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Abstract: CDR (Call Detail Record) data are one type of mobile phone data collected by operators
each time a user initiates/receives a phone call or sends/receives an sms. CDR data are a rich
geo-referenced source of user behaviour information. In this work, we perform an analysis of CDR
data for the city of Milan that originate from Telecom Italia Big Data Challenge. A set of graphs is
generated from aggregated CDR data, where each node represents a centroid of an RBS (Radio Base
Station) polygon, and each edge represents aggregated telecom traffic between two RBSs. To explore
the community structure, we apply a modularity-based algorithm. Community structure between
days is highly dynamic, with variations in number, size and spatial distribution. One general rule
observed is that communities formed over the urban core of the city are small in size and prone to
dynamic change in spatial distribution, while communities formed in the suburban areas are larger in
size and more consistent with respect to their spatial distribution. To evaluate the dynamics of change
in community structure between days, we introduced different graph based and spatial community
properties which contain latent footprint of human dynamics. We created land use profiles for each
RBS polygon based on the Copernicus Land Monitoring Service Urban Atlas data set to quantify the
correlation and predictivennes of human dynamics properties based on land use. The results reveal a
strong correlation between some properties and land use which motivated us to further explore this
topic. The proposed methodology has been implemented in the programming language Scala inside
the Apache Spark engine to support the most computationally intensive tasks and in Python using
the rich portfolio of data analytics and machine learning libraries for the less demanding tasks.

Keywords: network analysis; mobile phone networks; human dynamics; big data; knowledge
discovery

1. Introduction

Network analysis refers to the tools applied on network-based data towards the discovery of
useful knowledge. The research area of network analysis enjoys widespread use, mainly because
there are numerous and significant diverse applications that require the manipulation and analysis of
network-based data, such as social network analysis, searching and mining the Web, pattern mining in
bioinformatics and neuroscience.

In this paper, we use information collected from CDRs to generate a network, representing the
communication traffic between different parts of the mobile network. This network is represented by
a graph G(V, E), where V is the set of nodes (vertices) and E is the set of edges (links).
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There is a wide spectrum of network science applications in diverse fields. For smart city policy
making and urban planning, it is essential to know how people move around and how they use urban
spaces. Mobile phone data can be of great value for urban policy making as they contain valuable
information about users’ mobility and activity. The spatial semantics of the location are determined
by their land use, but even so, people are using urban spaces in many different ways. The activity
detected through mobile phone data is changing over different day types but also over different day
times [1].

Urban spaces are also affected by daily base migrations of people who are commuting to work
which is reflected in telecom traffic. Telecom Radio Base Stations are forming a latent network over
urban area consisted of links created by users’ connectivity. A network, mathematically speaking
could be represented as a graph structure and powerful Graph Theory methods can be applied. We
can track the dynamics and changes in the network by analyzing local and global properties of the
graph that represent the network.

Despite the unprecedented value of user generated networks that reflects human dynamics many
obstacles are present when analyzing such data. User generated networks could be made of telecom
connectivity data, location-based social media data, GPS data from devices, etc. Those networks are
highly dynamic and very complex while at the same time they demand efficient analytics that could
deliver the result as fast as possible. To address this issue, high-performance computing frameworks
must be incorporated in analytical pipelines. To be able to exploit the value of user generated data,
we must know the specific context of the location or the event. The importance of the place in urban
zones is determined by its land use. Densely built up urban zones with many diverse amenities are
likely to form different telecom traffic footprint than sparsely populated industrial zones. Knowing
the importance of the place defined by land use and human interactions formed around the place,
we could strengthen transport and telecom infrastructure where needed, plan events better, enhance
services, etc. By knowing the correlation between land use and human dynamics, we could predict the
impact of land use change to people’s lives.

Contributions. This work investigates the potential of using innovative data sources, such as telecom
CDR data together with land use data, to evaluate and analyze human dynamics. Human Dynamics
is a very wide research area that often requires a multidisciplinary approach. Mobile phone data
analysis is one way to perceive Human Dynamics that can be reflected through telecom activity,
connectivity and users’ mobility. In this work, we explore the aspect of Human Dynamics reflected
through mobile communication network in the form of connectivity links. The interplay between
Human Dynamics and Network Science has been demonstrated before in [2]. Our work is based on
the rationale that if centrality measures can be predicted by using land use properties, then what-if
scenarios can be applied in order to detect the factors that affect human connectivity dynamics through
mobile networks. More specifically, the contributions of our work are summarized briefly as follows:

• Shaw et al. pointed out several challenges in handling big and mobile human dynamics data
in a hybrid physical–virtual environment where activities and interactions occurring in virtual
space are not independent from activities and interactions in physical geographical space [3].
One example of such physical–virtual cohesion of the events is experimental study conducted by
Graells-Garrido et al., where the authors evaluated the impact of the Pokemon Go game to the
change of people’s movement and mobility patterns in physical geographical space [4]. In this
work, we are determining the correlation between physical geographical space characterized by
land use and human dynamics virtual space created by users telecom interactions.

• Based on CDR data and communication traffic between different areas, a weighted network is
constructed to represent the linkage between different city areas. Community detection is applied
in this network in a daily basis, in order to detect community evolution across time. Communities
are clusters in the network where high inner connectivity is present. The evolution of clusters
through time is triggered by users’ dynamics and their activity variations in space and time.
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• We further analyze the dynamics of community structure by calculating spatial as well as
structural (i.e., network-based) properties of communities. It turns out that land-use information
is strongly related to spatial and structural properties of communities, as it is shown by a thorough
performance evaluation.

Earlier studies indicate that there is great potential in using mobile phone activity data to predict
land use [5,6]. Mobile phone data could be used as proxy for human dynamics, to the best of our
knowledge there is no prior work on how to predict human connectivity dynamics reflected through
telecom data based on land use. Such results are valuable for urban planning that becomes more
challenging as urban population grows with expectation that two thirds of the world population will
be living in the cities by 2050. Changes in land use across cities and further expansions should be
accompanied with assessment of changes in human connectivity.

Our methodology involves the use of Big Data Analytics platforms. More specifically, the most
computationally intensive parts of the pipeline are implemented in the Apache Spark engine. Therefore,
our technique is scalable as it can handle potentially large amounts of data.

Roadmap. The rest of the paper is organized as follows. Section 2 presents related work in the area.
Fundamental concepts and definitions are given in Section 3, whereas the proposed methodology
is detailed in Section 4. System architecture is presented in Section 5. Experimental results are
presented in Section 6 and finally Section 7 concludes our work and presents briefly interesting future
research directions.

