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Abstract: Building pattern recognition is fundamental to a wide range of downstream applications,
such as urban landscape evaluation, social analyses, and map generalization. Although many studies
have been conducted, there is still a lack of satisfactory results, due to the imprecision of the relative
direction model of any two adjacent buildings and the ineffective extraction methods. This study
aims to provide an alternative for quantifying the direction and the spatial continuity of any two
buildings on the basis of the Delaunay triangulation for the recognition of linear building patterns.
First, constrained Delaunay triangulations (CDTs) are created for all buildings within each block
and every two adjacent buildings. Then, the spatial continuity index (SCI), the direction index (DI),
and other spatial relations (e.g., distance) of every two adjacent buildings are derived using the
CDT. Finally, the building block is modelled as a graph based on derived matrices, and a graph
segmentation approach is proposed to extract linear building patterns. In the segmentation process,
the edges of the graph are removed first, according to the global thresholds of the SCI and distance,
and are subsequently subdivided into subgraphs on direction rules. The proposed method is tested
using three datasets. The experimental results suggest that the proposed method can recognize both
collinear and curvilinear building patterns, given that the correctness values are all above 92% for
the three study areas. The results also demonstrate that the novel SCI can effectively filter many
insignificant neighbor relationships in the graph segmentation process. It is noteworthy that the
proposed DI is capable of measuring building relative directions accurately and works efficiently in
linear building pattern extraction.

Keywords: linear building patterns; spatial continuity index (SCI); direction index (DI);
pattern recognition

1. Introduction

As the most common geographical entities in urban areas, buildings are important directional
objects for users when using maps for navigation. The linear pattern formed by buildings refers to
the arrangement and the form exhibited by a collection of buildings at a certain scale in the mapping
space [1,2]. The pattern looks like a line, and its elements, i.e., buildings, are homogeneous in terms
of spatial properties (e.g., spacing, orientation, shape, and density) [3]. Typically, linear building
patterns can be categorized into collinear alignments and curvilinear alignments [1,3]. As landscape
configuration, building patterns are crucial components of urban structures, which have to be preserved
when spatial scales decrease during the process of map generalization [4–7]. In addition, linear building
patterns in topographic maps are important for understanding geographic space, such as exploring
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the semantic classification of urban structures and functions based on extracted linear building
patterns [8–10].

The detection of linear building patterns is the process by which building elements are organized
into distinct linear clusters. Automatic identification of building patterns is challenging because they are
often scale-dependent and vary with building distributions (e.g., the distances, orientations, area and
shape among buildings), which results in an enormous number of candidates [11]. However, a variety of
approaches and measures have been reported for the detection of linear building patterns. Graph-based
grouping methods are the most common approaches, which in general, first model the building
block as a graph in which nodes represent buildings and edges denote the adjacent relationships
between buildings [12–15]. The graph is then segmented to obtain homogeneous groups by means
of segmentation methods [1,16,17]. Some tracking methods can be integrated into the segmentation
process to obtain linear building patterns [3,18]. Graph-based methods often suffer from many
traversals. This entails the investigation of alternative algorithms that can significantly reduce the
traversals. In this context, the minimum spanning tree (MST) has become the most widely used
graph-based grouping method. This algorithm links each object with its nearest neighbor instead of
all surrounding objects [19]. However, the MST is sensitive to small changes in the weights of edges.
When modelling buildings to a graph, the index values derived from adjacent buildings are used to
weight the edges of the graph. These indices are mostly derived from Gestalt principles, which consist
of proximity, similarity, continuity, and common fate [20]. These Gestalt principles have been applied
to the recognition of spatial distribution patterns for many years. Proximity is indicated by various
distances of adjacent buildings, including centric point distance, the minimum distance of building
boundaries, mean distance, adjacent distance, and synthesized index [21–23]. The mean distance
is closer to human cognition, which is measured by the triangles between two adjacent buildings.
Practice has proven that the mean distance metric proposed by [22] can more accurately measure the
distance between neighboring objects than other distance metrics and has been widely used in many
applications [1,6,12]. Similarity, including shape similarity and size similarity, is often used to develop
rigid rules for detecting building patterns [1,3,24]. However, some objects with large differences in
area and shape are still recognized as a whole, such as linear patterns. The common direction ensures
that the deviation of a path angle formed by any two buildings on both sides does not exceed the set
tolerance value. Many studies have been conducted to quantify the direction of objects. The models of
direction include the cone-based model [25], the 2D projection model [26], and the direction Voronoi
diagram (DVD) model [27]. The previous two are useful and work efficiently in qualitative spatial
reasoning. The DVD model is a quantitative model for describing the spatial direction of two objects
using multiple directions instead of a single direction. However, our experiences showed that a single
direction may be more appropriate for quantitatively describing the path angles of a linear building
pattern. Continuity is used to reflect the human perception of curved or undulated paths formed by
adjacent visual stimuli [28]. However, this principle is rarely used in current research.

