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Abstract: In recent years, with increasing international communication and cooperation, the consensus
of toponymic information among different countries has become increasingly important. A large
number of English geographical names are in urgent need of translation into Chinese, but there are
few studies on machine translation of geographical names at present. Therefore, this paper proposes
a method of automatically translating English geographical names into Chinese. First, the lexical
structure of the geographic names is analyzed to divide the whole name into two parts, the special
name and the general name, in an approach based on the statistical template model that implements
pointwise mutual information and a directed acyclic graph data structure on the extracted names
from different categories of a geographical name corpus. Second, the two parts of the geographic
names are translated. The general name can be directly translated via methods of free translation.
For the transliteration of the special name, the phonetic symbols are generated based on the cyclic
neural network, and then, the syllables are divided based on the minimum entropy and converted
into Chinese characters. Finally, the two parts of Chinese characters are combined, and criteria are
prepared to evaluate the translation reliability according to the translation process to realize automatic
quality inspection and screening of geographical names. As the experimental results show, the
method is effective in the translation process of English geographic names into Chinese. This method
can be easily extended to other languages such as Arabic.

Keywords: machine translation; phonetic symbols generation; syllable division; cyclic neural network;
minimum entropy; lexical structure analysis; automatic evaluation

1. Introduction

The geographical name [1] is a special name given to a geographical entity [2] in a specific spatial
location and is also an essential geographic information element in the spatial database. The global
strategic deployment of “the Belt and Toad” urgently requires support from the geographical name.
However, most of the overseas geographical names do not have a Chinese expression. Geographical
name databases contain only a few small-scale data [3], which cannot meet the increasing demands of
the construction of global geographic name information resources. At present, geographical names are
mainly translated manually, with some shortcomings such as low efficiency, high cost and difficulty in
verifying errors in the context of large-scale operations. As English is the most widely used language
in the world, determining how to achieve efficient and accurate translation of English geographical
names is particularly important for enriching global geographic information resources.
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At the same time, we have known that it is possible to translate English geographical names
efficiently because of the development of machine translation [4]. However, geographical names are
composed of a group of phrases without clear grammatical constraints, so the lexical structures at
different scales are complex and diverse. Second, the translation of geographical names needs to follow
relevant standards [5]. For example, a geographical name is composed of 2 components: the special
name and the general name [6]. The general name is a word or phrase that describes the category of a
geographical entity, while the special name is a special word used to distinguish different individuals
in a certain kind of geographical object. For example, in a simple English geographical name, such as
“Glenore Railway Station”, usually “Glenore” is recognized as a special name and “Railway Station” is
the general name. According to national English–Chinese translation guidelines, transliteration of
the special name and free translation of the general name should be guaranteed, which ensures the
accuracy and applicability of geographical names over a wide range. Correspondingly, establishing
how to correctly distinguish between the special name and the general name of a geographical name
is very crucial [7]. Therefore, general translation models such as Google translation [8,9], which
particularly emphasize free translation, are not applicable to the translation of geographical names.
At present, there are few studies worldwide that address automatic translation of geographical names
from English to Chinese [10,11]. Most of them focus on transliteration [12], which is based on simple
table matching or manual input to obtain phonetic symbols, and the syllable segmentation approach
has defects of intersection ambiguity and low accuracy. The related research does not consider the
category attribute of the geographic entity and does not solve the key problem of the reasonable
distinction between the special name and the general name of the geographical name. In addition, the
final step in the production of geographical names requires the quality inspection of the translation
results. At present, the quality inspection is purely manual, which is time consuming and laborious.

To solve the above problems, this paper establishes an English–Chinese machine translation and
evaluation model for geographical names based on the word-formation characteristics and attribute
information of English geographical names, the theoretical knowledge related to machine learning [13]
and the geographical name translation standards of China [14]. The basic thinking is as follows: first, all
toponymic data are divided into groups according to the category attributes; then, based on pointwise
mutual information [15], common phrases of different categories of the corpus are calculated and
explored [16], and the data structure of a directed acyclic map [17] is used to extract the geographical
name template. In the process of translation, the same category of the template is used to nest matching
geographical names and split their structures completely to generate a lexical structure tree [18,19].
This tree contains two parts: the special name and the general name. Machine learning is used to
transliterate special names, while general names are translated freely according to corresponding
templates. Each part of the tree is converted into Chinese by a cyclic recursive method, and finally
combined to complete the translation of the geographical name. Finally, the evaluation index [20,21]
is set, and the expression is constructed to simulate the intermediate process of geographical name
translation. The reliability of geographical name translation is measured [22] according to the index
value, and the automatic quality inspection of geographical name translation is realized.