2. Related Work

With an increasing number of devices and services that collect data about people activity,
interactions and mobility in the last few years, human dynamics research became the key topic
in computational social science [7]. Human dynamics research evolves with changing every day
circumstances in which people live such as natural and urban environment, emerging new technologies,
climate change and society. High presence of modern information and communication (ICT)
technologies including location-aware devices, various sensors and mobile technology in every day
life have great impact on shaping human activity and interaction patterns [8].

One of the richest data sources about human daily based activities is mobile phone data [9]. Many
diverse applications with significant social impact are developed based on mobile phone data, such as
urban sensing and planning [10,11], traffic engineering [12–14], predicting energy consumption [15],
disaster management [16–18], epidemiology [19–21], deriving socio-economical indicators [22,23].

More specifically, Ratti et al. in their review [24] highlighted the potential of using mobile
phone data for urban planning. Soto et al. [25] used Call Detail Records to extract the information
to automatically identify land use behaviors in urban environments. They used fuzzy c-means to
cluster the Radio Base Station signatures and detect the class representatives of the land use in urban
environment. Grauwin et al. used mobile phone data to detect land use classes in three different
cities, New York, London and Hong Kong [26]. Furno et al. conducted comparative analysis between
ten different cities, in which they constructed specific mobile traffic signatures to determine dynamic
patterns of human presence in urban areas [27]. Rios and Muñoz used a big mobile phone data set with
880 million records in a case study for Santiago, Chile for land use pattern detection. They used the
latent variable clustering technique in detecting clusters of residential, office area, leisure-commerce
and rush hour pattern areas [28]. Pei et al. used hourly relative pattern and the total call volume
trough semi supervised fuzzy c-means clustering approach in inferring land use types in Singapore,
showing that the accuracy decreased with the increase in heterogeneity of land use and density of cell
phone towers [6]. Furno et al. combined simultaneously Call Detail Records and vehicle GPS traces for
revealing land use context in French and Italian cities [29].

Unveiling complex ties between land use and human dynamics properties derived from mobile
phone data is an active area of research. The latest results demonstrate relations between dominant land
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use for each Voronoi zone and corresponding human activity represented as aggregated CDRs [30], as
well as land-use composition of city’s neighborhoods and the time series of CDR intensities [31]. Both
studies utilized clustering to group similar land uses on one side and human dynamics properties
on the other side and finally estimated agreement between clustering results obtained from this two
data sources. Another novel study quantified by regression models how urban land use influences the
commuting flows [32].

Noyman et al. conducted the study that suggests a methodology of “reversed urbanism” to urban
planning and decision making. The methodology considers human behaviour patterns extracted
from mobile phone data as a key element of urban design and their association with the functionality
of urban areas [33]. One recent study conducted by Cottineau et al. showed the relation of mobile
phone data indicators such as number of calls, active days, duration of calls, entropy, etc. and
socioeconomic organization of cities [34]. They showed how mobile phone data together with census
and administrative data could be used for urban development.

User-generated mobile phone data are highly dynamic and usually very large in size. Analytical
pipelines over such data sets could be computationally expensive, while at the same time delivery of the
results needs to be efficient since many applications require almost real-time response. Brdar et al. [35]
provided a broad overview of the entire workflow starting from raw data access, followed by demands
for analytical performance and data fusion, to the final application. They pointed out the critical
challenges in mobile phone data analysis that need to be addressed, in order to disclose the hidden
potential of the data. To make large scale telecom data analytics more efficient the work in [36]
suggested using the Apache Spark [37] platform for distributed data analytics.

Our methodology differs from previous work in many aspects. First of all, to analyze the mobile
network we are combining graph mining techniques [38,39] such as community detection and centrality
measures. Next, we provide a mechanism in order to be able to predict spatial as well as network-based
properties from land-use data. Last but not least, and following our previous work in [36], we have
implemented the most demanding tasks inside the Apache Spark engine.

3. Fundamental Concepts

In this section, we present some important background information that is essential for the
subsequent discussion. In particular, we cover topics related to community detection in networks,
centrality measures and distributed data analytics. These techniques are used as building blocks in our
methodology which is presented in detail in Section 4.

3.1. Community Detection

A core concept used in our proposal is community detection, which involves associating the nodes
of a network into meaningful groups (also known as clusters or communities). Given a graph G(V, E),
where V is the set of nodes and E is the set of edges, the output of a community detection algorithm, in
its simplest form, is a partitioning of V into c groups V1, V2, . . ., Vc where ∀i, j it holds that Vi ∩Vj = ∅.
This definition corresponds to non-overlapping communities which are utilized in this work.

To discover community structure in the network, we perform community detection using
modularity based algorithms, such as the one proposed in [40]. The concept of modularity [41]
presented by Equation (1), is used as a goodness measure for the quality of partitions, where Aij is
the weight of the edge connecting the i-th and the j-th node of the graph, ∑j Aij is the sum of the
weights of the edges attached to the i-th node, ci is the community where the i-th node is assigned
to, m = (1/2)∑i,j Aij, and δ(i, j) is zero if nodes x and y are assigned to the same community and
1 otherwise.

Q =
1

2m ∑
i,j

[
Ai,j −

∑j Aij ·∑i Aji

2m

]
δ(ci, cj) (1)
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Unfortunately, computing communities based on the maximization of the modularity, is
anNP-hard problem. To provide an efficient solution, the algorithm proposed in [40] uses an iterative
process that involves shrinking the graph, every time modularity converges. In each phase, each
node is assigned to a neighboring community that maximizes the modularity of the graph. As long
as nodes are moving around communities and modularity grows, we keep on executing this process.
When there are no more changes, a shrinking process is applied. Upon shrinking the graph, each
community produced during the previous phase, it is assigned to the same super node of the new graph.
The same process is applied to the new graph. The algorithm terminates when the modularity detected
in the new graph is less than the modularity detected in the previous one. The set of communities
that maximize the modularity is returned as an answer. The outline of the technique is depicted in
Algorithm 1. It is evident that this algorithm may reach a local maximum. However, in general it
performs very well, it is efficient and the quality of the generated communities is high.