Since it is difficult to automatically detect the best building pattern from a large number of
candidates, we can first delete the edges that do not meet the conditions from the graph and then
choose the best pattern from the remainder. On the basis of the above idea, this paper first proposes an
alternative to quantify the direction and spatial continuity of any two buildings on the basis of the
Delaunay triangulation. Then, we propose a framework to automatically recognize linear building
patterns from topographic data.

The remainder of this article is organized as follows. Data pre-processing, the measures for
deriving index values, tracking algorithms, and assessment methods are described in Section 2.
Section 3 presents three experimental datasets. Experiments consisting of software, implementation,
results, and discussion sections are presented in Section 4. Finally, the conclusion is given.

2. Methodology

The proposed methodology follows a series of steps represented in Table 1 and is described below.
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Table 1. Methodological steps.

Main Steps Detailed Description

Pre-processing
Step 1 Partition the topographical map of buildings into a series of building blocks
Step 2 Create constrained Delaunay triangulation
Step 3 Compute the index values of spatial relations based on constrained Delaunay triangulation

Graph creation and segmentation
Step 4 Create the graph and weight its edges with index values
Step 5 Remove the insignificant and global edges of the graph
Step 6 Segment the graph using direction rules

Assessment and method comparisons
Step 7 Assess the accuracy with reference patternsCompare with the MST algorithm

Step 1. The first step is to partition the topographical buildings map into a series of building
blocks. A road network is used to separate buildings into different blocks [6,12]. The main purpose of
this step is to improve processing efficiency, as several building blocks can be processed in parallel.

Step 2. There are two kinds of constrained Delaunay triangulation (CDT) created in this step
(Figure 1). The first kind of CDT is computed for all buildings within each individual block (Figure 1a).
Triangles of the first kind are used to derive the proximity relationship (Equation (1)), the length of
skeleton lines (Equation (2)), the mean distance (Equation (3)), and the direction of adjacent buildings.
Another kind of constrained Delaunay triangulation, namely, the original triangle, is computed only
for every two adjacent buildings (Figure 1b). Along with the first kind of CDT, these triangles are used
to derive the spatial continuity index (SCI) of adjacent buildings. More discussion about the SCI is
presented in the next step. Before creating the CDT, it is better to add extra points on the line segments
of building polygons and roads at an interval to avoid producing narrow triangles [29].

Figure 1. Examples for constrained Delaunay triangulation are shown for (a) triangulation constructed
for all buildings within each individual block and (b) triangulation constructed for each pair of
adjacent buildings.

Step 3. Six metrics, including the proximity relationship (Equation (1)), the length of the skeleton
line (Equation (2)), the mean distance of adjacent buildings (Equation (3)), the SCI, the direction of two
adjacent buildings, and the path angle in a tracing process, are defined on the basis of the CDT and
original triangles. All these metrics except for path angles are stored in matrices.

The matrix of the proximity relationship is indicative of whether buildings are topologically
adjacent and is derived on the basis of whether buildings have shared triangles in the CDT:

R = Ri, j (1)
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where i = 1 : n and j = 1 : n denote the buildings within a block, and Ri,j is a Boolean variable: Ri,j = 1
indicates that i and j are adjacent, and Ri,j = 0 indicates that i and j are not adjacent.

A skeleton line is formed by the middle points of triangle sides that link two adjacent buildings
(Figure 2)[30]. The length of a skeleton line is derived as follows:

L = Li, j =
∑

li, j,k (2)

where li,j,k denotes the distance between the two middle points of the sides of triangle k that link two
adjacent buildings, Li,j =

∑
li,j,k denotes the sum length of the skeleton line between two adjacent

buildings, and Li,j = 0 if two buildings i and j are not adjacent, as obtained in Equation (1).