2. Method

2.1. Construction of the Geographical Name Template based on Pointwise Mutual Information and Directed
Acyclic Graph

2.1.1. Pointwise Mutual Information

Mutual information (MI), also known as trans-information, is a measurement that describes
interdependence among variables in information theory [23]. Generally, the mutual information of
two discrete random variables X and Y can be defined as:
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MI(X; Y) =
∑
x∈X

∑
y∈Y

p(x, y)log2
p(x, y)

p(x)p(y)
(1)

where p(x, y) represents the joint probability distribution function for X and Y, and p(x) and p(y) are
marginal probability distributions for X and Y, respectively. Intuitively, pointwise mutual information
is used to measure the shared information of X and Y, or given one of two variables, reduce the degree
of uncertainty of the other.

Pointwise mutual information (PMI) [24,25] refers to a method to measure the probability of the
simultaneous occurrence of two random events in a given joint distribution and edge distribution
under the assumption of independence, and mainly focuses on a single probability event compared
with mutual information. Its expression is defined as:

PMI(x, y) = log2
p(x, y)

p(x)p(y)
(2)

In view of the expression, mutual information is the expectation of pointwise mutual information.
In computer linguistics, pointwise mutual information is applied to search collocations and connections
between words. The occurrence probabilities of the two words are taken as approximations of
the edge distributions [26] p(x), p(y), and their co-occurrence probabilities are approximated by
the joint distribution p(x, y). In the translation of the geographical name, the general name of a
geographical name has the characteristics of defining the type of surface features, and the special name
of a geographical name has the characteristics of distinguishing the same kind of surface features.
Therefore, the general name often shows a fixed word/phrase collocation with a high PMI, while there
is no significant correlation among special names. Based on this, a template extraction method of the
geographical name based on point mutual information is constructed.

2.1.2. Template Expression of Geographical Name

According to the analysis of the composition of geographical names, the free combination of a
special name and common words/phrase is expressed as a structural form of a geographical name.
The mapping relationship f is as follows:

x(S, W)→ y (3)

In the mapping relationship, S is the special name of a geographical name, and W includes the
general name of a geographical name, prepositions, conjunctions, adjectives and quantifiers.

In addition, the string of geographical names cannot fully express the geo-spatial object; however,
geographical entities also have various attribute information with category attributes that can be used
as an important reference in geographical name translation. Moreover, a complete single geographical
name must belong to a certain category.

∀x(y(x))→ Type(x) (4)

In the logical expression, y(x) represents the string x expressed as a geographical name; Type(x)
indicates that the string x has a category attribute. GeoNames [27] classified the categories of
geographical name data as shown in Table 1.

The geographical name template [28] is an abstract expression form of the geographical name
structure [29]. The custom placeholder ([X], [Y], [Z], [M], and [N]) is used to replace the special name S
and combine it with common words/phrases W. An example of a single geographical name template is
shown below:

[X] Railway Station→ ([X]火车站, 243, S)
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In the expression, the placeholder [X] is the special name or other nest template, the number 243
is the statistical frequency of this template in the entire geographical name corpus, and S is its category.

Table 1. Categories and descriptions of the geographical name.

Categories Description Detailed Coding (Part)

A Characteristic of administrative division (nation, state, etc.) A.ADM1,A.ADM2
H Hydrological characteristic (stream, lake, etc.) H.BAY,H.LK
L Specific functional areas (oilfield, farm, etc.) L.PRT,L.PRK
P Population aggregation characteristic (city, village, etc.) P.PPL,P.PPLQ
R Traffic characteristic (highways, railways, etc.) R.RD,R.TNL
S Building facilities point (hospital, railway station, etc.) S.HSP,S.CH
T Geological features (mountains, islands, etc.) T.MT,T.ISL
V Vegetation characteristic (forest, wasteland, etc.) V.GRSLD,V.SCRB
U Seabed characteristic (shoal, trench, etc.) U.SHLU,U.RFU

2.1.3. Template Extraction Algorithm

First, all geographical name corpora are classified into nine categories, and then data are trained
successively. The specific process entails traversing a certain category of the geographical name corpus
to count the word pairs (Countab) and the number of single words (Counta) in each geographical name
and separately calculate their probabilities. There is a high probability of multiple occurrences of a
single word or word pairs, according to the pointwise mutual information formula,

PMIab =
Pab

PaPb
(5)

