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Abstract: Predicting the futures from previous spatiotemporal data remains a challenging topic.
There have been many previous works on predictive learning. However, mainstream models suffer
from huge memory usage or the gradient vanishing problem. Enlightened by the idea from the resnet,
we propose CostNet, a novel recursive neural network (RNN)-based network, which has a horizontal
and vertical cross-connection. The core of this network is a concise unit, named Horizon LSTM
with a fast gradient transmission channel, which can extract spatial and temporal representations
effectively to alleviate the gradient propagation difficulty. In the vertical direction outside of the
unit, we add overpass connections from unit output to the bottom layer, which can capture the
short-term dynamics to generate precise predictions. Our model achieves better prediction results on
moving-mnist and radar datasets than the state-of-the-art models.

Keywords: spatiotemporal network; predictive learning; horizon LSTM; vertical structure;
encoder-decoder architecture

1. Introduction

With the generation and preservation of big data, more spatiotemporal data are available in
our daily life, which have the characteristics of spatial and temporal information [1–5]. Recently,
spatiotemporal predictive learning has become a hot topic in practical applications [6], including
precipitation nowcasting [7–9], crowd flows prediction [10–12], video prediction [13–17] and action
recognition [18,19]. In contrast to traditional deep learning [20], predictive learning is able to predict
future data from previous label-free spatiotemporal data in an unsupervised manner.

The vanishing gradient problem is a difficult research question when training artificial neural
networks in predictive learning. It causes poor long-term prediction because the gradient based
learning method will last much longer as errors vanish with back-propagation. Addressing the
vanishing gradient problem is an issue in spatiotemporal predictive leaning.

There have been many previous studies on predictive learning, including recursive neural network
(RNN) models, convolutional neural network (CNN) models, and generative adversarial network
(GAN) methods. However, mainstream models suffer from huge memory usage or gradient vanishing
problems [21–23]. Because predictive learning for spatiotemporal data, especially in the precipitation
nowcasting, always deals with objects entangling, shape-changing, and direction variation, it is a more
challenging task than the traditional temporal sequence regression, and it is a research direction worth
exploring. The predictive learning based framework can solve the issue well, but the LSTM internal
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unit structure is complicated. Our motivation is to explore a more straightforward unit structure and
to solve or mitigate the gradient vanishing problem.

Toward a resolution of the gradient vanishing problem and simpler structure in the cell unit,
we present CostNet, a novel RNN-based network. It is well known that resnet [1,24] excelled in the
imagenet competition, which greatly increases the depth of convolution network by skip connections
without causing gradient vanishing or gradient explosion problems. Enlightened by the idea of skip
connections, CostNet has a horizontal and vertical cross connection. The core of this network is a
concise unit, named Horizon LSTM with a fast gradient transmission channel, which provides a quick
route from future predictions back to distant previous inputs to alleviate the gradient propagation
difficulty. In the vertical direction outside of the unit, we add overpass connections from the unit output
to the bottom layer, which can capture the short-term dynamics to generate clear predictions. Our
model achieves better prediction results on moving-mnist and radar datasets than the state-of-the-art
models, showing a great modeling capability for spatiotemporal data.

In this study, we propose a novel RNN-based network called CostNet. The paper is organized
as follows. Related work is illustrated in Section 2. Section 3 introduces preliminaries. Section 4
shows the Horizon LSTM and vertical structure for the CostNet. Experiments and results are given in
Section 5, and following is that is the Conclusion in Section 6.

2. Related Work

In recent years, a growing number of predictive learning models have been proposed, which are
mainly based on convolutional neural network (CNN) [25], recursive neural network(RNN) [26,27] or
generative adversarial network (GAN) [28,29].

Due to the powerful ability of extracting spatial correlations, CNN has achieved great success in
the computer vision field, such as image classification and objects detection [20]. Some researchers
attempted to model spatiotemporal data based on CNN. Oh et al. introduced an action autoencoder
model based on CNN for video Atari games prediction [30], but its performance in real-world video is
not good. De Brabandere et al. constructed the dynamic filter networks to some of input samples [31].
Zhang et al. designed the deep spatiotemporal networks for citywide crowd flows prediction using
residual learning and fusion mechanism [12]. However, the model is only applied to very short-term
prediction. Villegas et al. built a three-stage framework with additional annotated human joints data
for long-term prediction [32]. However, it works in a supervision manner requiring a landmark as the
ground truth.