Figure 2. Example of the heights and skeleton lines of adjacent buildings.

The mean distance of adjacent buildings is derived on the basis of the skeleton line as follows [22]:

d = di, j =

∑
hi, j,k × li, j,k∑

li, j,k
(3)

where hi,j,k denotes the height of triangle k with a base that falls in either adjacent building polygon,
li,j,k denotes the distance between the two middle points of the sides of triangle k that link two adjacent
buildings, as obtained from Equation (2), and di,j = ∞ if two buildings i and j are not adjacent,
as obtained in Equation (1). If the triangle is acute or right, hi,j,k is the height from the side shared with
buildings; if the triangle is obtuse, hi,j,k is the shortest side of the triangle linking the two buildings
(Figure 2).

Now, we discuss the continuity of linear building patterns. Visually, triangles within the first
type of CDT look like “bridges”, which join adjacent buildings to form linear patterns (Figure 1a).
Moreover, triangles between each pair of adjacent buildings of a linear pattern are very similar in terms
of area, direction, and count. When comparing the above two types of triangulations, we find that
the area of the original triangles between two adjacent buildings is larger than that of the first type of
triangulation, especially for buildings with irregular arrangements or differences in shape and size
(e.g., buildings 10–11, 11–14 in Figure 1). More specifically, in a linear pattern, the area ratio of these
triangles to the original triangles is higher than that of most pairs of adjacent buildings from nonlinear
patterns. Accordingly, we hold that the spatial relationship of two adjacent buildings is influenced by
their surrounding buildings. In this paper, we use this ratio as the SCI of adjacent buildings to reflect
our perception of the continuity of linear building patterns.

SCI = SCIi, j =
AR

AO
(4)

where SCIi,j is the spatial continuity between buildings i and j, AR denotes the area of triangles that
belong to the two buildings in the CDT, and AO denotes the area of the original triangles connecting
the two buildings.
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Not fewer than three buildings constitute a linear pattern. Visually, buildings from a linear
pattern exhibit a linear path, which is controlled by path angles. A path angle is formed by the
azimuths of two objects on both sides of the middle building. Specifically, the path angle at the middle
building i is the angle formed by building direction (buildingi−1, buildingi) and building direction
(buildingi, buildingi+1) in path (Figure 3). There are two methods for obtaining the path angles of
linear patterns based on the CDT. The difference between them is whether the triangles connecting
the two buildings on both sides have intersections. The first type of path angle, named the direct
path angle, is formed by two connected triangles (e.g., angle α in Figure 3). The closer to π this angle
is, the better the linear pattern. It is easy to compute this angle with two connected triangles. First,
determine the intersection and all triangles that connect to each building. Then, derive all included
angles of these triangles. Finally, select the smallest angle as the direct path angle of the two adjacent
buildings on both sides of the middle building.

Figure 3. Illustration of the direction between two buildings and the path angle among buildings.

Another type of path angle, namely, the indirect path angle, is formed by the azimuth angles of
the buildings (e.g., building i-1 and building i+1 in Figure 3) on the two sides of the middle building
(e.g., building i in Figure 3). Triangles connecting to the two buildings on both sides have no intersection.
The median vectors of these triangles determine the azimuth angles of the two adjacent buildings
(e.g., red dashed arrow in Figure 3). There are three steps for calculating this type of azimuth angle
(Figure 4). First, determine the midpoint on the baseline (i.e., the shortest side) of a triangle and the
point corresponding to the base. Use the two points to derive the azimuth angle of the triangle, which
is measured counterclockwise from the positive direction of the X-axis (Figure 4a). Clearly, all azimuth
angles of the triangles are in the range of 0 to 360 degrees. Second, since all the directions of the
centerline vector of the triangles point to one side of an axis, these azimuth angles can also be measured
counterclockwise from one direction of the axis (Figure 4b). Thus, all of them are transformed into the
range of 0 to 180 degrees, and Equation (5) is used to compute the mean azimuth angle with these
azimuth angles. Finally, the mean azimuth angle is transformed to the final angle that is measured
counterclockwise from the positive direction of the X-axis (Figure 4c). In this paper, we use the final
angle as the DI of two adjacent buildings. Thus, an indirect path angle is equal to the absolute value of
the angular difference between two final angles (e.g., angle β in Figure 3). The closer the angle is to 0,
the better the linear patterns are.