Through the calculation of the value of each word pair, the threshold e1 is set, and the word pairs
in PMIab > e1 are stored in set H. Then, each geographical name is traversed again, and a directed
acyclic graph is established one by one. The words in the sentence act as points on the graph: in the
sentence, given the ordered word pairs (a, b), if (a, b) ∈ H, then a directed edge “a→ b” is added to the
graph; otherwise, it will not be processed. After the traversal, all edges of the digraph are determined.
For each path, the corresponding words of the node are accessed in turn (if the adjacent nodes are
crossed, then a placeholder is inserted, such as [X], [Y]). A geographical name template is recorded
and added to the current category template base. Finally, the occurrence frequency of all templates is
counted and arranged in an orderly manner according to the size, and the threshold is set, which is
selected and determined according to the total number of template bases of different categories.

Figure 1 shows the template extraction of a single geographical name "East Ayrshire Community
Hospital", and the following template results are obtained:

(1) East [X]→东[X]
(2) [X] Community Hospital→[X]社区医院
(3) [X] Hospital→[X]医院
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Different categories of templates to match the corresponding geographical names will ensure the
correctness of lexical structure analysis. The creation process of template libraries is shown in Figure 2.
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2.2. Analysis of Geographical Name Lexical Structure based on the Statistical Template Model

In natural language processing, syntactic structure analysis [30] refers to processing the input
word sequence according to the given grammatical rules to obtain a regular syntactic structure. In the
machine translation of geographical names, this paper proposes the following hypothesis based on the
“projective hypothesis” of syntactic analysis:

(1) The geographical name is composed of several templates, which do not intersect each other.
(2) Each individual word can be regarded as the simplest geographical name template.
(3) Placeholders of geographical name templates can replace other geographical name templates.
Based on the above assumptions, this paper proposes a decomposition algorithm of the

geographical name hierarchical structure [31] as follows: find a series of geographical name templates
to cover each word in the geographical name without repetition, omission, or intersections, to maximize
the sum of the logarithmic frequencies of these geographical name templates. The flow chart of the
algorithm is as follows:

(1) Determine the template base according to the category of the geographical name to be translated.
(2) Scan and determine the nested template combination that complies with the above assumptions

to completely split the geographical name and establish the lexical structure tree. The algorithm
mainly builds a circular matching function GHSS (G, P), where G is a word storage list of geographical
names, and P represents a dictionary of related templates stored in a trie data structure. The scanning
algorithm implemented in the Python language environment is shown in Algorithm 1.

Algorithm 1: Lexical structure analysis algorithm for geographical names

Input: The geographical name G to be scanned and template set P of the same category
Output: All appropriate decomposition schemes S for the lexical structure of the geographical name
Function GHSS(G as list<str>, P as trie-dict<str, dict>):
for word in G:
if word is in P.keys():

GHSS(G[1:], P[word])
record structure

if word is regarded as a placeholder
GHSS(G[1:], P[placeholder])
record structure

return structure

(3) The logarithmic frequency of nested templates is obtained by summing the logarithmic
frequency of each template. The logarithmic frequency of a single template is calculated by the
proportion of its occurrence frequency to the total number of occurrences of all templates.
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(4) Select the scheme with the maximum probability value and realize translation accordingly.
Given the example of the geographical name “Isle of West Burrafirth”, Figure 3 shows the three

nested template combination schemes obtained after hierarchical structure analysis (it can be visualized
as A, B and C from left to right).
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All three schemes satisfy established assumptions.

Table 2 shows some templates involved in A, B and C and logarithmic frequencies in the template
library of category T. For example, the frequency of template “[X] of [Y]” is 148. The total number of
occurrences of all templates is 30,221.

Table 2. Templates and logarithmic frequency (partial).

Template Logarithmic Frequency

Isle of [X] −7.37185
West [X] −5.05360
[X] of [Y] −5.31908

[X] west [Y] −6.36505

Observation of scheme A shows that it consists of two templates, (Isle of [X] and West [X]), and a
single word (Burrafirth), and the logarithmic frequencies of the two templates are recorded as P1 and
P2. The individual word uses the a priori value Pword, which is defined as −11.00944 (the logarithmic
frequency is calculated by assuming the number of individual word frequencies is 1/2). Then, the
logarithmic frequency sum P in the scheme can be expressed as:

P = P1 + P2 + Pword

Finally, after calculation, scheme A is −23.43489, B is −32.39156 and C is −38.08192. Therefore,
scheme A is determined as the final structure tree of the geographical name. The translation process
according to the nested templates is as follows:

(1) Isle of [west burrafirth]→ [west burrafirth]岛
(2) [west[burrafirth]]岛→ [西[burrafirth]]岛
(2) [西[burrafirth]]岛→ [西[巴勒弗斯]]岛
(4) [西[巴勒弗斯]]岛→西巴勒弗斯岛

2.3. Transliteration of Special Names based on Machine Learning

The transliteration of special names of the geographical name is actually the problem of solving
the mapping between words to phonetic symbols and phonetic symbols to Chinese characters.
The transliteration process of the geographical name is shown in Figure 4. From left to right, it can
be divided into five steps: geographical name input, phonetic symbols generation, syllable division,
syllable conversion to Chinese characters and result output.
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2.3.1. Phonetic Symbol Generation Method based on the Cyclic Neural Network

Considering the similarity between the process of generating words to phonetic symbols and
the process of generating another language from one language by machine translation, accepting one
random sequence and outputting another random sequence is shown by model calculation. Based on
the idea of the decoder and encoder [32] in end-to-end neural machine translation [33], this method
proposes a phonetic symbol generation model based on the encoder–decoder structure for processing
the phonetic symbol generation of words.

The basic network construction of this method is shown in Figure 5. The input character set E is
26 English letters with start and stop symbols <s>, </s>, and the output character set F is 55 phonetic
letters with start and stop symbols. Each character is mapped to d-dimensional space and initialized as
a real vector v ∈ Rd. This step is to construct embedded characters. Each embedded character is stored
in the matrix ME ∈ R|E|∗d or MF ∈ R|F|∗d by type and can be searched by id. A concrete example is shown
in Figure 4. First, the word “york” is split into individual letters: y, o, r, and k. The letters are then
converted into 4 real value vectors by embedding the matrix ME and are progressively entered into the
encoder. The encoder’s coding unit, when accepting a letter input, combines the dense vector of the
previous state code, encodes it into a new dense vector and passes it to the next state. After confirming
that these words have been entered, the dense vector decoding of the words begins, which is the
phonetic symbol output. First, the start symbol “<s>” is input and converted into a real value vector
by MF and combined with the decoding unit of the decoder, and then the decoded vector is calculated
together with the dense vector encoded by the encoder. Consequently, the phonetic symbol with the
highest probability of occurrence is calculated by the softmax function, thus obtaining the first phonetic
symbol ”j”. This phonetic symbol is then used as the decoder phonetic symbol for the next moment.
This process is repeated until all the phonetic symbols have been generated after the end symbol “</s>”
is output.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 7 of 18 

 

 
Figure 4. Automatic transliteration technology framework for geographical names. 

2.3.1. Phonetic Symbol Generation Method based on the Cyclic Neural Network 

Considering the similarity between the process of generating words to phonetic symbols and 
the process of generating another language from one language by machine translation, accepting one 
random sequence and outputting another random sequence is shown by model calculation. Based on 
the idea of the decoder and encoder [32] in end-to-end neural machine translation [33], this method 
proposes a phonetic symbol generation model based on the encoder–decoder structure for processing 
the phonetic symbol generation of words. 

The basic network construction of this method is shown in Figure 5. The input character set E is 
26 English letters with start and stop symbols <s>, </s>, and the output character set F is 55 phonetic 
letters with start and stop symbols. Each character is mapped to d-dimensional space and initialized 
as a real vector 𝑣 ∈ 𝑅 . This step is to construct embedded characters. Each embedded character is 
stored in the matrix 𝑀 ∈ 𝑅| |∗  or 𝑀 ∈ 𝑅| |∗  by type and can be searched by id. A concrete 
example is shown in Figure 4. First, the word “york” is split into individual letters: y, o, r, and k. The 
letters are then converted into 4 real value vectors by embedding the matrix 𝑀  and are 
progressively entered into the encoder. The encoder's coding unit, when accepting a letter input, 
combines the dense vector of the previous state code, encodes it into a new dense vector and passes 
it to the next state. After confirming that these words have been entered, the dense vector decoding 
of the words begins, which is the phonetic symbol output. First, the start symbol “<s>” is input and 
converted into a real value vector by 𝑀  and combined with the decoding unit of the decoder, and 
then the decoded vector is calculated together with the dense vector encoded by the encoder. 
Consequently, the phonetic symbol with the highest probability of occurrence is calculated by the 
softmax function, thus obtaining the first phonetic symbol ”j”. This phonetic symbol is then used as 
the decoder phonetic symbol for the next moment. This process is repeated until all the phonetic 
symbols have been generated after the end symbol “</s>” is output. 

