid cells are refined using the same refinement scheme as the input DGGS and combined with a
radial refinement. A semiregular refinement is suggested; however, regular refinement is also possible.
A more detailed description of these processes is provided in Section 4.

In this paper, we introduce a general method for creating 3D global grid systems that use a
conventional DGGS—which we refer to as the input DGGS—as a starting point and specification. We
call the resulting grid system a 3D DGGS. These 3D DGGSs provide a natural extension of the input
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DGGS to the third dimension and are fully compatible with their respective surface representations. An
overview of the method for creating the geometry of the grid is detailed in Figure 1. For constructing
the base cells, we simply extend the faces of the input DGGS polyhedron to the desired vertical
extent, resulting in prismatoid shaped cells. A refinement method is then needed to create more
fine resolutions of the grid from these cells. For base cells with a large radial extent, regular 3D
refinement introduces significant variation in cell shape and size. This degeneration is a natural
consequence of the prismatoid cells converging at the centre of the grid. To address this issue, we
construct a semiregular refinement method that achieves improved cell uniformity. Both the regular
and semiregular refinements are based on the refinement used in the input DGGS. Our method works
for all valid DGGS refinements, including all refinement factors and non-congruent schemes. We also
provide refinement rules to control the aspect ratio (width compared to depth) of cells in the grid.

Figure 2. The process of encoding (left) and decoding (right) with a DGGS. Encoding: features are
projected from the Earth domain to the polyhedral domain of the grid; the set of planar cells associated
with the feature are obtained—each of which has a unique index. Decoding: a set of cell indices
corresponds to cell geometry on the polyhedral grid; cells in the polyhedral domain are inverse
projected back to the Earth domain. The process for a 3D DGGS is similar, except features and cells
have associated altitude(s).

With the geometry of the grid defined, a method for mapping geospatial data to the appropriate
set of cells is needed. Likewise, the inverse process of mapping data that has been associated with a set
of grid cells back to the corresponding regions of the Earth is also needed. These operations, depicted
in Figure 2, are referred to as grid encoding and decoding, respectively. As a part of these operations,
a conventional DGGS makes use of a polyhedral projection [20,21] to map between the spherical
domain of the Earth and the polyhedral domain of the grid. For our 3D DGGS, we wish to extend the
encoding and decoding operations defined on the input DGGS in order to accommodate points and
grid cells with altitude. We accomplish this by splitting encoding and decoding into a surface and
radial component, which are handled by the input DGGS and our methods, respectively. As a part of
these operations, we extend the radial mappings introduced in [22] for use with our 3D DGGSs. These
mappings serve a similar purpose as projection in a conventional DGGS and use a single parameter
to blend between volume and shape preservation. We also discuss how separate surface and radial
indices for cells are combined to perform spatial neighbourhood queries and establish parent/child
relationships for navigating the cell hierarchy.

We demonstrate the potential of our methodology with three example use cases, each using
a different combination of input DGGS and 3D parameters to create a resulting 3D DGGS most
appropriate for the application. These use cases illustrate both the versatility and sophistication of the
framework, being able to create many different 3D grid systems while achieving desirable properties
such as support for a large variation in altitude, volume preservation, specific cell aspect ratios, and
precision for small scale data.

The paper proceeds with a summary of previous works for spatial analysis on the globe, DGGSs,
and 3D global grids, then continues with a brief explanation of the defining elements of a DGGS. Our
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framework for extending the input DGGS to 3D is then introduced, starting with the construction of
the initial prismatoid discretization and then the definition of both regular and semiregular refinement
schemes. An extension to produce cells of a desired aspect ratio is also described. We then detail how
grid encoding and decoding are split into surface and radial components, and provide the operations
necessary to perform the radial part of each. Methods for hierarchy navigation and neighbourhood
queries using split surface and radial index components are also provided. The results of the method
are then presented for three potential use cases along with a brief discussion. We conclude with a
summary and potential directions for future research.

2. Related Work

Methods for mapping the surface of the Earth to a plane have long been studied and used for
creating maps of the Earth [20]. These mappings—or projections—introduce inevitable distortions that
are not present on model globes of the Earth. Despite this, the ability for 2D maps to be easily made
and stored, display the entire Earth at once, and accommodate any scale, have motivated the use and
study of these projections. With the advent of digital maps and representations of the Earth, however,
many of the drawbacks of globe based representations are lessened or negated.

While traditional GIS still makes heavy use of projection for analysis and visualization of
geographic and geospatial data, there have been many works on developing algorithms and
techniques for performing spatial analysis directly on the sphere. Some recent examples include
better representations of rational points [23], multiresolution representations of B-spline [24] and
NURBS [25] curves, and methods for offsetting curves in both vector and raster form [26].

Due to the mathematical limitations of projection and increases in computation power, there has
been a push to move away from conventional GIS representations and toward globe-based ones [27].
At the core of this movement is the DGGS, which allows for native support of spatial resolution and
positional uncertainty through the use of a cell hierarchy [8,28]. Many different DGGSs have been
proposed and compared [16–19], each with strengths and weaknesses. Likewise, there have been many
works on algorithms for DGGSs, including more efficient indexing [29,30], faster and more accurate
vector rasterization [31], and conversions of indices between different DGGSs [32]. A comprehensive
overview of DGGSs in the context of a globe-based Digital Earth can be found in [9,11].

Despite the promises of DGGSs, most only provide a partitioning for the surface of the Earth; any
geospatial data with altitude must be flattened to the surface for integration with a DGGS, with the
original altitude stored as a field of the data. For many applications, this is an acceptable solution.
However, for those with data that occupies an extensive range of altitudes, it negates the benefits
of the DGGS hierarchy in the radial dimension. It also makes data querying less efficient, as data at
all altitudes associated with a cell must be searched to find those that correspond with the desired
altitude(s). With the large amounts of 3D geospatial data being generated, such as 3D point clouds
from LIDAR [33] and aircraft flight paths [34,35], there is emerging an increasing need for 3D global
grids and grid systems [12].