Due to the powerful ability of modeling temporal dependencies, RNN has achieved great success
in the natural language processing field, such as machine translation and intelligent conversational
systems. Some researchers attempted to model spatiotemporal data based on RNN. Ranzato et al.
introduced the first RNN framework inspired from language modeling and build a baseline for
video prediction [14]. However, it has been shown that the model can only predict one frame ahead.
Srivastava et al. employed the sequence to sequence LSTM network from language modeling to make
multi-step video prediction [33]. The temporal characteristics are captured by the fully connected
LSTM (FC-LSTM) layer in the model which cannot extract the spatial correlations. To learn spatial and
temporal characteristics simultaneously, Shi et al. adopted convolution operator into input-to-state
and state-to-state transitions and presented the convolutional LSTM (ConvLSTM) [7]. However,
the stacked encoder-decoder architecture tends to produce fuzzy results. ConvLSTM becomes an
important reference in the future research of spatiotemporal data because of its artful design. Finn et al.
extended the convolutional LSTM model in robotics planning and constructed an action-conditioned
video prediction network [34]. Patraucean et al. built a spatiotemporal video autoencoder with
differentiable memory for action recognition [35], which can model short-term temporal dynamics and
only predict one future frame partially related to optical flow and the convolutional LSTM. Villegas et
al. also presented recurrent models based on the convolutional LSTM using optical flow as guided
features to help capture short-term dynamics for video prediction and built an encoder-decoder
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network that separates motion and content into different encoder pathways for pixel-level future
prediction [36]. Lotter et al. proposed a deep predictive coding network upon ConvLSTM particularly
designed for one-frame video prediction [15]. Shi et al. continued to explore a new model to solve the
location-invariant problem and proposed a benchmark for precipitation nowcasting [8]. Combining
gated CNN and ConvLSTM, Kalchbrenner et al. designed a sophisticated probabilistic video model,
named Video Pixel Network (VPN) [16], which encodes a four-dimensional dependency chain from
raw videos and estimates the discrete joint distribution of pixel values one-by-one. This model gives
sharp prediction frames but also brings high computational complexity and low prediction efficiency.
Unlike the stacked ConvLSTMs, Wang et al. proposed a novel encoder-decoder architecture (PredRNN)
for spatiotemporal predictive learning adding zigzag memory flows from top layer to bottom layer
which is beneficial for modeling short-term video dynamics and designed a complex unit [9], named
ST-LSTM with dual-memory (temporal and spatiotemporal memory) flows as blocks in the network.
Wang et al. continued to develop PredRNN++ with a unit GHU (Gradient Highway Unit) [37] to
alleviate the deep-in-time dilemma and proposed a more reasonable but still complex unit, named
causal LSTM.

Due to the powerful ability of generating similar patterns, GAN has become a hot research topic
in the machine learning field, such as image style transfer and video generation. Some researchers
attempted to model spatiotemporal data based on GAN. Mathieu et al. introduced generative
adversarial networks to video prediction [17], which generate prediction frames by a generator
and then distinguish real/fake frames by a discriminator. More methods about adversarial learning
were present in video prediction [38–41]. These methods can generate sharper frames than the
traditional CNN or RNN methods. However, they need careful training because of the unstable
adversarial networks.

In summary, different approaches have different disadvantages. GAN-based approaches can
generate sharp frames but not capture the temporal dynamics in the long-term prediction. Generally
speaking, CNN-based approaches are also poor at long-term prediction because convolutional structures
can extract the spatial correlations but not model the temporal dynamics effectively. On the contrary,
RNN-based approaches are good at modeling temporal dependencies in the long-term prediction
but tend to generate blur predictions because of the well-known vanishing gradient problem. In this
study, we proposed a concise overpass spatiotemporal network, which can model spatial and temporal
characteristics simultaneously.

