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Abstract: Landmarks play an essential role in wayfinding and are closely related to cognitive
processes. Eye-tracking data contain massive amounts of information that can be applied to discover
the cognitive behaviors during wayfinding; however, little attention has been paid to applying such
data to calculating landmark salience models. This study proposes a method for constructing an
indoor landmark salience model based on eye-tracking data. First, eye-tracking data are taken to
calculate landmark salience for self-location and spatial orientation tasks through partial least squares
regression (PLSR). Then, indoor landmark salience attractiveness (visual, semantic and structural)
is selected and trained by landmark salience based on the eye-tracking data. Lastly, the indoor
landmark salience model is generated by landmark salience attractiveness. Recruiting 32 participants,
we designed a laboratory eye-tracking experiment to construct and test the model. Finding 1 proves
that our eye-tracking data-based modelling method is more accurate than current weighting methods.
Finding 2 shows that significant differences in landmark salience occur between two tasks; thus, it is
necessary to generate a landmark salience model for different tasks. Our results can contribute to
providing indoor maps for different tasks.
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1. Introduction

Wayfinding to a destination through an indoor or outdoor environment is a purposive, directed,
and motivated behavior for efficiently finding one’s way [1,2]. Wayfinding also involves a series
of challenging behaviors that require participants to be aware of their self-location and to orient
themselves [3] with the assistance of representative sensory cues from the external environment.
Landmarks play an important role in providing guiding information for wayfinding in the physical
environment [4,5] and can accelerate decision-making processes, especially at decision points for
changing direction. Albrecht [6] discovered that landmarks had a strong relationship with participants’
spatial cognition and memory. Clearly, landmarks play an essential role as wayfinding enhancers and
navigational error reducers and can affect wayfinding tactics and strategies.

Given the importance of landmarks, it is necessary to measure the salience of different kinds of
landmark. Raubal and Winter [7] proposed the first approach to automatically identifying landmarks
and calculating landmark salience. They defined three different kinds of landmark salience: visual,
semantic, and structural. For example, geographic objects are visually attractive if they are in
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sharp contrast to their surroundings. Subsequently, researchers have gradually proposed various
methods for analyzing landmark attractiveness, such as expert knowledge [8], eye-tracking [9] and
electroencephalography (EGG) [10]. Among these methods, eye movements directly reflect users’
visual behaviors and precisely measure landmark attractiveness. Thus, studies that involve inferring
landmark salience from eye movements have emerged. To date, studies have explored the use of
eye-tracking methods to compare the cognitive differences in navigation [11–13]. Although Jia [14]
proposed a landmark salience model calculated by eye-tracking data, they only considered visual
attractiveness, without semantic and structural attractiveness. In addition, various tasks can lead to the
production of eye-tracking data that are different from those observed in relation to landmark salience.
Researchers [11,15] have inferred wayfinding tasks by using eye-tracking data, but they did not figure
out the relationship between tasks and landmark salience. Therefore, exploratory research on how
eye-tracking data calculate the visual, semantic and structural salience of landmarks for different tasks
is still a challenging endeavor.

In this article, qualifying eye-tracking data and accurate algorithms were selected to calculate indoor
landmark salience. Due to self-location and orientation being critical tasks during wayfinding [11], the
task differences in indoor landmark salience were compared between these two tasks. If the significant
task difference occurs, then an indoor landmark salience model for self-location and orientation can be
established. Specifically, we focused on two questions:

1. Can eye-tracking data be used to construct an indoor landmark salience model? If so, how can
the accuracy of the salience results be ensured?

2. Are there any differences in landmark salience between self-location and orientation in indoor
wayfinding? If differences occur, how can an indoor landmark salience model be built for
self-location and orientation?

This study makes two main contributions. On the one hand, our feature selection method and
weighting algorithm are beneficial for understanding the relationship between eye movement metrics
and indoor landmark salience and can extend the calculation method for indoor landmark salience. On
the other hand, comparing the differences in landmark salience between self-location and orientation
is also helpful for researchers to redesign different indoor landmarks on navigation maps for various
wayfinding tasks.