One of the most basic approaches for creating a 3D global grid is a simple extension of a
latitude-longitude grid to 3D—or a 3D latitude-longitude grid (3D LLG). This type of grid is created by
dividing the Earth into equal steps of latitude, longitude, and radius (altitude), and is easily made into
a hierarchical system of grids as well. Due to the simplicity of its construction, it has seen use in global
crust modelling [36] and exploring P-wave velocity [37] among other applications. The GeoSOT3D
grid is a variation of the standard 3D LLG where latitude and longitude have been extended to larger
virtual spaces to improve the efficiency of grid encoding and decoding [15] and has been used to
increase the efficiency of aircraft collision detection [34,35]. Despite the simplicity of a 3D LLG, due to
the nature of spherical coordinates, cells at the poles and centre of the grid degenerate and are much
smaller than other cells. These degeneracies make this type of grid problematic for many applications,
particularly if uniform volume cells are required.
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One approach for solving some of the issues with a simple 3D LLG is the Yin-Yang grid [38].
This grid is composed of two similar component grids—the Yin and Yang grids—which are 3D LLGs
270° in longitude and 90° in latitude centred at the equator. These component grids are then rotated
and placed atop each other to cover the sphere fully. This grid solves the issue of cells excessively
degenerating toward the poles and has been used extensively for geodynamo and mantle convection
simulation [38–41], but introduces a different issue in cells overlapping near the borders of the Yin and
Yang grids. These overlapping cells lead to issues of either ambiguity or redundancy when associating
geospatial data with cells. Also, this grid does not address cell degeneration toward the centre of
the sphere.

To eliminate cell degeneration both toward the poles and the centre of the sphere—without
introducing overlapping cells—Yu and Wu proposed the Spheroid Degenerated-Octree Grid
(SDOG) [13]. SDOG is an octree refinement of the sphere where children cells that are degenerate (i.e.
not hexahedral) are combined. The result is cells located at either the centre or a pole of the sphere
are refined differently—into four and six children respectively—than the other, regular cells in the
grid. This refinement method bounds the maximum difference between the volume of cells in the grid,
leading to cells that are mostly uniform in size and shape. Additionally, being based on midpoints of
spherical coordinates, this grid has efficient algorithms for coding and decoding indices [42]. This type
of grid system has been used for the modelling of large-scale geospatial objects [43] and multi-scale
visualization of the lithosphere [44]. Furthermore, there are extensions of the method that improve
the volume preservation of the grid without significantly sacrificing the efficiency of indexing [22].
Another approach similar to SDOG is the Sphere Shell Space 3D Grid [14], which uses a similar octree
based refinement of cells, but is based on multiple sphere shells as opposed to a single sphere. We also
use this style of refinement as the basis for our semiregular prismatoid refinement.

An alternative approach for creating a 3D global grid is first to create the grid in
a more straightforward domain and then map this grid to the spherical domain. For
example, a volume-preserving mapping between the cube and tetrahedron [45] combined with a
volume-preserving mapping between the tetrahedron and spherical octant [46] allows creating an
equal volume spherical grid from one in the cube. While this specific grid is useful for multiresolution
analysis and wavelets, the varying cell shapes make it a non-ideal choice for general-purpose data
integration. However, with a different set of mappings that better preserves the needed properties,
this approach could be used for creating a viable 3D global grid.

Despite an increasing prevalence and usage of 3D global grids, the field of research thus far has
been mostly separate from that of DGGSs. With the rich body of literature on the subject, it seems
natural that the development of 3D global grids should build off of accomplishments already made
with DGGSs. A simple way to achieve this is by extending conventional DGGSs to 3D to operate as 3D
global grids. Such an extension not only allows desirable properties of the DGGS to extend to 3D but
also facilitates the straightforward transference of data between the two representations.

Recognizing the benefits of extending a DGGS to 3D, some works use such a methodology for
creating a 3D global grid. An approach used in [47] stacks duplicates of a DGGS at increasing radii to
create a 3D global grid for interactive volumetric ray tracing of 3D Earth data. While this is appropriate
for a single resolution, the radial component of the grid is separate from the cell hierarchy nullifying
the multiresolution benefits of a DGGS. In order to incorporate the radial component of the grid with
the cell hierarchy, Sirdeshmukh et al. create a 3D (or 4D) DGGS by placing 3D (or 4D) hypercubes
on the faces of the DGGS polyhedron [33]. These hypercubes are then refined and traversed with
a space-filling curve to create the 3D (or 4D) DGGS, which is used by the authors to encode point
cloud data.

While current grid extension methods are promising, they fail to address the radial degeneration of
cells toward the centre of the grid. Furthermore, the methods employed are not universal and are only
applicable to certain DGGSs. We aim to address these issues. Our method is entirely general—applying
to any DGGS—and solves issues overlooked in other methods. We handle all possible cell shapes and
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refinement factors, control cell aspect ratio, manage the degeneration of cells toward the centre of the
grid, allow volume preservation between cells, and define encoding and decoding operations that are
compatible with surface representations.

3. DGGS Overview

Three key elements are used to define any given DGGS: the initial discretization, the cell
refinement method, and the projection and inverse projection. Additionally, each cell in a DGGS
needs a unique identifier that is used to index data associated with the cell. Before we explore how to
extend an arbitrary DGGS to 3D, we first provide a brief background on each of these components.
A deeper discussion of these elements can be found in [9,11].

3.1. Initial Discretization

The initial discretization for a given DGGS is simply the initial set of cells used to discretize Earth.
This set of cells determines both the number of cells in the most coarse representation of the Earth
and the shape(s) of cells used in the grid system. Geodesic DGGSs make use of an approximating
polyhedron that serves as the initial discretization. Some of the most common choices for these
polyhedra include the platonic solids and the truncated icosahedron; however, it is also possible to
use other polyhedra with more faces. A polyhedron with more faces provides a closer approximation
of the Earth and therefore results in less distortion when projecting the surface of the Earth to the
polyhedron. For our 3D DGGSs, the initial discretization consists of a set of prismatoid cells that are
derived from the initial polyhedron of the input DGGS.