Algorithm 1: LOUVAIN (G(V, E))

Input: the graph G
Result: the communities of G

1 n← |V| /* number of graph nodes */
2 done← f alse
3 while not done do
4 assign each u ∈ V to a different community
5 while there is a change do
6 for every node u ∈ V do
7 C ← a community that maximizes modularity /* C is a neighboring community or u’s

community */

8 if newModularity > oldModularity then
9 G ← shrink graph based on communities /* each community becomes a super node in the

new graph */

10 else
11 return communities

3.2. Centrality Measures

Node centrality measures [42] quantify the importance of graph nodes. Among the most widely
used node centrality measures are:

• Degree Centrality (DC): the number of edges incident to the node;
• Betweenness Centrality (BC): the number of shortest paths passing through the node;
• PageRank (PR): related to the probability that a random walker will visit the node; and
• Core Number (CN): a value associated with a node that quantifies how well the node is connected

with respect to its neighborhood (we will provide more details on this).

BC and PR are the most computationally intensive, whereas DC and CN require linear time to
compute. More specifically, the complexity of CN in undirected and unweighted graphs is O(n + m),
where n is the number of nodes and m is the number of edges .

Definition 1 (core number). The core number of node u, CN(u), is the maximum value of k such that u
belongs to the k-core of the graph G.

Definition 2 (k-core). The k-core of a graph G is the maximal subgraph H such that every node u in H has at
least k neighbors in H, i.e., the degree of all nodes in H is at least k.
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The core decomposition concept has many applications in diverse scientific areas. For a broad
coverage of the topic the interested reader is referred to the work in [43]. Here we will present this
concept briefly and highlight its most important characteristics.

Let G(V, E) be a graph. Also let N(v) denote the set of neighbors of node v. Assume that the
minimum degree of all nodes of V is 1. This means that the whole G is also the 1-core, since for any
node u, the degree of u is at least 1. This is illustrated in Figure 1a. Assume now that we remove
from G the two nodes with a degree of one. Figure 1b presents the 2-core of G, since all nodes in
this subgraph have a degree at least 2. Finally, the 3-core of G is shown in Figure 1c. This is also the
maximum core, since there is no subgraph of G such that all nodes have at least four (4) neighbors.
The pseudocode of the core decomposition process is given in Algorithm 2.

(a) 1-core (b) 2-core (c) 3-core (max core)

Figure 1. Core decomposition example.

Algorithm 2: COREDECOMPOSITION (G(V, E))

Input: the graph G
Result: the core numbers (array C)

1 V ← set of vertices of G
2 array D← vertex degrees
3 sort array D in non-decreasing order
4 for each v ∈ V in the order do
5 C[v]← D[v]
6 for each u ∈ N(v) do
7 if D[u] > D[v] then
8 D[u]← D[u]− 1
9 reorder array D accordingly

10 return C

The concept of k-core decomposition has been extended to other network types as well, such as
directed, signed, weighted and many more. In the case of a weighted network, a straight-forward way
to compute the core decomposition is to use the concept of the weighted node degree, which is defined as
the sum of the weights of the edges incident to a node. However, the continuous space of weights is
discretized, in order to achieve better runtime performance.

Despite its simplicity, the core number of a node u constitutes a very powerful centrality measure,
which is easy to compute. It turns out that the core number can identify successfully important
keywords in documents, influential nodes in social networks as well as dense subgraphs. In our case,
nodes with high core number are most probably more important than others.

3.3. Distributed Data Analysis

One of the primary objectives of our proposal is to utilize technologies for big data analytics,
in order to guarantee scalability. The most computationally intensive parts of our methodology are
supported by Apache Spark. Apache Spark is a unified distributed engine with a rich and powerful
API for Scala, Python, Java and R [37]. One of its main characteristics is that (in contrast to Hadoop
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MapReduce) it exploits main memory as much as possible, being able to persist data across rounds to
avoid unnecessary I/O operations. Spark applications are executed based on a master-slave model
in cooperation with a cluster manager such as YARN (http://hadoop.apache.org/) or MESOS (http:
//mesos.apache.org/).

The basic Spark architecture is depicted in Figure 2. A Spark application consists of a Driver
program that is responsible for executing the main function. The driver detects parts of the application
that will be processed by Worker Nodes in parallel. A Spark applications is composed of a number of
Spark Jobs, and each job is defined as a sequence of Transformations ending by an Action.

Figure 2. Apache Spark architecture.

The Driver communicates with the Resource Manager (e.g., YARN or MESOS) in order to get access
to cluster resources. The main execution component is the Executor which corresponds to a Java Virtual
Machine (JVM) that runs on a Worker Node. Distributed processing is achieved by the communication
between the Driver and the Executors. Spark Jobs are split into Tasks and each Spark Executor is
responsible for the execution of one or more Tasks.

The main motivation for the use of Apache Spark is to provide efficient computation for large
amounts of data. The methodology proposed in the paper is used as a proof-of-concept. However, the
most important tasks are implemented inside the Apache Spark platform, meaning that the solution is
highly scalable and supports larger data.

4. Proposed Methodology

In this section, we present in detail our methodology. First we present the preprocessing of the
raw data and then we proceed with the techniques applied towards knowledge discovery.

4.1. Data Description and Preparation

Telecom data is very rich in user behaviour and therefore could reveal significant information
about the personal profile of the user. Telecom operators follow rigorous procedures for data
anonymization to preserve the privacy of users, before sharing the data to third parties. Call Detail
Records (CDR) can be anonymized by performing temporal and/or spatial aggregation. CDRs can be
temporally aggregated in predefined time slots in a way that all communication that occurred between
two base stations is aggregated as one weighted link. Spatial aggregation is performed in order to hide
the exact location of Radio Base Station where telecom traffic is distributed onto cells in regular grid

http://hadoop.apache.org/
http://mesos.apache.org/
http://mesos.apache.org/


ISPRS Int. J. Geo-Inf. 2020, 9, 140 8 of 23

covering predefined spatial areas. Another data anonymization approach is to add noise to original
data up to the level not affecting the statistics significantly while preserving the users’ privacy [35].

In this study, we have used CDR data provided by the Semantics and Knowledge Innovation Lab
(SKIL) of Telecom Italia [44]. The data refers to the area of Milan city and the surroundings and contains
CDR data for a time period of two months, November and December 2013. The data is provided in
the form of text files where each line represent aggregated telecom traffic that occurred between two
square IDs for a given time interval. The Radio Base Stations coverage network is provided in the
raster form, which we vectorized and approximated with adjacent Voronoi polygon network. First
step in our processing pipeline is to import data into Apache Spark and transform it to DataFrame
structure [45]. We decided to use Sparks’ DataFrame structure to be able to exploit powerful SQL
semantics while keeping the performance at high levels. The next step in our processing pipeline is
to perform additional space/time data aggregation to obtain daily based snapshots of connectivity
network across the observed area. Connectivity network is in the form of graph and methods for
statistical filtering could be applied to remove the noise from the data. We used Disparity filter [46] as
a method for extraction of the relevant connections in weighted networks, for distinguishing between
strong and weak links in the graph. We have used Equation (2) which calculates the link significance,
αij, where α denotes the significance threshold, pij is the probability of having a link between nodes i
and j, and n is the number of nodes in the network.