The rest of this article is organized as follows. The related work is presented in Section 2. Section 3
presents the method used to construct the indoor landmark salience model. Section 4, a case study,
is designed to test the model and compare it with the differences in landmark salience in two tasks.
Section 5 discusses the important factors for the construction of the landmark salience model and
compares it with previous studies. Section 6 ends this report with a conclusion and directions for
future research.

2. Background and Related Work

2.1. Indoor Landmark Salience Models

Landmarks are important features in route directions during wayfinding. Sorrows and Hirtle [16]
defined landmarks as prominent objects that individuals use as a reference point to help them in
memorizing and recognizing routes, as well as locating themselves in terms of their ultimate destination.
The aim of landmark identification is to find all the geographic objects in a given region that may in
principle serve as a landmark [17]. To quantitatively compute landmarks, the concept of landmark
salience has been proposed. Landmark salience is based on the concept of attractiveness, which reflects
the importance of each landmark. The generation of a landmark salience model includes two major
components, landmark salience attractiveness and weighting methods.

On the one hand, Raubal and Winter [7] presented the first approach to classifying landmark
salience attractiveness, dividing landmark salience into three types of attractiveness (visual, semantic
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and structural salience) to identify landmarks. Based on this finding, Elias [18] introduced building
labels, building density and road orientation to describe the salience of geographic objects. Richter and
Winter [17] defined the formal model for landmark salience, which includes four measures of visual
attractiveness: the façade area, shape, color, and visibility. Zhu [19] proposed the façade area, the
board size and design features to calculate the salience of indoor landmarks. However, there is no
consensus regarding the salience attractiveness classification of geographic objects.

On the other hand, it is necessary to weight salience attractiveness. Currently, weighting methods,
such as questionnaires, documentary sources and expert knowledge, are used to measure landmark
salience. Mummidi and Krumm [20] calculated salience by comparing the number of times a specific
n-gram appears in a cluster (term frequency) with the number of times the same n-gram appears in
all clusters combined (document frequency). Wang [21] combined expert knowledge and proposed
some definitions from cognitive and computational perspectives to evaluate indoor landmark salience.
However, such methods are cumbersome and labor intensive. Furthermore, the results of such methods
depend on the available data but will fail to detect other data because there are only very few data.

In addition, recent years have seen rapid advances in indoor spatial data modelling and an
increasing availability of indoor geographic information system (GIS) data [22]. As a result of these
rapid advances in indoor data modelling, many innovative indoor location-based service (LBS)
applications have been developed, such as indoor wayfinding [23]. Thus, the indoor landmark salience
models have been researched in recent years. Researchers [14,19] have proposed indoor landmark
salience models based on visual, semantic and structural attractiveness, which is similar to the formal
outdoor salience model. However, these attractiveness parameters (visual, semantic and structural) in
the outdoor salience model cannot be directly applied to the indoor salience model. On the one hand,
the landmark attractiveness factors in indoor spaces differ from those in outdoor spaces. Although
Li L [24] has proposed that outdoor landmark attractiveness (shape factor, color and size) can be
applied to describe indoor landmark salience, the cultural and historical importance in outdoor
landmark attractiveness cannot be directly taken to describe landmarks in indoor environments, such
as malls or airports. On the other hand, the spatial arrangement of indoor spaces differs from that
of outdoor spaces. For example, multiple kinds of object can be regarded as landmarks in outdoor
environments [25], such as churches, shopping malls, and bridges. However, these objects cannot
be regarded as landmarks in indoor environments [26]. Lyu [27] mentioned that landmarks can be
classified into four types: architecture (pillars and fronts), function (doors, stairs, and elevators),
information (signs and posters) and furniture (tables, chairs, benches and vending machines). Thus,
it is essential to propose a landmark salience model for indoor environments.