3.2. Refinement

The refinement method of a DGGS defines the process by which a set of fine cells are produced
from a set of coarse cells. This should be done in a consistent manner such that it can be applied
successively to create increasingly fine discretizations of the Earth. Refinement schemes are classified
by their input cell shape(s), which are given by the initial discretization; output cell shape(s), which
are usually the same as the input; and their refinement factor, which is the ratio between the number
of coarse cells and fine cells. For example, triangle 1-to-4 (1:4) refinement produces four triangle cells
for each triangle in the set of coarse cells. The refinement factor determines how quickly the resolution
of the grid increases with each application of the refinement method.

Refinement should also maintain the relative shape of cells between different resolutions. For
example, square cells should not be made increasingly rectangular during refinement. Two other
important properties of refinement are congruency and alignment. With congruent refinement, each
coarse cell is composed of a union of fine cells. Aligned refinement requires that each coarse cell shares
a certain point with a fine cell, usually either a vertex or centroid. Our method accommodates all
refinement factors, non-congruent refinement, and any alignment type (including non-aligned).

3.3. Projection and Inverse Projection

In order to take data defined on the surface of the Earth (e.g. latitude-longitude coordinates) and
find the corresponding points on a DGGS, a projection method is used that maps the spherical domain
of the Earth to the polyhedral domain of the grid [20,21]. Likewise, to represent cells and their data on
the surface fo the Earth, the inverse of this projection is used. These operations always come with some
amount of distortion; however, special projection methods can eliminate certain types of distortion.
Equal-area and conformal projections are two classes that preserve areas and angles, respectively [20].

3.4. Indexing Scheme

For grid and cell geometries to be useful as a DGGS, a mechanism for assigning a unique index
to each cell is needed. Earth data is assigned to cells using these indices, which allows for efficient
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retrieval of all data associated with a specific cell or region of the Earth. Thus, in order to be able
to insert new data into the grid efficiently, it is important to be able to quickly determine the cell
(and associated index) that contains a point on the Earth after it has been projected. Likewise, given
a cell index, it is important to be able to determine the geometry of the corresponding cell in the
grid. This geometry is then inverse projected to find the region of the Earth associated with the cell.
These indices also allow for certain spatial relationship queries to be defined, such as the retrieval of
neighbouring cells, and are also used to navigate up and down the hierarchy of the grid via parent
and child relationships between cells in different resolutions.

4. Prismatoid Grid Generation and Refinement

Using the input DGGS as an input specification, our goal is to define the key elements of the
corresponding 3D DGGS logically and consistently. In this section, we discuss the approach for
generating the initial discretization and define two refinement methods.

4.1. Initial 3D Discretization

For this paper, we define the radius of a polyhedron to be the radius of its circumscribed sphere.
Thus, all points on a polyhedron have the same ‘radius’ (Figure 3). Let Rmin and Rmax be the minimum
and maximum radii that are to be supported by the 3D DGGS, respectively. The initial 3D discretization,
then, is generated from two copies of the input polyhedron at these radii with their edges connected.
If the minimum radius is zero, these base cells are pyramids; otherwise, they are frusta. In both cases,
the cells belong to a parent class of polyhedra known as prismatoids. With this discretization, each cell
represents the full radial domain of the grid—subsequent refinements will address this issue.

Figure 3. The radius of a polyhedron is defined as the radius of its circumscribing sphere. In this figure,
all points on a solid line of a given colour have the same radius as they all have the same circumscribing
sphere (i.e., lie on the same polyhedron). The corresponding spheres are shown in the same colours but
with a dashed line.

4.2. Regular Prismatoid Refinement

With an initial 3D discretization for the space of the grid system, we now need a method for
refining cells to create more fine discretizations. We also want to ensure that the 3D DGGS will make
use of the same refinement scheme used by the input DGGS, referred to as the surface refinement. For
simplicity, we initially assume the surface refinement factor is 1:4; a generalization to other refinement
factors is given in Section 4.4.
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Figure 4. Regular prismatoid refinement as applied to a single pyramid cell (a) once and (b) twice.

The regular method for refining prismatoid cells is shown in Figure 4. The bases of the cells are
refined using the surface refinement and the resulting edges extruded to meet. At the same time,
a radial split is placed at the midpoint of the two bases. This refinement results in an inner and
outer layer of cells, each containing the same number of cells as one another. The outer layer is
always composed of frustum cells, whereas the inner layer has the same shape as the cells that were
being refined. This refinement is repeated by treating each of the new layers the same as the initial
discretization. Defining the refinement in terms of layers of cells as opposed to individual cells allows
non-congruent surface refinements to be accommodated inherently.

4.3. Semiregular Prismatoid Refinement

While the regular prismatoid refinement proposed above is simple, it has a key drawback if the
ratio between Rmax and Rmin is large. In this situation, layers that are near the minimum radius end up
being much smaller than those near the maximum. A different refinement method is needed to generate
more uniformly sized cells. To do this, we classify the layers of the grid as either central or normal.
We use rmin and rmax to refer to the minimum and maximum radius of a layer, respectively. As with
the polyhedra used for the initial discretization, these radii are equal to the radii of the circumscribed
spheres. Central layers are those that border the innermost portion of the grid (rmin = Rmin) and all
other layers are considered normal. By definition, at any resolution of the 3D DGGS, there is only
one central layer. Furthermore, the initial discretization is entirely composed of this central layer. We
continue our assumption of a 1:4 surface refinement factor from before.