 

Figure 5. Framework map of the network model for phonetic symbol generation. 
Figure 5. Framework map of the network model for phonetic symbol generation.



ISPRS Int. J. Geo-Inf. 2020, 9, 139 8 of 18

In this paper, the decoding unit of the encoder and decoder selects the normalized long short-term
memory (LSTM) unit, which has better experimental performance than other cyclic neural networks [34].

Furthermore, the length of the word embedding vector in the actual construction of the network
should be equal to the cyclic neural network unit in the hidden layer, which is called the number of
hidden layer units.

2.3.2. Syllable Division Method based on Minimum Entropy

The method performs unsupervised learning on the phonetic corpus based on minimum entropy
and obtains the syllable probability distribution from the original corpus. According to the distribution,
the entropy value of different syllable division modes in the phonetic symbol string is calculated, and
the minimum entropy value is selected to uniquely determine the syllable segmentation result.

Entropy is a measure of the amount of information contained in a variable. For a random variable
x, its probability density function is P, and its entropy is expressed as E = −

∫
P(x)logP(x). In discrete

cases, it can also be expressed as E = −
∑

P(x)logP(x). The principle of minimum entropy is to
minimize the entropy E by modifying the probability density function and to achieve the minimum
redundant information contained in the variable [35].

This method defines the average entropy of the phonetic symbols E = −
∑

x∈Γ
P(x)logP(x), where

P(x) represents the frequency at which the syllable x appears in the corpus, and Γ represents the set of
syllables. Then, when some phonetic symbols are combined into a syllable, the average entropy of the
phonetic symbols can be expressed as:

E = −

∑
x∈Θ P(x)logP(x)∑

x∈Θ P(x) ∗ lx
(6)

In the expression, P(x) represents the frequency of syllable x in the corpus, lx represents the
length of the syllable (determined by the number of phonetic symbols), and Θ represents the set of
syllables. The purpose of this method is to find a syllable segmentation set that minimizes E. Intuitively,
finding the right syllable set directly is difficult. However, using the GIS (Generalized iterative scaling)
algorithm can obtain an approximate solution of the target set [36]. By combining two randomly
selected elements a and b in set Θ, a new syllable set Θ′ = Θ∪{ab} can be obtained. Because the set
Θ′ is different from Θ, the probability distribution P will also change. Assuming that the probability
distribution of the syllable set Θ′ is P̂, then there is

P̂(ab) =
Nab

N −Nab
=

P(ab)
1− P(ab)

(7)

P̂(i) =
Ni

N −Nab
=

P(i)
1− P(ab)

, i , a, b (8)

P̂(i) =
Ni −Nab
N −Nab

=
P(i)

1− P(ab)
, i = a, b (9)

According to the new probability distribution P̂, the entropy Eab after merging a and b can be
calculated by Formula (12).

By subtracting E from Eab, the change value of entropy E∆ after merging a and b is obtained.

E∆ = Eab − E (10)

The expression of E∆ after calculation is:

E∆ = −
∆∑

x P(x)lx
(11)
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where ∆ can be expressed as:

∆ = P(ab)log
P(ab)

P(a)P(b)
− P(ab))log(1− P(ab))∗

∑
i=a,b

(P(i) − P(ab))log
(
1−

P(ab)
P(i)

)
(12)

Using the idea of a greedy algorithm, the last syllable set and the probability distribution can be
determined by the two elements that make the entropy decrease the most with each merge. It is also
noted that in the case of a fixed corpus C, a syllable set Θ, and its probability distribution P, ∀a, b∈Θ,
the denominator of Formula (11) is always constant. A set of a, b is identified to maximize the value of
the molecule of Formula (11). Thus, the specific algorithm flow is shown in Algorithm 2:

Algorithm 2: Average minimum entropy for phonetic symbols

Input: Phonetic symbols set Γ, Corpus C
Output: Syllable set Θ, Average minimum entropy for phonetic symbols E, Probability distribution P
function AME(Γ, C)

Θ← Γ
while TRUE do

a, b← argmax∆(a, b), a, b∈Θ
if δ(a, b) < 0 then

return Θ, E, P
end if
E← E(a, b)
Θ← Θ∪{ab}

end while
end function

For example, the combination of the phonetic symbols dz and u in syllable set Θ maximizes the
molecular value of Formula (11), thereby updating the set Θ (Θ ∪ {dzu}) and the average entropy E of
the current phonetic symbols and the syllable distribution probability P. The updating will stop until
the syllable set Θ cannot find a set of phonetic symbols to make the molecular value of Formula (11)
greater than zero.