2.2. Differences in Landmark Salience during Wayfinding

The current progress in the cognitive sciences relevant to wayfinding investigates how to identify
relevant landmarks, how to improve route instructions, and how to compute a better route [3].
Landmarks at decision points are important features in route directions during wayfinding. However,
there are a large number of possible landmarks that can be included in route instructions in different
situations and for different travelers [28]. Different travelers will find different landmarks to be most
useful in a given situation.

There are three important dimensions (personal, navigation system-related and environmental)
that impact the differences in landmark salience in wayfinding [29]. Among these dimensions, the
personal dimension plays the most important role in person-centric navigation, and it is in this
dimension that the most differences in wayfinding occur. For instance, Nuhn [8] identified the personal
dimension and its attributes by taking into account five dimensions: personal knowledge, personal
interests, personal goals, personal background and individual traits. This author proposed a personal
landmark salience model based on these dimensions. In addition, the dimensions of a wayfinding
task emerge based on landmark differences. Although task inference has been widely researched in
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pedestrian navigation, few researchers have further investigated the task dimensions in landmark
salience, especially the landmark differences in person-centric wayfinding.

Wayfinding is a cognitive behavior for finding a distal destination with a series of tactical and
strategic tasks [30], including reading a map, remembering the route, finding one’s location and
maintaining one’s orientation with external features or landmarks. Various tasks result in different
forms of visual attention and cognitive behaviors with regard to landmarks. Thus, landmark salience
keeps changing as participants accomplish different tasks. Two crucial behaviors during wayfinding
are self-location and spatial orientation [31]. In self-location, one identifies his or her position in
a spatial setting, and it includes several sub-processes, such as map orientation, feature matching,
and configuration matching [17]. Spatial orientation is closely related to self-location; it involves
determining the direction that one is facing when given an external instruction (cognitive or real
maps) [32]. Wiener [33] reported a gaze bias between free exploration and pre-set route tasks.
Participants displayed a significant tendency to choose the path leg offering the longest line of sight
during free exploration, but that trend did not occur in the chosen route group. Wang [21] reported
that although males and females had similar levels of effectiveness and efficiency in self-location, route
memorization, and route following, there was a significant difference between them in map reading
and indoor wayfinding tasks. However, little research has measured the differences in landmark
salience between the self-location and orientation tasks in indoor environments.

2.3. Eye-Tracking for Task Differences in Landmark Salience

There are two important factors in comparing the task differences in landmark salience models:
landmark salience calculation and statistical analyses of task differences. Researchers have adopted
multiple methods [34–36] to calculate landmarks during wayfinding, such as questionnaires, pose
estimation, and eye-tracking methods. Among these methods, eye-tracking can directly capture visual
attention to landmarks in a quantitative way. Both quantitative and qualitative analyses of eye-tracking
data can be applied to determine whether significant differences in salience occur during wayfinding.

On the one hand, in recent years, the eye-tracking method has been gradually proposed to analyze
spatial cognitive performance in landmark identification because the user’s gaze can provide an
easy, fast and natural way to capture visual behaviors with regard to landmarks [37]. In addition,
eye-tracking data assist researchers in analyzing gaze performance in quantitative ways [38]. For
instance, eye-tracking data have been used as a rich data source for mining visual attention to landmarks
during wayfinding [39,40]. Only recently have eye-tracking data been used by Jia [14] to calculate the
visual attractiveness of landmarks. However, this author only resolves the problem of calculating the
visual salience model. The use of eye-tracking data to generate a landmark salience model (visual,
semantic and structural attractiveness) has not been tested. Researchers have applied the eye-tracking
method to analyze semantic and spatial information [21,40]. For example, Raubal [7] proposed that
city maps and street graphs are complemented with images and content databases, which could
provide visual data as well as semantic and structural data. Wang [21] extracted areas of interest (AOIs)
on indoor maps to analyze the semantic information of landmarks. Kiefer [41] proposed that the
eye-tracking method could be taken to analyze route information and landmarks at decision positions,
reflecting the structural attractiveness of landmarks. Thus, it is theoretically possible to calculate
landmark semantic and structural salience model by eye-tracking data.