Figure 5. Semiregular prismatoid refinement as applied to a single pyramid cell (a) once and (b) twice.
In (b), the number of times the surface refinement has been applied (ks) is shown for each layer; see
how the radial refinements of central layers separate regions of the grid with different values of ks.

In this refinement scheme, refinement of central layers is different from the above regular method.
We assert that Rmin be treated as equal to zero, and therefore central layers are composed of pyramid
cells. If the actual value of Rmin is non-zero, then any resulting layers below this radius are discarded
or ignored. Just as before, the bases of the pyramid cells are refined using the surface scheme, and a
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radial split is made in the middle of the layer. However, the new edges do not extend fully toward the
apex of the pyramid but instead are stopped at the radial split (Figure 5). This refinement results in
two new layers: an inner central layer, which is similar to the initial central layer, and an outer normal
layer. As demonstrated in Figure 5b, the resolution—or refinement level—a layer appears in at the
3D grid does not necessarily correspond to how many times the surface refinement scheme has been
applied to it. We define the number of times the surface refinement has been applied to a given layer
as the surface resolution, given by ks. Thus, if we say the initial discretization has ks = 0, after one
level of refinement the inner central layer also has ks = 0, whereas the normal layer has ks = 1. This
surface resolution is needed for grid encoding/decoding and various indexing queries, but as will be
seen later can be computed and does not need to be explicitly stored.

Figure 6. Three levels of successive applications of regular (top) and semiregular (bottom) prismatoid
refinement. Only the side of a single pyramid starting cell is shown to highlight the behaviour of the
two schemes at different radii. Note how cells degenerate towards the centre with regular refinement,
whereas this issue is not present in the semiregular scheme.

Normal layers in this scheme are simply refined using regular prismatoid refinement. This results
in two normal layers, both of which have ks equal to one greater than that of the starting layer. Figure 6
compares three successive applications of regular and semiregular prismatoid refinement to a single
pyramid cell.

4.4. Other Surface Refinement Factors

While it is possible to use the above refinement methods for surface refinement factors other than
1:4, doing so results in a potentially significant issue that should be addressed. First, we introduce the
idea of a one-dimensional (1D) refinement factor, which we find by taking the square root of the surface
(2D) one. For example, the 1D refinement factor of a 1:4 surface refinement scheme (Figures 4 and 5)
is 1:2. While the surface refinement scheme need not be uniform across the two dimensions, the 1D
refinement factor gives an idea of the average refinement that is expected along each dimension.

To create uniform cells, it is clear that the refinement factor along the radial dimension for regular
prismatoid refinement should be equal to the 1D refinement factor. If this is not the case, then the width
of cells relative to their depth is not constant between refinement levels, since one dimension is refined
more quickly. For a surface refinement factor of 1:4, the single radial split used matches this exactly
(one split creates two new layers). For other surface refinement factors, the 1D and radial refinement
factors are not necessarily equal, and cell shape will degenerate—becoming either increasingly narrow
or wide—as refinement continues.
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To address this issue, we modify the number of radial splits performed such that the number of
layers produced is equal to the 1D refinement factor. For surface refinement factors that are perfect
squares (e.g., 1:4, 1:9) this is trivial, as the 1D refinement factor is an integer; the corresponding radial
refinement factor is achieved by creating a number of layers equal to the 1D factor. For other surface
refinement factors, though, this becomes more difficult. The 1D refinement factor is no longer an
integer, and since we can only perform a whole number of radial splits, the 1D and radial refinement
factors cannot be exactly equal. Therefore, we propose performing a different number of radial splits
at different levels of refinement to make the average radial refinement factor equal to the 1D one.

There are a few different methods that can be used to determine the number of radial splits
to perform at a given refinement level. The most straightforward method is to alternate between
producing one layer (i.e., no splits) and producing a number of layers equal to the surface refinement
factor. When the surface refinement factor is not a prime number, a better method is to alternate
between the two members of a factor pair, such as two and three for a 1:6 surface factor. In general, the
product of the number of layers at each level of refinement should be equal (or as close as possible) to
the 1D refinement factor to the power of the number of refinement levels. Formally,

k

∏
i=1

`i = f k,

where `i is the number of layers produced at refinement level i, k is the level of refinement, and f
is the 1D refinement factor. This equation is used iteratively to find the best number of layers for
successive levels of refinement with prime surface refinement factors. Table 1 lists our proposed
layering sequences for surface refinement factors from 1:2 up to 1:9.

Table 1. Our proposed layering sequences for different surface refinement factors. Each number in the
sequence is how many layers normal layers should split into at the corresponding level of refinement.
An overline indicates that the sequence repeats indefinitely. For semiregular prismatoid refinement,
since the initial discretization has no normal layers, these sequences are used starting with the second
level of refinement

Surface Refinement Factor Layering Sequence

1:2 2, 1
1:3 3, 1
1:4 2, 2
1:5 2,3,2,2,2,3,2,2,2,3,2,2,3...
1:6 3, 2
1:7 3,2,3,3,2,3,3,2,3,3,3,2,3...
1:8 4, 2
1:9 3, 3

An example of semiregular prismatoid refinement with 1:3 hexagonal surface refinement is shown
in Figure 7. The first level of refinement is identical to the cases for a 1:4 surface refinement factor since
no normal layers have been refined. In the second level, however, two radial splits are performed in
the normal layers as opposed to one. In the next level of refinement, which is not shown, normal layers
would not have any radial refinements per the proposed sequence in Table 1.
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Figure 7. Semiregular prismatoid refinement applied to a hexagonal base cell using a 1:3 surface
refinement scheme (a) once and (c) twice; (b) is the same image as (c), but with the surface cells of the
previous refinement level shown for reference. Note that in the second level of refinement, normal
layers have two radial refinements as opposed to one.