θ = θi, j =

∑
αi, j,k × li, j,k∑

li, j,k
(5)

where αi,j,k denotes the azimuth angle of a triangle k with a base that falls in either adjacent building,
li,j,k denotes the distance between the two middle points of the two sides of triangle k that link two
adjacent buildings, as obtained from Equation (2).
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Figure 4. Examples of calculating the azimuth angles of adjacent buildings are shown for (a) the
azimuth angles of all triangles; (b) the mean azimuth angle of two adjacent buildings; (c) the final
azimuth angle of two adjacent buildings.

Step 4. This step consists of graph creation and weighting graph edges with index values.
First, a building block is modelled as a graph, where nodes represent buildings, and the edges of the
graph denote the adjacent relationships between buildings (Figure 5a). Then, we weight each edge of
the graph with index values derived from step 3.

Figure 5. Methodological step 4 to step 6 is shown for (a) graph creation; (b) removing insignificant
and global edges; (c) adjacent node linear pairs; (d) the final linear building patterns.

Step 5. Our fifth step removes the insignificant and global edges of the graph, which may lead to
multiple disconnected graphs (Figure 5b). At a local level, there are many insignificant edges on the
graph (e.g., blue dashed line in Figure 5b), which increase the traversal time of the graph and may
generate error patterns. This type of edge is removed first. At a global level, however, only close
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objects are visually perceived as clusters by individuals according to the Gestalt proximity principle,
such as regions I and II in Figure 5b. That is, if the edges are weighted with unduly long distances
(e.g., red dashed line in Figure 5b), they are removed from the graph. Thus, two cut-off values,
including the SCI (Equation (4)) and d (Equation (3)), are utilized to identify the edges with unduly
long index values. The cut-off value of the SCI is set empirically (e.g., 0.5) and is used for removing
edges first. Subsequently, edges weighted with significantly long distances are deleted. For each point
Pi, the cut-off value of d, denoted by Cut_Value(Pi), can be represented as Equation (6).

Cut_Value(Pi) = Mean(Pi) + n·Variation(Pi) (6)

where Mean(Pi) is the mean length of the edges formed by the points connecting Pi. n is a controlling
factor that is used to adjust the sensitiveness of Cut_Value(Pi).

Step 6. The sixth action aims at subdividing the disconnected graph into connected subgraphs,
as shown in Figure 5c,d. Each connected subgraph represents a linear building pattern (Figure 5d).
This process is controlled by the path angle formed by the buildings on both sides and consists of
several steps (Figure 6). First, we select an unprocessed node and determine all its adjacent nodes.
Then, its linear building pairs are identified from adjacent buildings on the basis of their path angles.
That is, if the path angle of two adjacent buildings on both sides is lower than the given threshold, they
are considered an adjacent building linear pair (Figure 5c). Third, the adjacent buildings of the adjacent
buildings are determined. This process is repeated until there is no adjacent building meeting the set
conditions. Thus, we can extract multiple linear building patterns of one node. Finally, the pattern
with the best assessment value I is selected as the best pattern. The best assessment value I is computed
for each linear pattern as follows.

I = max
{

N(li)
Mean(li)

}
(7)

where li denotes the i-th linear pattern, N is the number of edges in the i-th linear pattern, and Mean(li)
is the mean distance of the linear pattern li.

Figure 6. The flowchart for identifying linear building patterns.

Step 7. Our final step consists of an accuracy assessment and method comparisons. To validate
the quality of the recognition results, an expert evaluation was conducted. That is, the reference linear
building patterns were recognized manually. Five cartographic professionals participated in manual
pattern recognition separately, whereas conflicts among professionals were solved via majority votes.
In this survey, the three datasets were printed out in pictures at a given scale. The invited expert used
a pencil to draw the determined linear patterns. For example, a linear pattern was marked with a
line. When assessing the results of pattern recognition, there were four different cases, including the
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correct patterns (i.e., the modelled patterns and the reference patterns were consistent), the inclusion
patterns (i.e., one modelled pattern contained multiple reference patterns), the within patterns (i.e., one
reference pattern contained multiple modelled patterns), and the overlap pattern (i.e., a modelled
pattern overlapped the reference pattern). Here, two metrics, including correctness and completeness,
were used to assess the accuracy of the pattern recognition results. Correctness refers to the ratio of the
correct patterns to the total extracted patterns, whereas completeness refers to the ratio of the correct
patterns to the reference patterns.