3. Preliminaries

The goal of predictive learning for spatiotemporal data is to forecast future predictions using
previous observation sequences. From a mathematical view, this task can be regarded as a probability
estimation problem. We take a video clipping (a common format of spatiotemporal data) as a research
object. It’s a temporal sequence in general that spans from t − J + 1 to t + K. Given a time stamp t,
xt−J+1, . . . , xt (length- J ) represents the previous observations and xt+1, . . . , xt+K (length- K ) represents
the ground truth values of the future status. At the given time stamp t, each observation x, a spatial
representation, can be represented by a tensor RC×M×N, where R means the feature, C M and N denote
the channel, height, width of a frame respectively. The essence of prediction is to predict the future
length K sequence based on the known length J sequence and to maximize the prediction probability
p. The predictions x̂t+1, . . . , x̂t+k are used as estimate values of the ground truth xt+1, . . . , xt+K. This
process can be implemented by an encoder-decoder architecture. Many models for predictive learning
use the encoder-decoder architecture, including FC-LSTM, ConvLSTM, ST-LSTM, Cause LSTM and
our model. First, the encoder is used to encode the previous observations into intermediate states, and
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then the decoder is used to generate prediction results based on these intermediate states. The formulas
are given in Formula (1) as follows:

x̂t+1, . . . , x̂t+k = arg max
xt+1,...,xt+K

p
(
xt+1, . . . , xt+K

∣∣∣xt−J+1, . . . , xt
)

= arg max
xt+1,...,xt+K

p
(
xt+1, . . . , xt+K

∣∣∣∣ fencoding
(
xt−J+1, . . . , xt

))
= gdecoding

(
fencoding

(
xt−J+1, . . . , xt

)) (1)

LSTM is suitable for processing temporal sequences, which is a recurrent cell unit with four gate
structures inside. According to paper [27], the main formulas of LSTM are shown in Formula (2) below:

gt = tan h (Wxc•xt + Whc•ht−1 + bc)

it = σ (Wxi•xt + Whi•ht−1 + Wci ◦ ct−1 + bi)

ft = σ
(
Wx f•xt + Wh f•ht−1 + Wc f ◦ ct−1 + b f

)
ct = ft ◦ ct−1 + it ◦ gt

ot = σ (Wxo•xt + Who•ht−1 + Wco ◦ ct + bo)

ht = ot ◦ tan h (ct)

(2)

where σ is sigmoid activation function, • and ◦ denote the matmul product and the Hadamard product
respectively. However, for spatial data, the matmul product generates too many redundant connections
(full connections) to extract efficiently spatial correlations with high efficiency.

By combining convolution layer and recursion layer, Shi et al. proposed ConvLSTM [7], which is
widely used in the field of spatiotemporal data because spatial correlations and temporal dynamics are
extracted simultaneously. ConvLSTM replace matmul product with convolution in full-connection
LSTM cell. The main formulas of ConvLSTM are shown in Formula (3) below:

gt = tan h
(
Wxg ∗ xt + Whg ∗ ht−1 + bg

)
it = σ (Wxi ∗ xt + Whi ∗ ht−1 + Wci ◦ ct−1 + bi)

ft = σ
(
Wx f ∗ xt + Wh f ∗ ht−1 + Wc f ◦ ct−1 + b f

)
ct = ft ◦ ct−1 + it ◦ gt

ot = σ (Wxo ∗ xt + Who ∗ ht−1 + Wco ◦ ct + bo)

ht = ot ◦ tan h (ct)

(3)

where σ is sigmoid activation function, ∗ is the convolution operator and ◦ indicates the Hadamard
product. However, the network only stacks four layers of ConvLSTM units vertically, independent of
each other step-to-step, thus the bottom layer ignores characteristics extracted by the top layer at the
previous time. Predictions cannot get the short-term trends and tend to be fuzzy.

To overcome the drawback of layer-independent architecture in ConvLSTM, Wang et al. proposed
a novel encoder-decoder architecture (PredRNN) [9] with zigzag memory flows from the top layer
to the bottom layer and designed a dual memory unit named ST-LSTM using complicated nonlinear
transition functions. PredRNN has a strong capability of modelling short-term video dynamics and



ISPRS Int. J. Geo-Inf. 2020, 9, 209 5 of 15

generates clearer predictions than the ConvLSTM. The key equations of ST-LSTM are shown in (4) as
follows:

gt = tanh
(
W1 ∗

[
Xt, Hk

t−1, Ck
t−1

])
it = σ

(
W1 ∗

[
Xt, Hk

t−1, Ck
t−1

])
ft = σ

(
W1 ∗

[
Xt, Hk

t−1, Ck
t−1

])
Ck

t = ft ◦Ck
t−1 + it ◦ gt

g′t = tanh
(
W2 ∗

[
Xt, Ck

t , Mk−1
t

])
i′t = σ

(
W2 ∗

[
Xt, Ck

t , Mk−1
t

])
f ′t = σ

(
W2 ∗

[
Xt, Ck

t , Mk−1
t

])
Mk

t = f ′t ◦ tanh
(
W3 ∗Mk−1

t

)
+ i′t ◦ g′t

ot = tanh
(
W4 ∗

[
Xt, Ck

t , Mk
t

])
Hk

t = ot ◦ tanh
(
W5 ∗

[
Ck

t , Mk
t

])

(4)

where σ is sigmoid activation function, ∗ is the convolution operator and ◦ indicates the Hadamard
product. The square brackets represent concatenation and the round brackets denote a whole
section. Unfortunately, the values of gradient fall exponentially in the back-propagation process. The
complicated ST-LSTM still suffers from the gradient vanishing problem [23].