On the other hand, participants produce different eye movement patterns with regard to landmarks
as their tasks change [41,42]. Kiefer [43] applied machine learning methods to detect six common map
activities from eye-tracking data, proving that eye-tracking data can be applied to distinguish user
tasks. Liao [15] demonstrated that wayfinding tasks (self-location, orientation, route remembering)
can be inferred by eye-tracking data in outdoor environments, opening the door to potential indoor
wayfinding applications that can provide task-related information depending on the task that a user
is performing. However, little research has measured the differences in landmark salience between
self-location and orientation based on eye-tracking data.
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3. Indoor Landmark Salience Model

Based on the discussion of the related work, eye-tracking data can be applied to measure landmark
salience. The core of this calculation method consists of regarding eye-tracking data as a mediator that
is taken to measure the coefficient of landmark salience attractiveness (visual, semantic, structural). For
example, Jia [14] proposed a visual salience model of landmarks based on eye-tracking experiments.
The key to this author’s method consisted of using eye-tracking data to represent a salience model with
controllable and computable visual attractiveness, which is essential to improve the accuracy of the
salience model and to provide a solution that addresses the landmark discrimination in interactions
between humans and environments. However, the author did not consider structural or semantical
attractiveness, and the landmark differences between various tasks were not discussed. In this section,
we propose a method to generate an indoor landmark salience model based on eye-tracking data that
considers the differences in self-location and orientation tasks.

3.1. Landmark Salience Based on Eye-Tracking Data

We defined landmark salience based on eye-tracking data as the salience results of objects
calculated by eye-tracking data. Landmark salience based on eye-tracking data Seye was calculated
based on the stimulated landmark salience (Ssti), while the accuracy of Seye was determined in two
ways, by selecting the eye-tracking data and by calculating the coefficients of eye-tracking data.

3.1.1. Stimulated Landmark Salience

The concept of stimulated landmark salience Ssti was introduced by Jia [14]. Ssti means stimulated
landmark salience results, which is measured by the percentage of participants who selected the object
as a landmark in one specific setting [14]. In this paper, we selected eight indoor scene images as
the specific settings. Participants were required to observe these images and select their favourite
landmark in each of these images. The most attractive landmarks in each of these images were selected
to calculate the stimulated landmark salience (Ssti). The percentage of participants who chose the most
attractive landmark was measured as the result of Ssti. Ssti played an important role in calculating
Seye. On the one hand, eye-tracking data that have no statistically significant relationship with Ssti was
deleted; on the other hand, Ssti was taken to measure the coefficient of eye-tracking data.

3.1.2. Eye-Tracking Data Selection

1. Data classification

Based on previous studies, eye-tracking data (fixations, saccades and pupil) have been widely
adopted in eye-tracking studies [15,44]. The quantitative analysis of visual search strategies was closely
related to eye-tracking data in predetermined areas of interest (AOIs) [45]. Thus, eye-tracking data
are collected in both AOIs and the total area. The description of each example of eye-tracking data is
provided in Table 1.

Table 1. Type of eye-tracking data.

Type Features Unit Statistic Variable Definitions

Fixation
Total Total fixation duration Second (s) The total duration of fixations

Total fixation counts Count The total counts of fixations
Total fixation

dispersion pixel The total dispersion of fixations

AOI Time to first fixation Second (s) The time before first fixation on AOIs
First fixation duration Second (s) The duration first fixation taken on AOIs

Gaze duration Second (s) The duration of fixations on AOIs
Fixation dispersion pixel The dispersion of fixations on AOIs

Fixation counts Count The counts of fixations on AOIs
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Table 1. Cont.