In this paper, we use the shortest path algorithm and word segmentation method to obtain several
candidate segmentation schemes Ψ, and then select the lowest entropy of several syllable sets as the
final segmentation result ψ = argminψ∈Ψ −

∑
x∈ψ

logP(x). For example, for the string “sniveil” of phonetic

symbols, the candidate segmentation schemes are “s\ni\vei\l” and “sn\i\vei\l”, which are recorded as
ψ1 and ψ2, respectively. The frequency of the syllables is s: 0.015, ni: 0.02, sn: 0.003, i: 0.01, vei: 0.03,
l: 0.02. The entropy of ψ1 and ψ2 is 6.74 bits and 7.74 bits, respectively. Therefore, “s\ni\vei\l” is
chosen as the final segmentation result. These syllables can be mapped into Chinese characters by
the English–Chinese translation table: “s–森”, “ni–尼”, “vei–韦”, and “l–耳”. Finally, these Chinese
characters are combined in sequence as the result of transliteration of special names.

2.4. Automatic Evaluation of Geographical Name Translation Results

To ensure the translation quality, it requires manually reviewing the translation results after
completing the translation of geographical names. In the context of a large-scale operation, manual
machine calibration has defects such as low accuracy and high time consumption. This paper takes
the process of machine translation of English geographical names as a reference and evaluates the
availability of translation results by setting evaluation indexes, which are positively correlated with
the reliability of translation.

The translation process of geographical names is composed of transliteration and free translation.
The reliability of transliteration and templates determines the accuracy of translation results. Therefore,
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this paper first calculated the estimated value of the two factors separately, and then calculated the
final evaluation index based on the weight of the number of words of the two factors. The formulas
are as follows:

Acc =
acctemplate ∗ (Sentlen − wordnum) + acctranslit ∗wordnum

Sentlen
(13)

In Equation (13), acctranslit is the transliteration reliability, acctemplate is the template reliability,
Sentlen is the total number of geographical names, and wordnum is the number of special names
for transliteration.

The evaluation index calculation complies with the following cognitive thought:
(1) In the process of lexical structure analysis, if the geographical names do not match any template,

the default is that all the words are proper names. The index value depends entirely on the reliability
of transliteration. In contrast, the influence of template reliability is enhanced. This paper presents a
dynamic weighting evaluation method.

(2) The determined special name nouns may contain the customary words already existing in
the geographical name database of China. The more these words are used directly in translation,
the higher the reliability of transliteration.

(3) The deeper the toponymic lexical structure tree is, the more matched templates there are,
the more unstable the lexical structure tree is, and the lower the reliability of the template.

(4) The higher the sum of nested template frequencies, the more reasonable the structural fractal
formula, and the higher the reliability of the template.

acctranslit = BaseAcc + (1− BaseAcc) ∗
instannum

wordnum
(14)

acctemplate = penaltytemplate ∗ RawAcctemplate (15)

penaltytemplate =

 exp
{
1− templatenum

Paranum

}
, templatenum > Paranum

1, templatenum ≤ Paranum
(16)

instannum is the number of special names in the existing database of geographical names. The higher
its proportion in all special names, the higher the value of acctranslit. The rest of the special names
are transliterated by the transliteration model of this article. Considering its accuracy, the reference
accuracy parameter BaseAcc is set as 0.9; penaltytemplate is a penalty item; templatenum is the total number
of matched templates; RawAcctemplate is the criterion accuracy of the template; and the above parameters
are obtained in the process of index calculation. T number of templates matched to all the toponymic
experimental data are recorded, and the threshold parameter Paranum is set as 3 by calculating its
average and variance. RawAcctemplate is realized by constructing quasi-convex functions. This paper
proposes two design ideas: Sigmod function implementations and square function implementations.
The calculation formulas are as follows.

Sigmod function implementations:

RawAcctemplate = sigmod
(
exp

(
SentTreeScore
templatenum

−maxlogp
)
∗ 1000− parasigmod

)
(17)

Square function implementations:

RawAcctemplate = exp
(

SentTreeScore
templatenum

−maxlogp
) 1

parasqr
(18)

In the expressions, SentTreeScore is the sum of the template frequencies during the decomposition
of geographical name structures, maxlogp is the maximum template frequency value in all geographical
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name analyses, while parasigmod and parasqr are hyperparameters. To meet the value range required by
the function, a is used as the adjustment parameter and is manually set to 5.