4. Methodology

We present a novel method based on ST-LSTM to explore a straightforward unit structure and
to mitigate the gradient vanishing problem. In this section, we will describe details of CostNet, a
concise overpass spatiotemporal network. We adopt an encoder-decoder architecture with four layers
and employ the Horizon LSTM as our backbone block. Our approach has two key insights: First, the
core of this network is the Horizon LSTM, a concise unit with a fast gradient transmission channel,
which can extract spatial and temporal representations effectively to alleviate the gradient propagation
difficulty. Second, in the vertical direction outside of the unit, we add overpass connections from unit
output to the bottom layer, which can capture the short-term dynamics to generate clear predictions.

4.1. Horizon LSTM

Similar to the ST-LSTM, our Horizon LSTM also has a dual-memory structure: the temporal
memory C and the spatiotemporal memory M. The memory C that flows horizontally from previous
step to next step captures the temporal dependencies. The memory M that moves vertically from the
bottom layer to the top layer extracts the spatial correlations. The Horizon LSTM unit is enlightened by
the idea of the skip connection from resnet instead of the complex gate structures from ST-LSTM. The
structure of Horizon LSTM is shown in Figure 1. There are four inputs to Horizon LSTM, including Xt,
Hl

t−1, Cl
t−1 and Ml−1

t . Xt is the input frame in the first layer at the current time stamp. Hl
t−1 is the output

hidden states in the current layer at the previous time stamp. Cl
t−1 is the temporal memory output

states in the current layer at the previous time stamp. Ml−1
t is the spatiotemporal memory output states

in the bottom layer at the current time stamp. When in the first layer, the input should be Mt−1, which
is the spatiotemporal memory output states in the top layer at the previous time stamp. There are
three outputs for Horizon LSTM: Hl

t, Cl
t and Ml

t. Hl
t is the output hidden states in the current layer at

the current time stamp. Cl
t is the temporal memory output states in the current layer at the current

time stamp. Ml
t is the spatiotemporal memory output states in the current layer at the current time

stamp. Just like the ConvLSTM, the Horizon LSTM unit consists of input gate it, input modulation
gate gt, forget gate ft and output gate ot. The forget gate ft controls the spatiotemporal information
flow M. The temporal memory flow C depends the input gate it, the input modulation gate gt and
the forget gate ft in our Horizon LSTM block. The output hidden states Hl

t in the current layer l and
at the current time stamp t is determined by the temporal memory Cl

t as well as the output gate ot.
As shown in Figure 1, the spatiotemporal memory M exists in an overpass way through the gate
structures in the Horizon LSTM just like the temporal memory C. Since there are only a few of blocks
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in the memory route, the Horizon LSTM can provide a fast gradient transmission channel for both the
temporal memory C and the spatiotemporal memory M from near predictions back to distant previous
inputs to ease the gradient propagation difficulty.
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The key equations of the Horizon LSTM unit are shown in Formula (5) as follows:

gt = tanh
(
W1 ∗

[
Xt, Hl

t−1, Cl
t−1

])
it = σ

(
W1 ∗

[
Xt, Hl

t−1, Cl
t−1

])
ft = σ

(
W1 ∗

[
Xt, Hl

t−1, Cl
t−1

])
Cl

t = ft ◦Cl
t−1 + it ◦ gt

Ml
t = ft ◦ tanh

(
W2 ∗Ml−1

t

)
ot = σ

(
W3 ∗

[
Xt, Cl

t−1, Ml
t

])
Hl

t = ot ◦ tanh
(
W4 ∗

[
Cl

t, Ml
t

])
(5)