4.5. Cell Aspect Ratio

The surface and radial dimensions of Earth are inherently very different, and because of this, it
is often desirable for these two dimensions to be at different resolutions in a 3D global grid. For our
3D DGGSs, achieving this entails changing the width of cells in the grid (surface resolution) relative
to their depth (radial resolution). We refer to the ratio between a cell’s width and depth as the aspect
ratio of the cell. While the refinement methods described thus far produces cells with a similar aspect
ratio—both between cells in the same and different resolutions—there is no direct mechanism for
controlling what this aspect ratio will be. To address this issue, we introduce two modifications that
can be made to prismatoid refinement to decrease and increase this aspect ratio.

In order to decrease the aspect ratio of cells in the grid, the number of times the surface refinement
is applied relative to the number of radial splits should be increased. Since further applications of the
prismatoid refinement will maintain the expected cell aspect ratio (a result of the surface and expected
radial refinement factors being equal), this only needs to be done the first time a layer would have the
bases of its cells refined with the surface scheme. Thus, for semiregular prismatoid refinement, this is
done while refining the outer normal layer that results from refining central layers. In the case where
only regular prismatoid refinement is used, this is then only done during the first level of refinement.

Likewise, to increase the aspect ratio of cells, we need to decrease the number of times the surface
refinement scheme is applied relative to the number of radial splits. This is done by first not applying
the surface refinement to a layer the first time it would usually be done, and if needed applying
additional radial splits at the same time. These modifications would be done at the same time as the
method for decreasing the aspect ratio for the same reasons.

Therefore, given some target cell aspect ratio a, we must determine which of the above methods
to use. To do this, we must first quantify the width and depth of a cell. More specifically, we need
to define the average width and depth of cells in a layer, since refinement is performed by layer and
not by cell. Depth comes trivially from the radial extent of the layer (rmax − rmin). There are many
potential ways to measure the width of a cell; for our purposes, we chose to use the square root of its
area. This choice ensures the framework will produce consistent results for input polyhedra with the
same number of faces, irrespective of the shape(s) of said faces.

For the region of outer normal layer(s) generated by refining central layers, the average depth
of cells is the total depth of the region divided by the number of layers in the region (assuming no
applications of the surface refinement scheme). Let υ be the percentage of rmax occupied by this region
and x be the number of extra radial splits, then the average depth of cells is
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υrmax

x + 1
.

Likewise, the average cell width in this region is the surface area of the sphere divided by the number
of cells (assuming no extra radial splits). Let n be the number of faces on the input polyhedron and w
be the number of times the surface refinement is applied, then the number of cells is n f 2w, and the
average cell width is √

4πr2
max

n f 2w =
2rmax

f w

√
π

n
.

We now equate these using the desired aspect ratio to solve for x and w, giving

a
υ

x + 1
=

2
f w

√
π

n
.

As to not violate our prior assumptions, when solving for one variable the other is set to zero; this
ensures only one of the two strategies for modifying the aspect ratio is employed. Setting w = 0 we get

x =
aυ

2

√
n
π
− 1, (1)

and setting x = 0 we get

w = log f

(
2
aυ

√
π

n

)
. (2)

(a) (b) (c) (d)
Figure 8. A demonstration of how refinement can be modified to affect the aspect ratio of cells. All
figures show a starting pyramid cell from a grid with 200 cells in its initial discretization. Central
layer with five extra radial splits (a = 3 to get x = 5) at (a) one level of refinement and (b) three levels.
Central layer with two applications of the surface refinement scheme (a = 1/8 to get w = 2) at (c) one
level of refinement and (d) three levels.

The actual values of x and w selected for use is determined by which one is negative. If x is
negative, it is set to zero, and the value of w is used—vice versa for if w is negative. Since x or w may
not be integers, we simply round them to the nearest whole number to get the actual value to be used
during refinement. The results of refinement with different target aspect ratios are demonstrated in
Figure 8.
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5. Encoding and Decoding for 3D DGGS

Recall that in order to associate geospatial data with corresponding cells in a 3D DGGS, an
encoding operation is needed. In the same way, decoding is also needed to map data associated with a
set of cells back to the corresponding regions on the Earth. These operations are defined for the input
DGGS and should be leveraged when defining the 3D versions of these operations. Doing so not only
simplifies the definition of these operations but also leads to simple data transference between the
input DGGS and its 3D counterpart.

Figure 9. Indices from the input DGGS identify cells in the 3D DGGS with the same bases but different
radii. Likewise, each layer of a 3D DGGS contains all cells with the same radii but different bases. Thus,
these two pieces of information combined are sufficient to identify any cell in the 3D DGGS uniquely.
Here we show a single cell—highlighted in purple—along with all cells that share a surface index (red)
and a layer index (blue).

To accomplish this, we split encoding and decoding into a surface and radial component. Referring
to Figure 9, we justify such a split by noting that two components define each cell in a 3D DGGS: the cell
in the input DGGS that defines its base(s) and the layer of the grid that contains it. Uniquely identifying
each of these components is sufficient to identify every cell in the grid uniquely; furthermore, each of
these components is determined almost entirely independently.

Figure 10. Pipeline for splitting encoding and decoding into surface (top) and radial (bottom)
components. These two components are entirely independent except for the surface resolution (ks) of
the layer being provided to the surface component during encoding. Standard notation for latitude
and longitude (φ and λ) is used.

Our proposed split of these operations is depicted in Figure 10. The surface component of
encoding/decoding is handled entirely by the input DGGS and therefore is not discussed here. For
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the radial component, we first introduce radial mapping functions, which map a physical radius, r,
to a corresponding radius in the grid, m(r). This function serves a similar purpose to the polyhedral
projection of a conventional DGGS and allows for improved volume preservation between cells. We
also provide operations for parameterizing the layers of a 3D DGGS and correspondingly finding
the minimum and maximum grid radius of a layer from such a parameterization. We do not discuss
methods for converting this parameterization into an index for the layer or for combining surface
and layer indices into a single index. For the former, this is due to varying complexities of the layer
structure in different 3D DGGS and competing goals in an efficient indexing system. For the latter, this
operation depends heavily on the indexing structure of the input DGGS and, therefore, cannot easily
be defined in general.