After determining the hyperparameters, the evaluation indexes of all geographical names are
calculated, the thresholds are confirmed according to the distribution of the evaluation indexes, and
the translation results with high or low reliability are screened.

3. Experiments

3.1. Experimental Data

This paper selects the data of British geographical names downloaded from GeoNames as
experimental data, with a total of 62,878 items. The complete attribute information of a single
geographical name entry is shown in Table 3.

Table 3. Main fields and descriptions of experimental data.

Field Description

GeoNames ID ID in GeoNames database
Name Geographical names after Romanization

Latitude Location latitude
Longitude Location longitude

Feature code Category coding of location features
Country code Country code of location
Adamin code Administrative division-level coding of location

Time zone Location time zone
Modification data Current information of last revision time

The distribution of experimental data of geographical names of different categories is shown in
Figure 6.
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3.2. Experimental Process

The machine translation of English geographical names mainly includes the following steps:
geographical names input, template extraction by category, lexical structure analysis, transliteration of
special names and automatic evaluation. The whole technical process is shown in Figure 7.
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3.3. Experimental Results and Analysis

3.3.1. Machine Translation

In the experiment of place name translation, 29,686 words were counted, and their occurrence
frequency was 13,102 times. In addition, 72,565 pairs of words were counted, and their occurrence
frequency was 116,217 times. The probability distribution of words, word pairs and point mutual
information is calculated, as shown in Figure 8.
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Figure 8. Accumulated distribution map of word frequency, word pair frequency and point mutual
information probability.

In the figure, the word frequency (red) and word pair frequency (green) correspond to the lower
coordinate axis, with a value range of approximately (8.6*10−6, 0.025), and the point mutual information
(blue) corresponds to the upper coordinate axis, with a value range of approximately (−4, 12).

Figure 9 is the corresponding scatterplot of word-pair frequency and pointwise mutual information.
The bottom parallel line represents the lower frequency distribution of word pairs. The right small
plot shows the word pair with a higher pointwise mutual information value. From top to bottom, from
left to right, the order is railway (railway, station), (the, hotel), (holiday, inn), (best, western), (western,
hotel), (underground, station) and (guest, house).
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The thresholds of the joint distribution (word-pair frequency) and point mutual information are
reasonably set according to Figures 8 and 9. Because the word pairs with a lower value of the joint
distribution may also obtain a higher point mutual information value, the word pairs with a frequency
of 1, 2, 3, and 4 are discarded in order to achieve a high-quality template, and the threshold of the joint
distribution is set to 5*10−5. The point mutual information threshold is set to 3.1, and the first 80% of
the word pairs are selected. Similarly, according to the probability accumulation map, the extraction
threshold of the template is set to 3, and a total of 876 geographical name templates are obtained,
of which 279 belong to the commonly used building facilities (S), which has the highest proportion.
Partial templates are shown in Table 4.

Table 4. Results of template extraction of geographical name (partial).

Template of Geographical Names Frequency

[X] railway station 2059
[X] castle 988
[X] bay 717

[X] and [Y] 510
river [X] 399
[X] of [Y] 148

[X] in the [Y] 48
our lady [X] church 14

In the process of geographical name translation, 4219 place names with the number of words of 3
or more were structurally decomposed, and the average depth of the established trees was 1.8, while
the average number of decomposed templates was 2.7. Given that determining whether the template
matched by randomly selecting the data of 100 geographical names is reasonably evaluated manually,
the acceptable rate is 91%.

Six thousand results of place name translations in this experiment have been randomly selected
and sent to a professional translation company for proofreading, with an 84.5% acceptability rate.
Meanwhile, 500 geographical names are randomly translated by Baidu Translation and Google
Translation, and after manual review, the acceptability rates of translation results are 74.4% and
52.6%, respectively.

The corpus data of the “word-phonetic symbol” used for training comes from the open source
English dictionary, with a total of 97,857, and is divided into a training set, verification set and test
set according to the ratio of 70:20:10. The training environment of the phonetic symbol generation
model is as follows: GPU: GTX970M, CPU: i7-6700HQ, and OS: Windows 10, version 1803. Since
the network structure of the phonetic symbol generation model will significantly affect the quality
of the results, this paper uses the 10-fold cross-validation method to train different neural network
structures. The following are the hyperparameter settings and evaluation indicators of several major
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network structures. To ensure the quality of the generated phonetic symbols, this paper uses the
general accuracy rate, BLEU and ROUGE to evaluate the model. The comparison results are shown in
Table 5.