αij = 1− (n− 1)
∫ pij

0
(1− x)n−2dx < α (2)

We note that smaller values of αij denote more significant edges. Therefore, filtering is applied by
keeping all edges where αij ≤ α and thus removing all edges where αij > α. In our experiments, we
applied filtering with probability 95% as it represent the less strict filtering, allowing us to keep more
edges. The α value used is 0.05.

For community detection we applied the LOUVAIN [40] modularity-based algorithm implemented
in the Scala programming language, and run it in the Apache Spark engine. This algorithm is very
efficient for large networks and also it does not require the number of communities as an input.
The number of communities is determined by the algorithm. The LOUVAIN algorithm is applied for
every single day, and the generated communities are used together with graph-based properties and
lang-use profiles for knowledge discovery.

For spatial visualization of inspected communities we used QGIS software. We used the results
of community detection to inspect spatial community properties. Spatial community properties that
we calculated are mean intersection area, standard deviation of intersection area, average coverage
area and diameter. Other properties used to evaluate human dynamics that we have explored in this
study are graph based properties such as: betweenness centrality, weighted degree, PageRank and
core number. Together with telecom data used to evaluate the community structure from connectivity
network we used spatial open data that describe the spatial semantics of locations. One of the open
spatial data sources is Copernicus Land Monitoring Service from which we have used Urban Atlas 2012
data set [47]. Urban Atlas provides detailed land use and land cover data for 800 Functional Urban
Areas across Europe for the year 2012. For the spatial area of Milan city with the surrounding suburbs,
there are 21 different land use classes present in the data, as shown in Figure 3. For each Voronoi
polygon from the coverage area network we have created the profile vector of its land use classes.
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Figure 3. Land use classes over the extended spatial area of Milan.

We further investigated the relationship between land use and graph based and spatial community
properties, which are related to human dynamics. We have used programming language Python and
its rich portfolio of data analytics libraries to compute graph based and spatial community properties,
which we further used to apply machine learning algorithms. The pipeline used is illustrated in
Figure 4.

Figure 4. The pipeline of the proposed methodology.

4.2. Feature and Properties Description

To investigate the dependence between land use data and human dynamics we calculated land
use features and special properties related to human dynamics and run a predictive model over it.
In this study, the spatial units are the Voronoi polygons generated from the RBS coverage network.
For each Voronoi polygon we extracted the land use profile and we calculated local graph and spatial
properties related to community structure.
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4.3. Land Use Profiles

To generate a profile vector with land use types for each Voronoi polygon in the network, we
first performed spatial intersection between RBS coverage area and Urban Atlas 2012 data layer [47].
The high resolution land use/land cover (LULC) Urban Atlas dataset was produced using Earth
Observation data, road network datasets and topographic maps. For each LULC polygon feature
resident population data was derived from various available sources, including GEOSTAT grid 2011,
based on the 2011 census. The minimum mapping unit for all artificial surfaces is 0.25 hectares and
1 hectare for all the remaining LULC classes [48]. We extracted land use classes present in each polygon
and calculated the percentage of area covered by the specific class. We further used those vector profiles
as polygon based land use features. An example of intersection between three neighbouring Voronoi
polygons and land use layers, and extraction of land use profile vectors is illustrated in Figure 5.

Figure 5. Example of three Voronoi polygon intersection with land use layer and Land use
profile extraction.

4.4. Graph-Based Properties and Communities

Along with community detection we have performed a deeper analysis of connectivity graphs
and quantified local graph properties. Local graph properties uncover localized patterns in the graphs,
focusing on adjacent node neighbourhood [1]. We have evaluated different centrality measures, as
described in Section 3, i.e., betweenness centrality, node degree, PageRank and core number.

For weighted networks k-core decomposition should consider both edge weight and node
degree [49]. The core number of the node in our case represents the weighted degree of node of
its maximal core. The average of all values for each node is used as a property. Among other centrality
measures we calculated the PageRank of each node and used it as a property. The degree of a node is
another important property that represents the number of incoming and/or outgoing edges connected
to that node. The weighted degree of a node is calculated considering the edge weights connected to that
node. All calculated properties are used as graph based properties associated to Voronoi polygons in
the RBS coverage network.

For a time period of two months, from November to December 2013, we performed community
detection over daily based connectivity graphs. Community formation is a highly dynamic process
that depends on the connectivity network structure, and their spatial location, center, geographical
spreading fluctuate between days. To quantify the spatial dynamics of community structure we
introduced measures that reflect some aspects of the dynamics. Communities over inspected area
are formed of single, very often neighbouring Voronoi polygons, and they are overlapping between
days to some extent. For each polygon we detected and communities to which that polygon belongs
to, we calculated the geographical intersection between sequential communities. Mean intersection
area is the property that reflects the extent to which sequential communities are spatially overlapping.
Another property related to spatial intersection is standard deviation of intersection area. This property
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is introduced to evaluate the dispersion of the sequential intersection area values. Daily based
communities vary in size and spatial distribution. We have also introduced coverage area as a measure
of overall geographical reach of communities. We calculated the average of all coverage areas, and
used it as a property. For each Voronoi polygon, we have computed the distances between the polygon
center and the center of communities. The center of a community is defined as the geometrical center
of the polygon that is created by joining all Voronoi polygons that are part of the community. The
maximum of all distances, the diameter, is used as a measure of community center displacement from
its starting Voronoi polygon center.

4.5. Regression Models

We evaluated predictive power of land use profiles to produce predictions on graph based
and spatial community properties based on Voronoi polygons with Random Forest [50] and Ridge
regression [51] methods. Random Forest algorithm is an ensemble method based on many decision
trees which predictions are averaged to form final output. From random forest model it is possible to
derive feature importance [52]. Feature importance values sum to 1 and the higher values indicate
higher importance. Alternative approach, Ridge regression was used due to its property that it
overcomes the problem of multicollinearity amongst regression predictor variables.

5. System Architecture

In this section, we provide an overview of the HPC (High-performance computing) system
architecture used to perform analytics.