where ∗ is the convolution operation, ◦ is the element-wise Hadamard product, σ is the Sigmoid
function. The square brackets represent matrix concatenation and the round brackets denote a whole
section. W 1~4 represent convolution filter parameters, where W 4 has a shape of 1 × 1 convolution
filters to adjust the feature map output. All state variables can be represented by a four-dimensions
tensor, which is comprised of the batch, width, height and hidden states. As illustrated in Formula
5, all of the input gate it, the input modulation gate gt, the forget gate ft and the output gate ot are
the functions of Xt, Hl

t−1, Cl
t−1. The temporal memory Cl

t is the function of the input gate it, the input
modulation gate gt, the forget gate ft and the temporal memory output states Cl

t−1 at the previous time
stamp. The spatiotemporal memory Ml

t is the function of the forget gate ft and the spatiotemporal
memory output states Ml−1

t in the bottom layer. The output hidden states Hl
t is the function of the

output gate ot, the spatiotemporal memory Ml
t and the temporal memory Cl

t. Compared with equations
(4) in ST-LSTM, our method has less gate structures and convolution operations shown in equations
(5). The ST-LSTM has double input gate it, input modulation gate gt, forget gate ft, while our Horizon
LSTM has only one input gate it, input modulation gate gt, forget gate ft. Therefore, our Horizon
LSTM has a more concise structure than the ST-LSTM.

4.2. Vertical Structure

Similar to the encoder-decoder architecture of PredRNN, our CostNet also has a four-layers
structure: The first and second layer form the encoder; The third and fourth layers form the decoder.
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In the vertical direction, CostNet is enlightened by the idea of skip connection from resnet instead of
the direct connection between the top layer and the bottom layer of PredRNN. Our network topology
of our CostNet is illustrated in Figure 2. There are four rows and three columns in our CostNet, where
rows denote different layers from the bottom to the top, columns denote different time stamp. H1 is
short for the Horizon LSTM block in the first (bottom) layer while H4 is short for the Horizon LSTM
block in the fourth (top) layer. t− 1 indicates the previous time stamp while t + 1 indicates the future
time stamp. In fact, the block boxes at different time share the same parameters. Xt represents the
input frame at the time stamp t while X̂t represents the prediction result for Xt. The black arrows show
the directions for the input frame or the output results. The orange arrows show the flow directions for
the temporal memory C and the hidden states H while the blue arrows show the move directions for
the spatiotemporal memory M and the hidden states H. It can be seen from the figure that temporal
memory C only flows in the horizontal direction, the spatiotemporal memory M only moves in the
vertical direction, while the hidden states H flows in both the horizontal direction and the vertical
direction. The dotted lines represent the same implementation described by the solid lines. The symbol
⊕means concatenation for tensors M. In the vertical direction outside of the unit, unlike the direct
connection between the top layer and the bottom layer of PredRNN our CostNet places overpass
connections from each unit output to the bottom layer. PredRNN only considers the influence of
high-level semantics from the top layer of the prediction in the next step prediction, while CostNet
considers the influence of different semantic features from each layer output, which can capture the
short-term dynamic effectively. Therefore, the CostNet has more accurate and clearer predictions than
that of PredRNN. Each layer of PredRNN extracts spatio-temporal features and the information flow
flows from the bottom layer to the top layer, and the output of the last layer is fed back to the bottom
layer. The CostNet can extract the spatio-temporal feature information each time, not only pass up but
also pass down.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 7 of 14 

 

output of the last layer is fed back to the bottom layer. The CostNet can extract the spatio-temporal 
feature information each time, not only pass up but also pass down. 

 

Figure 2. Overall architecture diagram. 

The key equations of the entire CostNet are presented in Formula (6) as follows: 𝑀 = 𝑀 , 𝑀 , 𝑀 , 𝑀  𝐻 , 𝐶 , 𝑀 = HorizonLSTM 𝑋 , 𝑀 , 𝐻 , 𝐶    𝐻 , 𝐶 , 𝑀 = HorizonLSTM 𝐻 , 𝑀 , 𝐻 , 𝐶    𝐻 , 𝐶 , 𝑀 = HorizonLSTM 𝐻 , 𝑀 , 𝐻 , 𝐶   𝑋 , 𝐶 , 𝑀 = HorizonLSTM 𝐻 , 𝑀 , 𝐻 , 𝐶  

(6) 

HorizonLSTM means the Horizon LSTM unit in the first (bottom) layer. Section on the left of the 
equal sign means the outputs for Horizon LSTM and sections in the round brackets represent the 
inputs for Horizon LSTM. The square brackets denote concatenation for the spatiotemporal memory 𝑀  at the previous time stamp. 