Table 5. Model performance comparison table of different network structures.

Network Structures Hidden Layers Units Number Accuracy Rate BLEU ROUGE

Structure 1 2 128 83.3% 92.97% 97.2%
Structure 2 1 128 80.7% 92.2% 96.8%
Structure 5 3 64 57.1% 78.5% 89.4%
Structure 3 2 64 60.1% 81.5% 92.1%
Structure 4 1 64 40.8% 54.2% 58.6%
Structure 6 3 128 42.7% 50.6% 59.8%

Finally, we choose Structure 1 as the final model structure, and obtain corresponding translation
results for 500 words in the standard special name database through phonetic symbol generation,
syllable division, and conversion to Chinese characters. The accuracy obtained by comparison is
approximately 92.7%.

The minimum entropy algorithm original corpus is from the phonetic symbols in the English
dictionary, and 300 of them are selected for artificial syllable division as the test set. In the experiment,
the average entropy of the original phonetic corpus decreased from 3.28 bits to 3.02 bits, and the
probability distribution function of the final syllable set was obtained. The syllables obtained by
experiments were compared with the syllables of 300 reserved special names that were manually
divided. The accuracy rate is 93.3%.

3.3.2. Automatic Evaluation of Translation Results

This paper automatically evaluates the accuracy of translation results of all English geographical
names. The main parameters (partial) are shown in Table 6.

Table 6. Evaluation parameters of translation results (partial).

Geographical Name Translation Result acctranslit SentTreeScore acctemplate Accuracy(Acc)

Sandsfoot Castle 桑德斯富特城堡 0.9 −14.43 0.96 0.93
North Walsham
Railway Station 北沃尔沙姆火车站 0.9 −18.97 0.70 0.85

Solent Hotel and Spa 索伦特酒店及斯帕 0.9 −30.54 0.23 0.59

The lexical structure of geographical names of different lengths differs in complexity and will
contribute differently to the evaluation indicators. To make the machine evaluation more accurate,
the evaluation index values of the three groups of place name data, including two-word, three-word
and multi-word names, were normalized, and the thresholds were set after analysis to determine the
reliability interval. The distribution histogram of evaluation indicators for each group is shown in the
Figures 10–12.
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According to the histogram of the two-word geographical name evaluation index, it was found
that the index declined before 0.83; therefore, the threshold value of this group was set at 0.83, and the
unreliable rate of the translation results was 1034/19334 = 5.34%. In the histogram of the three-word
geographical name evaluation index, although there was a brief decline between 0.764 and 0.84, there
was still a peak after 0.764; therefore, the threshold was set at 0.764, and the unreliability rate of the
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translation result was 912/9948 = 9.17%. In multi-word geographical names, the distribution in this
group was similar to the right-deviation distribution of a skewed distribution. Because the skewed
distribution is not suitable for statistical analysis, this paper converts it to a normal distribution by the
Box–Cox variation (λ = 1.39), whose expected value and standard deviation are (µ,δ) = (0.623,0.112).
Finally, the µ-2δ is selected as 0.399, and the threshold is 0.654 after reduction. The unreliability rate of
the translation result is 909/6983 = 13.02%. The translation results of unreliable geographical names are
shown in Table 7.

Table 7. Unreliable geographical name translation results (partial).

Geographical Name Translation Result

Saint Just in Roseland 圣贾斯特在罗泽兰德中
North Lakes Hotel & Spa 北湖群酒店-斯帕

Holiday Inn Express Burnley m65 jct 10 伊克斯普雷斯-伯恩利-m65-杰西蒂-10-假日酒店
Premier Inn Manchester Airport m56 j6 普雷米厄旅馆曼彻斯特机场-m56 j6

4. Discussion

This paper designs a complete machine translation system for geographical names from the
perspective of natural language processing and the theory of machine learning. There are three main
innovations: (1) The system solves the problem of reasonable distinction between special names and
general names in the translation of geographical names. (2) Using the theory of a cyclic neural network
and minimum entropy, the phonetic symbol generation and phonetic division of English words are
realized more efficiently and accurately. (3) A new idea is proposed for automatic quality inspection of
translation of geographical names. The experimental results verify the reliability and scientific rigour
of the method, which has important practical significance for the construction of global geographic
information databases. In addition, some difficult problems based on rules are encountered in the
experiment. The method needs to be optimized according to international translation standards or by
listening to experts’ opinions.
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