To infer correlation between human dynamics and land use we used two input data sets. The first
data set is about telecom connectivity that reflects human dynamics related to their activity and
communication. The second data source consists of spatial data that contains land use classification
of inspected area. Telecom connectivity data is provided in form of textual files, where each file
represent daily base telecom traffic data aggregated in time slots of 10 min. The raw textual files
contain many records which affects file size. For aggregation, graph filtering and community detection
we decided to use Apache Spark platform to be able to process large files. We used powerful SQL
semantic supported in Spark to transform the data and Apache Hive database to store the results.
Community detection algorithm implementation is modified to read from Hive database and to
iteratively update the clustering result until local maximum of modularity function is reached. To
visualize the communities in geographical space we extracted the results from Hive database into csv
format and loaded it into QGIS software. Land use data and RBS coverage network based on Voronoi
polygons is provided in spatial vector format, and loaded into QGIS software to perform geographical
intersection between layers. Result of intersection is spatial vector layer that contains land use profile
for each Voronoi polygon. Land use profiles, communities extracted from Hive database and telecom
connectivity graphs are further used for feature extraction in the pipeline part implemented in Python.
We used Python’s rich data analytics libraries to calculate features related to land use, graph and
spatial properties. Human dynamics is reflected in the graph based and spatial properties, while
land use profiles contain fine grained classification of land use types for each Voronoi polygon. A
predictive model based on Random Forest and Ridge regression is used to evaluate the correlation and
predictiveness of graph and spatial properties based on land use. The final result of the processing is
detecting the dependence between land use and human dynamics reflected through graph based and
spatial properties and evaluating the importance of specific land use class in the predictive model. The
system architecture is illustrated in Figure 6.
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Figure 6. System architecture.

6. Results

In this section, we present some representative experimental results of our study.
The Telecommunication Radio Base Station (RBS) network consists of carefully designed and

spatially distributed equipment used to provide the signal and to transfer telecom traffic. Each RBS
is characterized with defined signal coverage, and in urban areas signal coverage is ubiquitous. In
telecommunications, signal coverage is often determined with Voronoi polygons with antenna in the
polygon center. In our connectivity network, telecom traffic is aggregated and distributed from one
RBS to another. The connectivity network is modelled as graph, where base stations represent nodes
and weighted links represent edges in the graph. We further applied graph filtering to keep only
significant edges, and community detection to obtain community structure over inspected area.

For graph filtering, we applied the Disparity filter, which is a method for statistical filtering of
weighted networks [46]. To select the appropriate α value, we compared the results of community
detection for the same graph when different filtering levels are applied. The results are presented in
Table 1. From this table we observe a significant drop in the number of edges when filtering is applied,
which is expected when using the Disparity filter. The number of detected communities remains stable
when filtering with α = 0.05 is applied, while with smaller α values a higher number of communities
is observed. To evaluate how similar are the results when different filtering levels are applied, we
computed the Adjusted Random Index (ARI) which is a common measure for evaluating similarity
between clusters [53]. Higher values of ARI indicate more similar clusters. We considered the results
of community detection performed over the unfiltered graph as the ground truth. The ARI between the
clustering of the ground truth graph and the graph filtered with α = 0.05 is 0.83 which indicates very
high similarity. When filtering is applied with α = 0.01 threshold, ARI drops slightly to 0.81 which also
indicates a high similarity between clustering, while the number of detected communities increases
20% which is significant compared to the increase in communities when filtering with α = 0.05 is
applied. With more strict filtering, when the α threshold is set to 0.001, ARI drops to 0.71 and the
number of detected communities increases for 38% compared to the ground truth. The aim of graph
filtering before running community detection is to eliminate a large number of weak edges, in order to
make the graph structure less dense and therefore to increase performance, while preserving network
properties. Filtering with α = 0.05 threshold showed the best results, eliminating a significant number
of edges, while the high value of ARI and the change in number of detected communities of only 4%
indicate a very high similarity between clustering.
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Table 1. Number of edges, communities and ARI when different filtering level is applied.

α Edges Communities ARI

1 95 860 53 -

0.05 6 322 55 0.83

0.01 3 809 64 0.81

0.001 2 323 73 0.71

We performed community detection over graphs filtered with α = 0.05 using Louvain algorithm
to obtain snapshots of daily based community structure. Louvain algorithm starts with assigning each
node to its own community and proceeds with moving nodes across communities to maximize the
modularity function. Although the initial assignment of nodes might depend on data partitioning and
sorting, Louvain algorithm showed very stable results between different iterations for the same graph.
We run Louvain algorithm for community detection 10 times for each day and calculated ARI between
different iterations. ARI between different iterations for the same input graph is always 1.0 indicating
that the algorithm is very stable. The change in community structure between days is caused by
change in input graph structure which reflect the dynamics of human connectivity. To evaluate the
change in community structure between sequential days we calculated average ARI, which is 0.73.

The path from RBS coverage area network to communities detected based on connectivity network
graphs is presented in Figure 7. On the first map, far left in Figure 7, the network coverage consisting
of Voronoi polygons over the inspected area of Milan city with the surroundings is presented. On the
middle map in Figure 7, the overlaid connectivity graph which is the input for community detection
is presented. On the last map from Figure 7, the result of community detection for the input graph
is presented.

Figure 7. From coverage area to telecom data graphs and communities.

The next step in our processing pipeline is to deeper investigate the time and space evolution
of community structure. First we extracted communities from Hive database layer to common csv
files and we visually examined the spatial distribution of communities using QGIS software. By
visual inspection we noticed that although the form and number of communities differ between days
some patterns are repeating. The granularity, size and spatial distribution of communities formed in
densely populated, built up areas differ much compared to those of communities formed in peripheral
parts of urban zone. High dynamics of community structure formed over urban core of the city can
be explained by high dynamics of connectivity network over same area, reflected in input graph.
The presence of high dynamics in community structure over urban core of the city can be explained
by high dynamics of input graph over same area. In our previous work [1], we observed that core
of the connectivity network, where the strongest links occur, is located over urban core of the city.
Communities formed in the urban core of the city tend to be small in size and dynamically distributed
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in space between days, while communities formed in less urbanized peripheral zones tend to form
large, more stable structures. To quantify the observed phenomena, we introduce spatial community
properties described in Section 4.

In our previous work [1], we detected the social event presence through analysing local and global
graph properties of telecom connectivity networks. Those findings motivated us to compute the graph
properties described in Section 4, to evaluate their correlation with land use and communities. To
calculate community and graph properties, we used Python and its rich portfolio of libraries such as
Pandas, NetworkX, NumPy, SciPy, Matplotlib, GeoPy, GeoPandas, etc. To evaluate the predictiveness
of graph and community properties which contain latent footprint of human dynamics, based on land
use we applied regression. Regression is applied sequentially over graph and community properties.