5.1. Radial Mapping

For many conventional DGGSs, area-preserving projections are used to ensure every cell in a
certain resolution of the grid has the same area when mapped to the corresponding region of the
Earth [19,21,48]. This property is important for applications where the area of cells is frequently used,
as this can be expensive to compute. Therefore, for a 3D DGGS, it may also be desired for each cell to
have equal volume, or as close to equal as possible. This can be accomplished with a radial mapping
that controls how radii in physical space are mapped to corresponding radii in grid space. Such a radial
mapping is not strictly required, in which case an identity map can be used. Using an identity reduces
the computational load of encoding and decoding but gives no control over volume preservation in
the grid.

In order for a mapping M to be volume-preserving, it is required that

vol(D) = vol(M(D))

for all subdomains D in the domain of M. However, if the volumes of cells in the grid domain are not
equal (as is the case with our 3D DGGSs), then a volume-preserving mapping does not result in cells of
equal volume. Instead, all cells should be inversely mapped to equal volume elements in the domain
regardless of their volume in the grid. Formally,

vol(M−1(Ci)) = vol(M−1(Cj)),

for all cell combinations Ci and Cj.
Below we describe three different radial maps that are used for varying degrees of volume

preservation between layers in the grid. The first two—which are identical to ones provided in [22]—are
special cases of the more general third. Volume preservation between cells is also dependent on the
projection and refinement of the input DGGS, and is therefore not discussed in general for our 3D
DGGSs. In these mappings, we use r̂ to refer to a radius r normalized to the range of the grid (r/Rmax).
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Figure 11. Radial splits of central layers divide the grid into regular regions that represent spherical
shells. At refinement level k, there are k− 1 shells and the central layer. These shells are similar, but
have a different number of cells and should, therefore, have a mapped volume proportional to the
number of cells they contain.

Shell-Volume Preserving Mapping

Referring to Figure 11, we see that the radial splits for central layers divide the grid into regions
representing spherical shells. We also note that each of these shells contains a different number of
cells. More specifically, shell n has a value of ks one greater than that of shell n + 1, and therefore
as refinement continues, we expect shell n to contain f 3 times as many cells. Ideally, then, shell n
will represent a region with f 3 times the volume as well. To accomplish this, we can define a radial
mapping that maps radial splits in the grid to corresponding radial splits that result in the appropriate
volume. We summarize the method below, with more details available in [22]. The volume shell n
represents is proportional to

c3n − c3(n+1).

where c ∈ (0, 1) is the distance along rmax to map the radial splits to. Thus, the ratio of the volume
between shell n and n + 1 is

c3n − c3(n+1)

c3(n+1) − c3(n+2)
=

c3n (1− c3)
c3c3n (1− c3)

=
1
c3 .

Equating this to the desired ratio of volumes, we get

1
c3 = f 3, c =

1
f

.

From this, we conclude that radii at powers of c should be mapped to powers of 1/2; radii that
are in between are linearly interpolated. We first calculate the physical shell that contains the radius,
which is simply s = blogc r̂c. The shell is then used to find the (normalized) minimum and maximum
radius of the shell in both physical and grid space. We refer to these as ` and u, respectively, with
subscripts g for grid space and p for physical. These are given by

`p = cs+1, up = cs, `g = 0.5s+1, and ug = 0.5s.
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In the case that only regular prismatoid refinement is used, they are instead

`p = `g = 0, and up = ug = 1.

The full mapping is thus
m(r̂) = dug + (1− d)`g, where

d =
r̂− `p

up − `p
.

For the inverse, we have
m−1(r̂) = dup + (1− d)`p, where

d =
r̂− `g

ug − `g
.

For the inverse, shell s would be carried forward from the layer parameterization (Section 5.2), however
it can also be calculated independently with s = blog0.5 r̂c.

Figure 12. Our three radial mappings applied to the same grid, along with a normalization polyhedral
projection. Left: first mapping with linear interpolation. Right: second mapping with cubic
interpolation. Middle: third mapping with quadratic interpolation. Note how cells in the right
mapping are stretched and squashed in order to preserve their volume better. This effect is also present
in the middle mapping, but to a lesser extent.

The results of this mapping are shown in Figure 12 left. Note that for a 1:4 surface refinement
factor, c = 1/2, which means this mapping is equivalent to the identity. In the case where only regular
prismatoid refinement is used, this mapping is also equivalent to the identity.

This mapping—and the subsequent ones—have the side effect of changing the aspect ratio of
cells in grid space as compared to the corresponding cells in physical space. This means that when
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determining the refinement parameters needed to achieve the desired aspect ratio, the cells in physical
space should be considered as opposed to grid space, as done in Section 4.5. This is easily addressed
by changing the value of υ used in Equations (1) and (2) to be (1− c).

Volume Preserving Mapping

While the above mapping preserves volume between shells of the grid, cells within a given shell
will still have varying volumes. This is due to the volume of cells growing cubically with respect to
radius. To accommodate this, we replace the linear interpolation of the above mapping with one that
maps changes in volume in physical space to linear distance in grid space, the result of which is

m(r̂) = dug + (1− d)`g, where

d =
r̂3 − `3

p

u3
p − `3

p
.

Likewise, the inverse is given by

m−1(r̂) = 3
√

du3
p + (1− d) `3

p, where

d =
r̂− `g

ug − `g
.

With this mapping, cells in the same layer will have perfect volume preservation assuming the input
DGGS is area preserving. Depending on the layering sequence, however, volume will not necessarily
be preserved between cells in different shells. Additionally, the centre layer will never have volume
preservation with the other layers. The results of this mapping are shown in Figure 12 right. As can be
seen, cells in each shell are stretched and squashed in order to ensure they have equal volume.