Type Features Unit Statistic Variable Definitions

Saccade
Total Total saccade counts Count The total counts of saccades

Total saccade duration Second (s) The total duration of saccades
Saccade amplitude Degree (◦) The total amplitude of saccades

AOI Saccade counts Count The counts of saccades on AOIs
Saccade duration Second (s) The duration of saccades on AOIs

Saccade amplitude Degree (◦) The amplitude of saccades on AOIs
Pupil
Total Pupil diameter Millimeter (mm) The average left and right pupil diameter

AOI AOI pupil diameter Millimeter (mm) The average left and right pupil diameter
on AOIs

Pupil difference Millimeter (mm) The differences between Pupil and AOI
pupil diameter

2. Data selection

Eye-tracking data that were significantly different from the stimulated visual salience Ssti were
selected to calculate landmark salience.

• Normalization

Normalization can transform a dimensional expression into a dimensionless expression so that
the indexes of different units or scales can be compared and weighted. The features are converted to a
decimal value ranging from 0 to 1 through min-max normalization [46].

xi =
xi − xmin

xmax − xmin
(1)

xmax = max
I≤i≤N

xi, xmin = min
I≤i≤N

xi.

• Selection process

To avoid the uncertainty errors associated with landmark salience based on eye-tracking data,
the normalized features should have a statistically significant relationship with the salience results.
Stimulated landmark salience (Ssti) was regarded as the landmark salience result. Then, one-way
ANOVA was used to measure the significant differences between eye-tracking data and stimulated
landmark salience (Ssti). Only significant features (p < 0.05) were selected in this research.

3.1.3. Weighting Algorithms

1. Algorithm selection

The weighting algorithm is an essential method to calculate the correlation. To guarantee the
reliability of correlation results, five weighting methods were used in our research. These methods
include partial least square regression (PLQR), Analytic Hierarchy Process (AHP), Entropy weight
method (EWM), Standard deviation method (SDM) and the Critic method. These five weighting
methods are classic and commonly used. The weighting results were calculated by SPSS 11.0. The
most accurate algorithm was selected in this paper.

2. Accuracy test

The precision of the weighting method was tested by the absolute difference value between
stimulated salience (Ssti) and the visual salience calculated by eye-tracking data (Seye). A smaller
difference in the test results proved the better accuracy of the weighting method.

Accuracy =
∣∣∣Seye − Ssti

∣∣∣ (2)
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3.1.4. Calculating Process

Based on previous finding [14], Seye was measured by the product of the eye-tracking data and
their coefficients, and the Ssti was taken to calculate the coefficients of the eye-tracking data. Thus, the
formula of landmark salience based on eye-tracking data Seye is proposed as follows:

Seye(x) =
n∑

i=1

λiei ∼ Ssti(x) (3)

where x is the name of a landmark, n represents the amount of eye-tracking data types, λ denotes
different types of eye-tracking data, and e is the coefficients of eye-tracking data. The larger the value
of e is, the greater the importance of λ.

The calculation process of landmark salience based on eye-tracking data is presented in Table 2.

Table 2. Calculation method for landmark salience based on eye-tracking data.

Input: eye-tracking data λ and stimulated landmark salience Ssti
Output: landmark salience based on eye-tracking data Seye

for the result of each λi and Ssti calculated by one-way ANOVA ∈ β do
If βi < 0.05 then

return λi
end
If βi > 0.05 then

delate λi
end

end
/* feature selection */
for the Ssti and Seye calculated by the five weighting algorithms do

calculate the absolute difference value between stimulated salience (Ssti) and the landmark salience based
on eye-tracking data (Seye); select the weighting algorithm that results in the lowest difference value as the
most accurate algorithm;

end
/* weighting algorithm comparison*/
for the selected weighting algorithms do

calculate the coefficient of eye-tracking data (e), and establish the landmark
salience based on eye-tracking data (Seye).

end
/* landmark salience based on eye-tracking data*/

3.2. Indoor Landmark Salience Model

3.2.1. Visual Attractiveness

1. Shape features

An outstanding shape is an essential salient attribute. According to the definition by Richter and
Winter [17], the shape factor and deviation were selected. Put simply, the shape factor is the proportion
of height and width. Deviation is the ratio of the area of the minimum-bounding rectangle (mbr) of the
object’s façade to its façade area [26]. Unusual shapes and deviations, especially among more regular,
box-like objects, are highly remarkable.