5. Experiments 

In this section, we evaluate our model by comparing experiments on two datasets to 
demonstrate the effectiveness and advancement of our algorithm. At the beginning, we inform 
general configuration for our experiments. For each evaluation dataset, we introduce the dataset and 
implementation procedure. Then we show experimental results of our model as well as the baseline 
models. At last, we analyze performance quantitatively and visualize prediction examples 
qualitatively. 

Our model was developed in python and implemented in Keras [42] with TensorFlow [43] as 
back-ends. All the experiments were run on the Ubuntu server with a single NVIDIA GTX1080Ti 
GPU. The general configures are listed as follows: 1) ADAM [44] optimizer is adopted with a starting 
learning rate of 10-3. 2) The batch size is set to 8. 3) The convolution filter size is set to 5 inside all 
recurrent units. 4) The objective function is L1 + L2 loss to generate sharp and smooth frames. 5) 
Maximum iterations is set to 6000. 6) Encoder and decoder structure consists of 4 LSTM layers with 
128, 64, 64, 64 hidden state channels respectively. 7) Layer normalization [45] is adopted to avoid 
internal covariate shift problems. Besides, we employ the scheduled sampling strategy [46] to reduce 
differences between inference and training. In order to improve the training efficiency, we adopted 
the callback function in Keras, such as EarlyStopping, ModelCheckpoint and ReduceLROnPlateau. 

Figure 2. Overall architecture diagram.



ISPRS Int. J. Geo-Inf. 2020, 9, 209 8 of 15

The key equations of the entire CostNet are presented in Formula (6) as follows:

Mt−1 =
[
Ml=1

t−1 , Ml=2
t−1 , Ml=3

t−1 , Ml=4
t−1

]
Hl=1

t , Cl=1
t , Ml=1

t = HorizonLSTM1
(
Xt, Mt−1, Hl=1

t−1 , Cl=1
t−1

)
Hl=2

t , Cl=2
t , Ml=2

t = HorizonLSTM2
(
Hl=1

t , Ml=1
t , Hl=2

t−1 , Cl=2
t−1

)
Hl=3

t , Cl=3
t , Ml=3

t = HorizonLSTM3
(
Hl=2

t , Ml=2
t , Hl=3

t−1 , Cl=3
t−1

)
X̂t, Cl=4

t , Ml=4
t = HorizonLSTM4

(
Hl=3

t , Ml=3
t , Hl=4

t−1 , Cl=4
t−1

)
(6)

HorizonLSTM1 means the Horizon LSTM unit in the first (bottom) layer. Section on the left of
the equal sign means the outputs for Horizon LSTM and sections in the round brackets represent the
inputs for Horizon LSTM. The square brackets denote concatenation for the spatiotemporal memory
Mt−1 at the previous time stamp.

5. Experiments

In this section, we evaluate our model by comparing experiments on two datasets to demonstrate
the effectiveness and advancement of our algorithm. At the beginning, we inform general configuration
for our experiments. For each evaluation dataset, we introduce the dataset and implementation
procedure. Then we show experimental results of our model as well as the baseline models. At last,
we analyze performance quantitatively and visualize prediction examples qualitatively.

Our model was developed in python and implemented in Keras [42] with TensorFlow [43] as
back-ends. All the experiments were run on the Ubuntu server with a single NVIDIA GTX1080Ti
GPU. The general configures are listed as follows: (1) ADAM [44] optimizer is adopted with a starting
learning rate of 10-3. (2) The batch size is set to 8. (3) The convolution filter size is set to 5 inside
all recurrent units. (4) The objective function is L1 + L2 loss to generate sharp and smooth frames.
(5) Maximum iterations is set to 6000. (6) Encoder and decoder structure consists of 4 LSTM layers
with 128, 64, 64, 64 hidden state channels respectively. (7) Layer normalization [45] is adopted to avoid
internal covariate shift problems. Besides, we employ the scheduled sampling strategy [46] to reduce
differences between inference and training. In order to improve the training efficiency, we adopted the
callback function in Keras, such as EarlyStopping, ModelCheckpoint and ReduceLROnPlateau. The
source codes and data are available with a DOI at https://doi.org/10.6084/m9.figshare.11917914.v1.