Balanced Mapping

While volume preservation is an important property for certain applications, it may also be
desirable to avoid the stretching and squashing noted above. To accommodate different balances
of volume preservation and cell compactness, we use a mapping that blends between the results
of the first and second proposed mappings. Mapping one uses linear interpolation, and results in
cells with equal radial extent; mapping two uses a cubic interpolation and results in cells with equal
volume. Using a different power, t, between one and three will result in a blending between these two
properties. A result using t = 2 is shown in Figure 12 centre.

5.2. Layer Parameterization

Layers of a 3D DGGS can be parameterized by the shell they are in (s), the integer index of the
layer relative to the shell (j), and the level of refinement (k). The shell carries forward from the above
radial mappings or can be recalculated in the same manner, and the level of refinement is an input into
the encoding process. Thus, all that remains is the integer index.

In order to calculate the integer index of a layer, the number of layers in the shell is first needed.
The number of layers in a shell depends on the refinement level, the layering sequence, and the number
of extra radial splits (see Section 4.5). Once again, the level of refinement is an input and the other
variables are constant for any given 3D DGGS. Therefore, the number of layers, n`, is given by

n` = (x + 1)
k−1

∏
i=s

`i
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In the case where s is greater than or equal to k− 1, the shell is in the central layer. In this case, we
set s = −1 and note that there is only one layer in the shell. The integer index of the layer is then
j = bd · n`c, where d is carried forward from the radial mapping or independently calculated in the
same manner. Finally, as input into the surface encoding, the value of ks is needed for the shell. For
central layers, this is always zero; otherwise, it is given by k− s− 1 + w.

For decoding, we calculate dmin and dmax as j/n` and (j + 1)/n` respectively, which is then fed
directly into the inverse mapping as values of d.

6. Indexing Operations

An important component of a conventional DGGS is the indexing scheme for cells. Indices in a
DGGS are used to not only identify and linearize cells but also as a means of navigating the grid for
various spatial queries [11]. To this end, it is important to be able to perform certain operations on
said indices efficiently. The most fundamental of these operations are parent queries, which return
the parent (or with non-congruent refinement, parents) of a given cell; child queries, which return the
children of the cell; and neighbour queries, which return cells that share an edge (or in 3D a face) with
the cell. These operations serve as the building blocks for more complex geospatial queries done with
the grid system, such as region growing, data convolution and correlation, feature rasterization, and
buffering. Because of this, creating suitable indexing for a 3D DGGS is an essential task.

With our method—similar to encoding and decoding—we define these operations in terms of
surface and radial components. This split not only simplifies the problem of indexing but also ensures
the 3D indexing is consistent with that of the input DGGS. Referring back to Figures 9 and 10, we let is

be the surface index of a cell and i` be the layer index. For each of these components, we assume there
is a corresponding parent, child, and neighbour operation. For the surface index, this comes directly
from the input DGGS indexing, whereas for the layer index, these would need to be defined. Using
the component operations, we define the corresponding 3D operations as follows.

Parents

The parent(s) of a cell depends on if the layer of the cell and its parent layer have the same or
different values of ks. Let i′` = parent(i`); if the value of ks is the same, then the single parent is simply
(is, i′`). In most cases, the value of ks for i′` is some number m (often one, but not always) less than that
of i`. In this case, the parent(s) are given by parentsm(is)× i`.

Children

The Children of a Cell Depend on if the Cell Belongs to a Central or Normal Layer For normal
layers, the set of children is simply children(is)× children(i`). For central layers, the child who belongs
to the new central layer must be distinguished from the other child layer(s). Call the index of the new
central layer c`; then, this child is given by (is, c`). Let N` give the set of the other children layer indices
(normal layers). These layers have the surface refinement applied w times, so the resulting children are
childrenw(is)× N`

Neighbours

We split neighbours into three categories: neighbours in the same layers as the cell, neighbours in
the layer above the cell, and neighbours in the layer below the cell. If a cell belongs to the outermost or
innermost (central) layer, then it will not have neighbours in the layer above or below, respectively.
Neighbours in the same layer are simply neighbours(is)× i`. Let i+` be the layer above i` and i−` be the
layer below. If i+` has the same value of ks as i`, then the single neighbour above is (is, i+` ). In the other
case, where the value of ks for i+` is some number m greater than that of i`, the neighbours are given by
childrenm(is)× i+` . Likewise, if i−` has the same value of ks as i`, there is one neighbour below given
by (is, i−` ). In the case that the value of ks for i−` is some number m less than that of i`, the neighbours
are given by parentsm(is)× i−` .
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7. Results and Evaluation

To evaluate our approach, we have implemented the general method described in the previous
sections as a C++ class integrated with a research toolset used for designing and testing different
conventional DGGSs. In this toolset, the operations provided by a DGGS are specified by an abstract
class that each implementation extends. The 3D DGGS class takes an input DGGS as well as values for
the target aspect ratio (a), exponent for the radial mapping (t), and the radial range of the grid (Rmax

and Rmin) as input during construction. The 3D DGGS uses these values—along with the operations
and information provided by the input DGGS—to provide the functionality described in the paper:
point encoding, cell decoding, parents, children, and neighbours. We also provide the ability to create
basic visualization of the grid. These visualizations were used as a basis for many of the figures in
this paper.

We evaluate our system by looking at three sample use cases for our 3D DGGSs. These use
cases are not meant to be state-of-the-art implementations of a 3D global grid system, but rather are
meant to demonstrate the robustness and versatility of the approach and its ability to support different
target applications, data sets, and input DGGSs. For each use case, we chose an input DGGS and
parameters for the system that resulted in a 3D DGGS with desirable properties for said application.
The data encodings in these use cases are all defined using the fundamental operations of the 3D
DGGS listed above.