To understand the robustness of the proposed method on the basis of comparative studies, the MST
method was also implemented to recognize linear building patterns in the three datasets. The code for
this method is freely available online, while most of the other existing methods for building pattern
extraction are not publicly available.

3. Test Data

Three topographic datasets were used to study the identification of linear building patterns
(Figure 7). The datasets were provided by the three Province Urban Planning and Design Survey
Research Institutes of the three provinces in China. These datasets have various building distributions
and linear building patterns, providing ideal study cases in southern China. Moreover, the distributions
of buildings in ShenZhen (SZ) and ChangSha (CS) are more even than those of NanNing (NN). Visually,
the distance between buildings belonging to different linear patterns in dataset NN was less than those
of datasets SZ and CS, leading to the human perception effect of the linear patterns in dataset NN
being lower than those of datasets SZ and CS.

Figure 7. Location of the study area and experimental datasets are shown for (a) NanNing; (b) ChangSha;
(c) ShenZhen.

4. Results and Discussion

All experiments were performed on a personal computer with an Intel(R) Core(TM) i7-7700
CPU (central processing unit) and a memory of 8 GB. All algorithms proposed in Section 2 were
realized using C# on Microsoft Windows 10 (×64). Component libraries and tool libraries of ArcGIS
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Engine 10.1 were applied to develop related algorithms. The reference method is based on human
visual recognition.

Figure 8 presents the linear pattern recognition results extracted by using different methods.
Buildings connected with orange triangles form a linear pattern. Visually, the proposed method
is effective in recognizing linear building patterns. For each individual dataset, the buildings are
reasonably recognized in terms of linear patterns (i.e., collinear pattern and curvilinear pattern).
By comparison, the proposed method performs better than the MST method in the three study areas.
The linear building patterns extracted by the MST algorithm largely deviate from the reference patterns,
especially in the NN study area. This algorithm iteratively detects building patterns on the basis of the
distances among objects and ignores other Gestalt principles of patterns. This method is also prone to
overpartitioning because it is sensitive to the weights of edges in the graph segmentation processes.

Figure 8. Linear pattern recognition results are shown for (a)–(c) three methods in NN dataset; (d)–(f)
three methods in SZ dataset; (g)–(i) three methods in CS dataset. Buildings connected with orange
triangles are recognized as linear building patterns. Misrecognized patterns are marked with differently
colored curves.

The accuracy assessment results of linear building pattern recognition are summarized in
Table 2. Overall, the proposed method can detect linear building patterns with correctness values and
completeness values above 92%, indicating that the recognition results agree well with the reference
data. Specifically, for the proposed method, fewer linear patterns are extracted from the SZ and SC
datasets than the reference patterns because underpartitioning could occur when conducting graph
partitioning. By comparison, the performance of the MST algorithm is markedly different from that of
the proposed method in the three datasets. Both the SZ and SC datasets have high values in terms
of correctness and completeness, whereas the NN dataset has much lower values of completeness
and correctness. Moreover, the number of modelled group patterns recognized by this algorithm is
greater than those of the reference data, indicating that overpartitioning can occur when conducting
graph segmentation.
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Table 2. The accuracy of linear building pattern recognition.

Dataset Method
Number of
Modelled

Group Patterns

Number of
Reference

Group Patterns

Number of
Correct Group

Patterns

Correctness
(%)

Completeness
(%)

NN
Proposed
method 13 13 12 92.31 92.31

MST 12 13 3 23.08 25.00

SZ
Proposed
method 25 26 24 92.31 96.00

MST 27 26 22 84.62 81.48

CS
Proposed
method 67 69 65 94.20 97.01

MST 74 69 57 77.03 82.61

Figure 9 presents the intermediate results of the two methods before performing step 6. Overall,
step 5 is effective in removing many insignificant and global edges from the graph, given that there are
few edges requiring judgement being left to the next step. This is mainly due to the SCI being applied
in the segmentation process. By contrasting the results of NN and the other two results, we find
that there are obvious differences in the recognition results extracted by the two methods in the NN
data (Figure 9a,d). This may explain the difference in accuracy between the two methods in Table 1.
The MST method uses the nearest object to create the graph, resulting in the relationships of adjacent
buildings that should belong to the same linear patterns, but that are slightly far away, being deleted
prematurely. However, the remaining proximity relationships of some of the nearest but irregularly
arranged buildings were weighted with unduly low SCIs, which resulted in these buildings being
removed first from the patterns during the filtering process. As a result, the recognition results were
more fragmented. This result is consistent with those reported by [31]. In the SZ and CS data, because
the distance between the buildings that belong to different linear patterns is much longer, there is no
significant difference in the intermediate results obtained by the two methods. However, the proposed
method maintains some extra proximity relations.