The results of regression are presented for the graph properties in Table 2 and for spatial
community properties in Table 3. For all properties, Random Forest regression showed better results
than Ridge regression. From Table 2, we observe that the predicted values of the property avgCN,
i.e., average core number show the best correlation with real values, followed by property avgWND,
i.e., average weighted node degree which is expected since both measures are considering weights over
nodes edges which is important structural property of the network. This result is significant since
it emphasize that the variability in core number and weighted node degree can be explained by the
variability in the land use. Another property that shows strong correlation between predicted and
real values considering Spearman coefficient is avgPR, i.e., average PageRank, while the other metrics,
Pearson and R2, indicate a weaker correlation. The property that is the least associated with land
use is avgBC, i.e., average betweenness centrality. From Table 3 we observe that the predicted values of
the spatial community property avgCA, i.e., average coverage area show the best correlation with real
values. Predicted values of spatial community property avgIA, i.e., average intersection area show fair
correlation with real values considering Spearman coefficient, but show less correlation considering
Pearson and R2 metric. Community properties that seem the least associated to land use are st.dev IA,
i.e., standard deviation intersection area and avgDiam, i.e., average diameter. Overall Spearman correlation
test shows the best results for all properties except for avgCN, avgDiam and st.dev IA Ridge regression
where the Pearson correlation was higher. Spearman correlation test is expected to show robust results
in the most of the cases since it does not carry any assumptions about the distribution of the data. All
correlation results are significant at 0.01 (all p-values < 0.006).

Table 2. Prediction results for structural properties.

Metric
avg BC avg WND avg PR avg CN

RF Ridge RF Ridge RF Ridge RF Ridge

R2 0.111 −0.0192 0.422 0.424 0.310 0.321 0.628 0.623

Pearson 0.357 0.163 0.659 0.653 0.581 0.574 0.793 0.790

Spearman 0.269 0.289 0.776 0.707 0.715 0.644 0.778 0.753

Table 3. Prediction results for spatial community properties.

Metric
avg IA st.dev IA avg CA avg Diam

RF Ridge RF Ridge RF Ridge RF Ridge

R2 0.353 0.196 0.236 0.109 0.521 0.410 0.211 0.140

Pearson 0.596 0.485 0.488 0.385 0.722 0.660 0.474 0.403

Spearman 0.630 0.579 0.490 0.382 0.727 0.692 0.414 0.335

To explore how each specific land use class is important for prediction, we calucalated feature
importances. The importance of land use classes for predicting each graph based and community
property is presented in heatmaps in Figures 8 and 9.
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Figure 8. Importance of land use classes for predicting graph based properties.

Figure 9. Importance of land use classes for predicting community properties.

For predicting the graph based properties based on land use, the most important classes are
Other roads and associated land, Continuous urban fabric (S.L.: > 80%), as shown in Figure 8. The highest
predictive power has land use class Other roads and associate land for the property average weighted node
degree (avgWND). For predicting the property average core number (avgCN) the most important land
use classes are Other roads and associated land and Continuous urban fabric (S.L.: > 80%), which also
have the highest impact on predicting the property average PageRank (avgPR). Land use has the least
predictive power for the property average betweenness centrality, which is shown in Table 2 with small
values of correlation metrices. From the heatmap in Figure 8 we can notice that only land use class
Other roads and associated land has impact on predicting the property average betweenness centrality, but
due to small values of correlation metrices we can conclude that impact is not significant.

For predicting the community properties based on land use, the most important classes are Arable
land, Continuous urban fabric (S.L.: > 80%), as shown in Figure 9. Land use class Arable land has the
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most impact on predicting the community property average intersection area (avg IA), which can be
observed from the heatmap in Figure 9. The most predictive community property based on land use is
average coverage area (avg CA), where the most impact have land use classes Continuous urban fabric
(S.L.: > 80%) and Arable land. From the heatmap in Figure 9 we can notice that only land use class
Arable land has the impact on predicting the community properties average diameter (avg Diam) and
standard deviation intersection area (st.dev IA), but from the Table 3 we can observe small values of
correlation metrices which indicate that the impact is not significant.

We investigated deeper the urban profiles to detect polygons from network coverage area where
the classes of high importance for predicting properties are dominant in area.

In Figure 10 is presented network coverage polygon where the dominant land use class is Other
roads and associated land together with its graph and community spatial properties and its geographical
position in the network.

Figure 10. Land use profile of polygon where the dominant class is Other roads and associated land.

In Figure 11 is presented network coverage polygon where the dominant land use class is
Continuous urban fabric (S.L.: > 80%) together with its graph and community spatial properties and its
geographical position in the network.

In Figure 12 is presented network coverage polygon where the dominant land use class is
Arable land together with its graph and community spatial properties and its geographical position in
the network.
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Figure 11. Land use profile of polygon where the dominant class is Continuous urban fabric (S.L.: > 80%).

Figure 12. Land use profile of polygon where the dominant class is Arable land.

By observing those three special cases presented in Figures 10–12 with specific dominant land use
class we can notice some trends related to spatial community and graph properties. Polygon in the



ISPRS Int. J. Geo-Inf. 2020, 9, 140 18 of 23

highly urban area where the dominant class is Continuous urban fabric (S.L.: > 80%) is characterized
with lower mean intersection area than polygons where the most dominant classes are Other roads and
associated land and Arable land. This property indicates that the observed polygon forms highly dynamic
communities, which are distributed in space in diverse manner and therefore the spatial intersection
between communities is small. On contrary, high value of mean intersection area indicates the presence of
more stable community structure that is not prone to dynamical change. The property st.dev. intersection
area shows similar behaviour and indicates the same characteristics. Community properties average
coverage area and diameter indicates the maximal spatial reach of all communities formed including
observed polygon. High value of average coverage area indicates that formed communities are large in
size, covering significant spatial area. This behaviour can occur due to initial size and/or granularity
of Voronoi polygons contained in the communities, where we can have fewer very large polygons in
the community or many smaller ones. Larger average coverage area of the community indicates wider
reach of information spread inside community. High value of diameter indicate larger and wider reach
of the communities, but only as a linear measure and therefore shows not significant correlation with
land use which is area feature.