7.1. Aircraft and Satellite Paths

The first use case we examine is tracking the trajectories of aircraft and spacecraft, such as
commercial and private flights, drones, satellites, and rockets. Such a system could be used to increase
the efficiency of collision queries using the hierarchy of the grid system, similar to the approaches
of [34,35]. The main benefit our 3D DGGS would offer over existing grids for such a system is the
ability to have cells located at low and high altitudes in the same resolution have close to equal shape
and size.

Figure 13. Flight paths and satellite orbits rasterized in a 3D DGGS. All paths and orbits are rasterized
at the same grid resolution of (a) 7, (b) 10, and (c) 13.
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Figure 13 shows several generated flight paths and satellite orbits represented in a 3D DGGS at
increasing resolutions. The input DGGS for this example uses a rhombic triacontahedron as the initial
polyhedron, standard 1:4 quadrilateral refinement, and a simple normalization projection. The 3D
DGGS has a target aspect ratio of one, a radial mapping exponent of one, and a radial range of 10.66R
(67,957 km). These parameters were chosen to ensure that cells are as compact as possible.

7.2. Urban Planning

The second use case is a volume-preserving 3D grid for the purpose of urban planning and
management. A volume-preserving grid is useful for quickly estimating the volume of a feature
rasterized in the grid by multiplying the number of cells by their volume. This use case also shows the
ability of our 3D DGGS to handle small scale data in addition to the much larger scale data showcased
in Section 7.1.

Figure 14. A collection of buildings from the University of Calgary rasterized in a 3D DGGS at
resolution 21. In (a), both interior and boundary cells are shown, whereas (b,c) show only boundary
and interior cells, respectively.

Figure 14 shows several buildings represented in a 3D DGGS, with the building geometries
obtained from Open Street Map [49]. The input DGGS for this example uses a disdyakis
triacontahedron as the initial polyhedron, a non-standard 1:4 triangle refinement, and the vertex
oriented great circle slice and dice projection [48] to preserve area [50]. The 3D DGGS has a target
aspect ratio of one, a radial mapping exponent of three to achieve perfect volume preservation
(excluding the central layer), and a maximum radius of 1.33R (8495 km).
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7.3. Atmospheric Properties

The final use case we look at is using a 3D DGGS to resample atmospheric forecasts, such as
those generated by numerical weather prediction models. These datasets typically have a much higher
vertical resolution than surface resolution, due to how quickly properties such as temperature and
wind speed tend to change in these two dimensions. To accommodate this with our 3D DGGS, we
specify an appropriate aspect ratio for cells to ensure the vertical and surface resolution matches as
closely as possible that of the input data.

Figure 15. Vertical wind speed (mbar/s) sampled into a 3D DGGS at resolution 9. Negative velocity,
which corresponds to an upward wind, is shown in red. Positive velocity, which corresponds to a
downward wind, is shown in blue. Velocities with a magnitude less than 0.25 mbars/s are not shown
to reduce clutter and highlight regions with the highest speeds. In (a,c), the altitude of cells is scaled by
a factor of 15 to better show changes in altitude. In (b), altitude is shown at its true scale.

Figure 15 shows vertical wind speed from the ERA5 dataset [51] sampled into a 3D DGGS. The
input DGGS for this example is the same as the one used for the aircraft and satellite paths. However,
this 3D DGGS has a target aspect ratio of 31.7, a radial mapping exponent of one, and a maximum
radius of 1.33R (8495 km).

7.4. Discussion

The above examples are only a small subset of the many potential applications of our 3D DGGSs.
Despite this, they show not only the useful properties achievable by the method (support for large
ranges of altitudes, volume preservation between cells, custom cell aspect ratio, and support for
multiple scales of data) but also demonstrate the ease at which new 3D global grids can be created.
Given a conventional DGGS that provides the required operations, creating a 3D DGGS is as simple as
providing the surface grid and four clearly defined parameters for the 3D one. Since creating a 3D
DGGS that is ideal for every application is not possible, this allows quick iterations on creating and
comparing different 3D grids to find the ideal one for each application.

8. Conclusions and Future Work

With the amounts of 3D geospatial data becoming available, techniques for integrating and
managing such data are becoming increasingly important. To this end, we have proposed a complete
and comprehensive method for extending any DGGS to 3D for use as a 3D global grid system.
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Our approach is general, and properly accommodates any potential DGGS regardless of the initial
polyhedron, refinement, or projection employed. Semiregular refinement is used to allow large radial
ranges to be represented without significant degradation in cell shape or size. Techniques are employed
to ensure cells have the desired aspect ratio, and that the aspect ratio and relative volumes of cells are
maintained during refinement. We also provide a pipeline to handle encoding and decoding of these
grids in a manner which facilitates simple data transference between the 2D and 3D representations. As
a part of this, we derive a class of radial mappings that achieve varying degrees of volume preservation
in the grid. The effectiveness of this framework is showcased in three sample use cases, each using a
different 3D DGGS explicitly tailored for the needs of the application.

There are still some important future works to be done. While we have provided tools that
can be used to develop an indexing scheme for a 3D DGGSs, a more detailed exploration of the
topic—especially methods for interleaving surface and layer indices for locality—is necessary. The
methods developed for combining these indices could also be extended to the time dimension and
may serve as the basis for developing better techniques for time-varying DGGS. Also, while most
DGGSs use a sphere as the reference model of the Earth, an oblate spheroid provides a more accurate
representation. While we suspect our method is just as applicable to an ellipsoidal DGGS, more
research is required to justify this claim and address any necessary changes to the method.

Other directions for future work include defining more efficient high-level operations for operating
with a 3D DGGS. Insertion and rasterization of features such as 3D vectors, models, and meshes are
important operations for a 3D grid, and the algorithms currently used for this with our 3D DGGS are
quite basic. There may also be ways for the structure of a 3D DGGS to aid in occlusion issues that
appear in certain visualization. Slice views and rendering of select layers may prove to be a useful tool
in visualizing subterranean data and other datasets with significant occlusion.
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