5.1. Moving MNIST Dataset

5.1.1. Implementation

The Moving MNIST is a synthetic dataset constructed by moving digits from the MNIST dataset.
It contains many data records, each of which is a sequence of length 20 (length of input frames is 10
and that of prediction frames is also 10. Each frame is a 64 × 64 × 1 grayscale image including two
handwritten digits bouncing inside. Because digits selection, initial position, velocity direction and
velocity magnitude are random, it is difficult to predict future frame. We generate the sequences in
the way introduced by Srivastava et al. [33]. We split the dataset volume is into the training set with
10,000 sequences, the validation set with 3000 sequences and the test set with 5000 sequences.

5.1.2. Results

The intuitive way to measure the uncertainty for predictive learning is variance. We adopted two
quantitative metrics to evaluate the performance of all models. One metric is the mean square error
(MSE), an objective indicator, which represents the distance between true frames and predictions. A
better model should have a lower value of MSE. In the ideal case, the minimum value is zero. Another
metric is the per-frame structural similarity index measure (SSIM) [47], which is a subjective indicator
to measure similarity between two images. A better model should have a higher value of SSIM. In the
ideal case, the maximum value is 1. Table 1 shows the performances of different models for predicting

https://doi.org/10.6084/m9.figshare.11917914.v1
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10 frames given the previous 10 frames on the standard Moving MNIST dataset. As shown in the
table, CostNet is evaluated against state-of the-art methods including FC-LSTM, ConvLSTM, TrajGRU,
CDNA, DFN, FRNN, VPN, ST-LSTM and Causal LSTM. Our model outperforms all state-of-the-art
methods in the metric MSE as well as SSIM. Our model reduces the per-frame MSE from 118.3 down to
44.9 and increases the per-frame SSIM from 0.690 up to 0.901. Compared with Causal LSTM, a recent
state-of-the-art method, our model achieves competitive predictions, with a slight lower 1.6 in the
metric MSE and a slight higher 0.03 in the metric SSIM. The results show that the CostNet can model
spatiotemporal data effectively.

Table 1. A comparison of different models for predicting 10 frames on the Moving MNIST dataset.

Model SSIM MSE

FC-LSTM 0.690 118.3
ConvLSTM 0.707 103.3

TrajGRU 0.713 106.9
CDNA 0.721 97.4
DFN 0.726 89.0

FRNN 0.813 69.7
VPN 0.870 64.1

ST-LSTM 0.867 56.8
Causal LSTM 0.898 46.5

CostNet 0.901 44.9

We plot frame-wise curves of different models for predicting 10 frames. As illustrated in Figure 3,
the CostNet is evaluated against state-of-the-art methods including FC-LSTM, ConvLSTM and Causal
LSTM. Uniformly, the performance of all models declines over time. Nevertheless, our model
outperforms the state-of-the-art methods, with a lower curve for the metric MSE and a higher curve
for the metric SSIM. Compared with Causal LSTM, a recent state-of-the-art method, our model works
slightly better, especially for the last four frames. The results indicate our model has a great power for
capturing long-term video dependencies.
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At last, we visualize some examples on the Moving MNIST test set to observe the performance of
different models qualitatively. All models predict 10 frames in the future given 10 previous frames. As
illustrated in Figure 4, the first row is the previous input frames, the second row is the ground truth
data, the third to eleventh rows are the predictions of FC-LSTM, ConvLSTM, TrajGRU, CDNA, DFN,
FRNN, VPN, ST-LSTM, Causal LSTM respectively, and the last row is the predictions of our model.
We observe that our model predictions are sharp enough.
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5.2. Radar Echo Dataset

5.2.1. Implementation

In order to verify the effectiveness and advancement of our mode, a practical dataset, standard
radar dataset 2018 (SRAD2018), is adopted in experiment, which comes from the IEEE ICDM 2018
global weather AI challenge. The radar dataset spans four months from 00:00 UTC on March 15 to
23:54 UTC on July 15 each year from 2010 to 2017. There are 320,000 sets in this dataset, including
300,000 records as training set and 20,000 records as test set. Each record has a length of 61, with an
interval of 6 min. Radar covers one vertical level, altitude 3 km. After quality control, the radar echo
data is limited in 0-80 (unit: dBZ), and the missing value is 255. The radar data at each time is stored in
grayscale PNG format with a resolution of 501 × 501. Our goal in experiment is to predict the future
10 frames based on the previous 10 consecutive frames. We did some data preprocessing, such as
image reshaping to 200 × 200. In addition, we under sampled the original dataset taking one image at
every three intervals. After preprocessing, the training set is 80,000 sequences, the verification set is
10,000 sequences, and the test dataset is 1000 sequences.