2. Colour features

A landmark is salient if its colour or lightness contrasts with the surrounding objects. We used
the hue error (∆h) and lightness to measure landmark colour. The hue error can be used to compare
the hue value difference between a landmark and an indoor environment. The RGB of the landmark
and floor was converted to LAB by Photoshop, and the hue errors were calculated by ColorTell
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(www.colortell.com). Lightness was measured as though the landmark contained a bright section
(window, door, pictures). If there was a bright section in the landmark, then the value of lightness
was 1.

3. Façade area

The façade area is used to calculate the size of a landmark [26]. If the façade area of an object is
significantly larger or smaller than the façade areas of the surrounding objects, then this object becomes
well noticeable. The façade area was measured as height multiplied by width.

4. Visibility features

Visual distance is used to measure visibility. Clearly, if the visual distance of a landmark is shorter
than that of other objects, then the landmark will be more noticeable. Visual distance was measured as
the shortest distance between the participant’s location and the landmark.

The detailed information of visual attractiveness was shown in Table 3.

Table 3. Visual attractiveness.

Indicator Property Unit Statistic Measurement

Shape shape factor * Ratio Shape factor = height/width
deviation * Ratio Deviation = area mbr /Facade Area

Color hue error ** Decimal (n− 1) × 30◦ � ∆h� n× 30◦ → 0.2× n
lightness ** Boolean value If lightness c = 1; else c = 0

Façade area Façade area * Square meter (m2) Facade Area = height ×width
Visibility Visual distance ** Meter (m) Visual Distance = min{Perceivable distance}

* in table are referenced from [17], ** are referenced from [14].

3.2.2. Semantic Attractiveness

1. Semantic importance

This property reflects whether an object has an important meaning. Semantic importance
represents the proportion of AOI fixation duration and total fixation duration during map reading
tasks. The AOI includes the name and point symbol of an object on the map.

Just and Carpenter [47] mentioned that a longer fixation duration either means difficulty in
understanding information or represents that the participants show more interest. However, the former
explanation is rejected in this paper because participants were educated and can interpret the semantic
information on the map. In addition, the participants were driven by the tasks to find and remember
important landmarks on maps without a time limit. Thus, the longer the amount of time of visual
attention is given to an AOI, the greater the semantic importance of the meaning of the object. Based
on previous research [14,48], the AOIs include the name and symbol of objects with a buffer due to the
imprecision in eye movements. The AOIs are shown in Figure 1.
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2. Explicit marks

An object may have explicit marks, such as signs on the front of a store. These signs explicitly
label an object, communicating its semantics. This property was assessed by a Boolean value.

3. Degree of familiarity

This property indicates whether participants are familiar with a mark. First, the object must have
a mark; otherwise, the value is 0. Then, the degree of familiarity was calculated by the proportion of
participants who were familiar with the mark (Table 4).

Table 4. Semantic attractiveness.

Indicator Unit Statistic Measurement

Semantic importance Ratio AOI fixation duration/Total fixation duration
Explicit marks * Boolean value If explicit 1, or 0

Degree of familiarity Ratio Familiar with the mark/Total participants

* in table are referenced from [17], Unstarred characteristics and their measurements are mentioned by our research.

3.2.3. Structure Attractiveness

1. Number of adjacent routes

Objects located at intersections are more important for route instructions than objects located
along routes. If an object is adjacent to more than one route, then it is located at a street intersection
and is therefore more suitable. To assess landmark salience, the number of edges adjacent to the object
was stored.