Graph properties of polygons show diverse behaviour depending on the dominant land use
class. The property average betweenness centrality gains the highest value for polygons with dominant
land use class Arable land. This can be explained with the geographical position of the polygon in
the network and network dynamics. Polygons that are located far from urban core of the city may
act as bridges between distinct parts of the network and therefore gain higher value of betweenness
centrality. Also, if the network around specific polygon is changing fast day by day, it is more likely
that the observed polygon will have less impact to network connectivity between days. The property
average PageRank has the highest value for the polygon where the dominant land use class is Other roads
and associated land. It is interesting to notice how physical transitivity of a node, i.e., polygon in the
network characterized by land use class Other roads and associated land is reflected to its communication
transitivity defined by average PageRank property.

The value of average PageRank decreases for the polygons where transit infrastructure defined with
land use class Other roads and associated land is less present, as shown in Figures 11 and 12. The property
that is the most predictive based on land use is average core number, and it has the highest value for
the polygon where the dominant land use classes are Other roads and associated land and Continuous
urban fabric (S.L. : > 80%), as shown in Figure 10. Polygons located in the urban core of the city where
the dominant land use classes are Continuous urban fabric (S.L. : > 80%) and Other roads and associated
land also show high value for the property average core number. In contrast, polygons where the most
dominant land use class is Arable land and classes Continuous urban fabric (S.L. : > 80%) and Other roads
and associated land are not significantly present show very small values of average core number. We can
conclude that both classes Continuous urban fabric (S.L. : > 80%) and Other roads and associated land have
a significant impact on the value of the property average core number, which is also confirmed by the
algorithm when calculating feature importance, as shown in Figure 8.

The property average weighted degree shows similar trends as average PageRank and average core
number, which is expected since those properties are correlated. Even though those values are highly
correlated, they represent different very important graph properties related to connectivity and
transitivity and we considered them independently in relation to land use profiles. Correlation
between centrality measures is commonly observed in many different networks, but as they represent
different property they might have diverse impact on information flow through the network [54].

Polygons that have the highest value of average weighted degree are the ones where the dominant
land use class is Other roads and associated land. Polygons that have the dominant class Continuous urban
fabric (S.L. : > 80%) also have a high value of average weighted degree but significantly less than the
polygons with dominant class Other roads and associated land, as shown in Figure 11. Polygons with the
dominant class Arable land, Figure 12, have very small average weighted degree. We can conclude that
the land use classes that have the most impact on average weighted degree property are Other roads and
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associated land and Continuous urban fabric (S.L. : > 80%) which is also detected by the algorithm when
calculating feature importance, as shown in Figure 8.

7. Conclusions and Future Research

Human dynamics in geography and computational social sciences is related to human movement
and mobility, but there are other aspects of human dynamics that need to be considered. Virtual activity
reflected through social media, location-based services, telecommunications, internet usage, even some
online games can have severe impact on shaping the patterns of human dynamics. The relationship
between physical and virtual space is indisputable which adds even more complexity to human
dynamics research.

In this study, we have analyzed human dynamics reflected by telecom traffic network through
connectivity links. User generated data is usually very large in size, dynamic and it has complex
structure. To analyze such data we have designed and developed a processing pipeline based on
Apache Spark Big Data platform using programming language Scala. We have introduced graph
filtering as a method for performance enhancement by keeping only statistically significant links in
the graph.

To investigate community structure of the network we applied modularity-based algorithm for
community detection, to investigate the space-time network evolution. We analyzed the community
structure in a daily basis and observed some persistent patterns over time although the number,
structure and spatial distribution of communities differs between days. We also noticed that
communities formed over the urban core of the city are smaller in size but highly dynamic while
communities formed over peripheral parts of the city and in sub-urban zones are larger in size and
more stable. This observation motivated us to deeper investigate the correlation between land use and
community structure. We have created land use profiles for each polygon of the RBS coverage network
and quantified graph based and spatial community properties, which contain latent information about
human dynamics. We further used the properties to learn the predictive model and to evaluate the
correlation and predictiveness of properties based on land use.

Our results have shown strong correlation between land use and the properties average core number,
average coverage area, fair correlation for the properties average weighted degree, average page rank and
average intersection area, weak correlation for properties average diameter, standard deviation of intersection
area and almost no correlation for property average betweenness centrality. To deeper investigate the
impact of specific land use classes on properties predictiveness we have calculated feature importance.

Based on the results, for predicting all properties, the land use classes Other roads and associated
land, Continuous urban fabric (S.L. : > 80%) and Arable land have the highest impact. The land use class
Other roads and associated land has the highest impact on predicting all graph based properties. For
predicting the property average core number, which shows the highest correlation to land use, the land
use classes Other roads and associated land and Continuous urban fabric (S.L.: > 80%) have the highest
impact. This can be explained by considering the concept of importance, both in physical space and in
networks. In physical geographical space, the important urban zone is the one with many amenities,
densely built up zone with developed transit infrastructure and good connections. Such zones would
be characterized with high presence of land use classes Continuous urban fabric (S.L. > 80%) and Other
roads and associated land.

In network science, graph centrality measures are used to quantify the importance of a node.
Therefore a node with high importance would participate in the high degree core, which means its core
number would be high. The results of feature importance calculation indicate that highly important
zones in physical geographical space would also have an important role in the virtual telecom traffic
network. Similar behaviour could refer to the property average weighted degree, its expected that highly
urban zones would reflect to network nodes with high weighted degree. For predicting the property
average page rank the most important land use class is Other roads and associated land. This can be
explained by considering the concept of transitivity. Transitivity of the urban zone is reflected in
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the prevalence of important roads, public transport and other transport infrastructure, while the
transitivity of a node in the network is associated with its page rank property. Our results indicate that
transitivity in physical space is linked with transitivity in the telecom connectivity network. The results
of this study lead us to the conclusion that physical geographical space and virtual communication
space need to be considered together as one entity.

To evaluate space–time dynamics of communities we have introduced spatial community
properties. Spatial community property that shows the highest correlation with land use is average
coverage area. To predicting the property average coverage area the most impact has the land use class
Continuous urban fabric (S.L. : > 80%) and Arable land. Based on the feature importance result both
classes have significant impact, although they predict opposite values. Polygons where dominant land
use class is Arable land tend to have very high coverage area, while those where the dominant land
use class is Continuous urban fabric (S.L. : > 80%) form smaller coverage area. This can be explained by
observing the size and granularity of the neighbouring Voronoi polygons in the highly urban and non
urban area. In highly urban areas, communities are formed by many small polygons, while in non
urban zones communities are formed by few very large polygons, affecting the area of the community.
The property that is the most related to spatial dynamic of community is mean intersection area. If
a polygon is forming a stable community structure that does not differ much between days, its mean
intersection area would be high comparing to polygons which form dynamic community structure with
little or non spatial overlapping between days. The land use class Arable land has the most impact
on predicting mean intersection area, but it is interesting to notice that the land use classes associated
with highly urban zones such as Continuous urban fabric (S.L. : > 80%) and Other roads and associated
land do not show significant predictive power. Based on the results, the land use class Arable land is
very predictive for the property mean intersection area and it indicates high values of the property, but
the opposite pattern is not observed. Land use classes that are associated with highly urban zones,
Continuous urban fabric (S.L. : > 80%) and Other roads and associated land do not seem to have any
significant impact on predicting the value of the property mean intersection area, neither high or low.
This imply that even in the highly urban zones it is possible to form stable community structure that
would persist in size and spatial distribution over time.