5.2.2. Results

We adopted three quantitative metrics to evaluate the performance of all models, including the
mean square error (MSE), the per-frame structural similarity index measure (SSIM) and the per-frame
Peak Signal to Noise Ratio (PSNR) [47]. SSIM focuses on the difference in sharpness while PSNR
emphasizes pixel-level correctness. A better model should have a higher value of SSIM and PSNR. In
the ideal case, the maximum value of SSIM is 1 and the maximum value of PSNR is 255. Table 2 shows
the performance of different models for predicting 10 frames given the previous 10 frames on the radar
dataset. As shown in the table, our model is evaluated against state-of-the-art methods including
ConvLSTM, TrajGRU, ST-LSTM and Causal LSTM. Our model outperforms all state-of-the-art methods



ISPRS Int. J. Geo-Inf. 2020, 9, 209 11 of 15

in the metric SSIM as well as PSNR. Our model reduces the per-frame MSE from 3580.31 down to
888.81, increases the per-frame SSIM from 0.62 up to 0.79 and increases the per-frame PSNR from
12.13 up to 17.48. Compared with Causal LSTM, a recent state-of-the-art method, our model achieves
competitive predictions, with a slightly higher 0.14 in the metric PSNR and 0.01 in the metric SSIM.
The results show that CostNet can model radar data effectively.

Table 2. A comparison of different models for predicting 10 frames on the radar dataset.

Model MSE SSIM PSNR

ConvLSTM 3580.31 0.62 12.13
TrajGRU 2088.88 0.69 14.13
ST-LSTM 1252.49 0.74 15.9

Causal LSTM 905.16 0.78 17.34
CostNet 888.81 0.79 17.48

We plot frame-wise curves of different models for predicting 10 frames. Better predictions
should have higher curves of frame-wise SSIM and PSNR. As illustrated in Figure 5, our model is
evaluated against state-of-the-art methods including ConvLSTM, TrajGRU, ST-LSTM and Causal LSTM.
Uniformly, the performance of all models declines over time. Nevertheless, our model outperforms the
state-of-the-art methods, with higher curves for the metric SSIM and PSNR. Compared with Causal
LSTM, a recent state-of-the-art method, our model works slightly better, especially for the last four
frames. The results indicate our model has a great power for capturing long-term video dependencies.
The performance of CostNet for the SSIM has improved by 0.1 than that in the Causal LSTM. The
significant improvement is mainly in the final 5 frames. The result showed that CostNet has a stronger
ability in predicting long-term temporal scenarios.
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We visualize examples on the radar test set to observe the performance of different models
qualitatively. All models predict 10 frames in the future given 10 previous frames. As illustrated in
Figure 6, the first row is the previous input frames, the second row is the ground truth, the third to
sixth rows are the predictions of ConvLSTM, TrajGRU, ST-LSTM and Causal LSTM respectively, and
the last row is the predictions of our model. We observe that our model predictions are sharp enough.
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6. Conclusions and Future Work

Towards resolutions of gradient vanishing problem and simpler structure in the cell unit,
we propose CostNet, a concise overpass spatiotemporal network, which has a horizontal and vertical
cross connection. The core of the CostNet is a concise unit, named Horizon LSTM with a fast gradient
transmission channel, which provide a quick route from near predictions back to distant previous
inputs to ease the gradient propagation difficulty. In the vertical direction outside of the unit, we add
overpass connections from unit output to the bottom layer, which can capture the short-term dynamics
to generate clearer predictions. The CostNet can extract the spatio-temporal feature information each
time. The CostNet achieves better prediction results on moving-mnist and radar datasets than the
state-of-the-art models. The results showed that the CostNet has a great modeling capability for
spatiotemporal data. However, the evaluation for the uncertainty of the predictive learning is only
considering the MSE, SSIM and PSNR. The Critical success index (CSI) can be used for the evaluation
the uncertainty of the dynamic predictive learning as a skill score index [48]. A higher CSI denotes
a better prediction. We will evaluate the uncertainty of the predictive learning results using CSI in
the future. The predictive learning for spatiotemporal data is still an extremely challenging topic for
multiple predictive learning methods. In the near future, we will explore different network structures
and predictive learning working in an unsupervised manner over cyberinfrastructure.
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