Figure 9. Intermediate results before performing step 6 are shown for (a)–(c) the proposed method in
three datasets; (d)–(f) MST in three datasets.
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Figure 10 further presents the detailed distributions of linear patterns recognized by the
proposed method for the three datasets. The chart shows that the proposed method recognized
an inclusion pattern (i.e., one modelled pattern contains multiple reference patterns) in the three
datasets (Figure 8b,e,h). This is because the triangles that connect the two buildings belonging to two
different patterns are similar to those in the same patterns in terms of number and area. The proposed
method also identified a within pattern and an overlap pattern in the CS data. The former is because
the direct path angle formed by the triangles connecting two adjacent buildings is too small, and their
relationship was deleted. For the overlap pattern, it is also difficult for human eyes to recognize them
in an absolutely correct manner.

Figure 10. The distributions of recognized linear building patterns in the three datasets.

In our experiments, one of the most dominant parameters is the path angle. To better demonstrate
the algorithms, different path angle values were tested to show how they influence the recognition results.
First, direct path angle ={90◦,95◦,100◦,105◦,110◦,115◦} and indirect path angle ={50◦,55◦,60◦,65◦,70◦,75◦}
were used to detect linear alignments in the SZ dataset (Figures 11 and 12).

Figure 11 shows that the best working range of the direct path angle for the proposed method was
from 95◦ to 100◦. In this range of values for our test, recognition results did not display any difference.
When increasing the direct path angle value, more linear patterns were eliminated. The breaks
commonly appeared in the alignments with low curvatures (e.g., triangles marked with blue circles in
Figure 11). This was due to intersections that may arise from triangles that connect two buildings on
both sides.

Similarly, Figure 12 shows that the best working range of the indirect path angle for the proposed
method was more than 65◦. When decreasing this threshold, some alignments were eliminated (green
circles in Figure 12). The lower the path angle was, the more alignments were eliminated (Figure 12a–c).
However, when increasing the path angle value, more buildings become potential elements of linear
buildings, which may result in error patterns. Moreover, this operation reduces recognition efficiency.
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Figure 11. Results of the proposed method with different direct path angle values and indirect path
angles of 65◦ in the SZ dataset. Buildings connected with orange edge triangles are recognized as linear
building patterns.

Figure 12. Linear pattern recognition results of the proposed method with different indirect path angle
values and direct path angles of 100◦ in the SZ dataset. Buildings connected with orange edge triangles
are recognized as linear building patterns.

5. Conclusions

This study set out to detect linear building patterns (e.g., collinear and curvilinear building
patterns) via a graph segmentation method, which requires proximity, orientation, and continuity
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rules. To accomplish such a goal, this study proposed an alternative to measure the direction and the
spatial continuity of any two buildings on the basis of the Delaunay triangulation and proposed a
segmentation method for the extraction of linear building patterns.

We validated our approach on three vector datasets with some quantitative measurements.
The experimental results indicate that the proposed methods can produce satisfactory results, given
that the correctness values are all above 92% for the three study areas. Comparative studies revealed
that the MST method is an ineffective extraction method for the recognition of linear building patterns
when the distances between adjacent buildings that belong to different clusters are far away. This is
because the MST method uses the nearest objects to create the graph. The novel SCI can effectively
overcome the above defect as experimentally verified. This is because the SCI considers the shape,
size, and orientation of surrounding buildings. It is noteworthy that the proposed direction model
can accurately measure building relative directions and works efficiently in the extraction of linear
building patterns.

Further tests are needed to improve the proposed method, such as testing with more spatial datasets
from various scales and more kinds of building patterns (e.g., grid patterns). More work is also required
to automatically calibrate parameters (e.g., path angle) used in the presented segmentation strategy.
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