Future work. In this study, we evaluated the correlation and predictive power of land use features for
predicting graph based and spatial properties of communities, derived from the telecom connectivity
network. Graph-based and spatial properties reflect human dynamics related to their communication
patterns. There are several interesting directions for future work, such as: (i) adding day type
dimension to the analytics by distinguishing between working days, weekends and holidays,
(ii) a deeper investigation of communication patterns associated with specific land use classes, and
(iii) developing all the steps of analytical pipeline inside Apache Spark to have unified HPC framework,
without the need to of additional processing tools such as Python.

The results of this study could be beneficial for urban planning and city policy making since
it emphasize the correlation between land use and human dynamics reflected through properties
evaluated from telecom connectivity network. Although human dynamics is often considered through
the lenses of movement and mobility patterns, communication as one of the main aspects of human
activity shouldn’t be neglected when analysing human behaviour patterns. Telco providers are facing
many challenges related to network infrastructure management, demands of new services which needs
to be supported by the infrastructure, etc. With knowing the importance of the place, its transitivity
and dynamics telco providers could enhance and optimize the network infrastructure and services
they are providing.

The topic of human dynamics has been studied by many researchers from diverse disciplines
over years. In the era where technology is present in our every day life more then ever, when data
records are generated by almost every action we take, it is a huge challenge for the research community
to design and develop methods to explore human dynamics which will help us answer essential
questions about urban development and society in general.
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19. Brdar, S.; Gavrić, K.; Ćulibrk, D.; Crnojević, V. Unveiling spatial epidemiology of HIV with mobile phone
data. Sci. Rep. 2016, 6, doi:10.1038/srep19342. [CrossRef]

20. Lima, A.; De Domenico, M.; Pejovic, V.; Musolesi, M. Disease containment strategies based on mobility and
information dissemination. Sci. Rep. 2015, 5, doi:10.1038/srep10650. [CrossRef]

21. Wesolowski, A.; Qureshi, T.; Boni, M.F.; Sundsøy, P.R.; Johansson, M.A.; Rasheed, S.B.; Engø-Monsen, K.;
Buckee, C.O. Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc. Natl. Acad.
Sci. USA 2015, 112, 11887–11892, doi:10.1073/pnas.1504964112. [CrossRef]

22. Pappalardo, L.; Pedreschi, D.; Smoreda, Z.; Giannotti, F. Using big data to study the link between
human mobility and socio-economic development. In Proceedings of the 2015 IEEE International
Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November 2015; pp. 871–878.
doi:10.1109/BigData.2015.7363835. [CrossRef]

23. Steele, J.E.; Sundsøy, P.R.; Pezzulo, C.; Alegana, V.A.; Bird, T.J.; Blumenstock, J.; Bjelland, J.; Engø-Monsen, K.;
de Montjoye, Y.A.; Iqbal, A.M.; et al. Mapping poverty using mobile phone and satellite data. J. R.
Soc Interface 2017, 14, doi:10.1098/rsif.2016.0690. [CrossRef]

24. Ratti, C.; Frenchman, D.; Pulselli, R.M.; Williams, S. Mobile landscapes: Using location data from cell phones
for urban analysis. Environ. Plan. B Plan. Des. 2006, 33, 727–748. [CrossRef]

25. Soto, V.; Frias-Martinez, E. Robust land use characterization of urban landscapes using cell phone data.
In Proceedings of the 1st Workshop on Pervasive Urban Applications, in Conjunction with 9th International
Conference on Pervasive Computing, San Francisco, CA, USA, 12–15 June 2011; Volume 9.

26. Grauwin, S.; Sobolevsky, S.; Moritz, S.; Gódor, I.; Ratti, C. Towards a comparative science of cities: Using
mobile traffic records in New York, London, and Hong Kong. In Computational Approaches for Urban
Environments; Springer: Berlin/Heidelberg, Germany, 2015; pp. 363–387.

27. Furno, A.; Fiore, M.; Stanica, R.; Ziemlicki, C.; Smoreda, Z. A tale of ten cities: Characterizing signatures of
mobile traffic in urban areas. IEEE Trans. Mob. Comput. 2016, 16, 2682–2696. [CrossRef]

28. Ríos, S.A.; Muñoz, R. Land Use detection with cell phone data using topic models: Case Santiago, Chile.
Comput. Environ. Urban Syst. 2017, 61, 39–48. [CrossRef]

29. Furno, A.; El Faouzi, N.E.; Fiore, M.; Stanica, R. Fusing GPS probe and mobile phone data for enhanced
land-use detection. In Proceedings of the 2017 5th IEEE International Conference on Models and Technologies
for Intelligent Transportation Systems (MT-ITS), Naples, Italy, 26–28 June 2017; pp. 693–698.

30. Aung, T.; Lwin, K.K.; Sekimoto, Y. Identification and Classification of Land Use Types in Yangon City by
Using Mobile Call Detail Records (CDRs) Data. J. East. Asia Soc. Transp. Stud. 2019, 13, 1114–1133.

31. Bernini, A.; Toure, A.L.; Casagrandi, R. The time varying network of urban space uses in Milan.
Appl. Netw. Sci. 2019, 4, 1–16. [CrossRef]

32. Liu, Y.; Fang, F.; Jing, Y. How urban land use influences commuting flows in Wuhan, Central China: A mobile
phone signaling data perspective. Sustain. Cities Soc. 2020, 53, 101914. [CrossRef]

33. Noyman, A.; Doorley, R.; Xiong, Z.; Alonso, L.; Grignard, A.; Larson, K. Reversed urbanism: Inferring urban
performance through behavioral patterns in temporal telecom data. Environ. Plan. B Urban Anal. City Sci.
2019, 46, 1480–1498. [CrossRef]

34. Cottineau, C.; Vanhoof, M. Mobile phone indicators and their relation to the socioeconomic organisation of
cities. ISPRS Int. J. Geo-Inf. 2019, 8, 19. [CrossRef]
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