2. Number of adjacent objects

Freestanding objects are more attractive than objects with many neighbours. This attribute is
mainly important for signs and elevators because other objects, such as stores, are normally connected
to other structures. The number of adjacent objects was stored to assess structural salience.

3. Location importance

Location importance indicates the attractiveness of objects caused by different locations. Location
importance can be calculated by the distances between one object and the nearest nodes. Nodes
are the intersections in a network [17]. In this paper, intersections in the David Mall indoor map
(map.baidu.com) were selected as nodes.

L(x) = 1/d(y, x) (4)

where x is the node and y is an object. The d(y, x) denotes the distance between the nodes x and the
object y. Since no two rooms occupy the same space, the distance between any x and y will not be 0. If
the distance between x and y is less than 1 m, then L(x) is 1 (Table 5).

Table 5. Structural Attractiveness.

Indicator Unit Statistic Measurement

Number of adjacent routes * Constant The number of routes
Number of adjacent objects * Constant The number of objects

Location importance ** Ratio 1/d(y, x)

* in table are referenced from [49], ** in table are referenced from [27].

map.baidu.com
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3.2.4. Modelling Process

1. Comparing the differences in landmark salience between self-location and orientation

It is essential to determine whether differences in landmark salience occur between self-location
and orientation tasks before generating a landmark salience model for the two tasks. Landmark salience
based on eye-tracking data Seye was calculated for both self-location (Ssel f−location

eye ) and orientation
(Sorientation

eye ). One-way ANOVA was used to measure the statistically significant differences between

Ssel f−location
eye and Sorientation

eye using SPSS 11.0. The results (p < 0.05) indicate that a significant difference
between self-location and orientation is found, and the landmark salience model can be generated for
both tasks. Otherwise, it is meaningless to construct a visual salience model for the two tasks.

2. Indoor landmark salience model for two tasks

Jia [14] proposed that Seye could be used to construct the coefficient of landmark salience

attractiveness. With regard to whether a significant difference occurs between Ssel f−location
eye and Sorientation

eye ,
the coefficients are different between the two tasks. Thus, Stasks

landmark represents the visual salience model
for different tasks.

The formula of the visual salience model is as follows:

Stasks
visual(x) =

n∑
i=1

fiwi ∼ Stasks
eye (x) (5)

Stasks
semantic(x) =

n∑
i=1

fiwi ∼ Stasks
eye (x) (6)

Stasks
structual(x) =

n∑
i=1

fiwi ∼ Stasks
eye (x) (7)

Stasks
landmark(x) = 1/3

(
Stasks

visual(x) + Stasks
semantic(x) + Stasks

structural(x)
)

(8)

where f denotes landmark attractiveness and w is the coefficient of landmark attractiveness. The tasks
include self-location and orientation.

4. Case Study

4.1. Experimental Design

4.1.1. Apparatus

A Tobii X120 (Tobii AB, Sweden, www.tobii.com) eye tracker with a sampling rate of 120 Hz and
a Samsung 22-inch monitor were selected. The X120 had a recording accuracy of 0.5◦ and might have a
deviation of 0.1◦. The spatial resolution was 0.3◦, and the head movement error was within 0.2◦. The
visual tracking distance was between 50 and 80 cm. The monitor displayed the stimuli with a screen
resolution of 1680 × 1050 pixels. Tobii Pro Analyzer software was used to manage and analyse the
eye-tracking data. The research was capable of obtaining deep insights into visual saliency in regard to
indoor pictures and maps by analysing eye-tracking data.

4.1.2. Procedure

The experiment was conducted in a quiet and well-lit room (Figure 2a). In the pre-test training,
the participants were welcomed and were required to provide their personal information (gender, age,
familiarity of the David Mall and experience using a computer in everyday life) and complete two skill
tests. Previous research has reported that wayfinding tasks were examined in relation to spatial skills
and self-reported skills [50]. The Mental Rotation Test (MRT) and the Santa Barbara Sense of Direction

www.tobii.com
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Scale (SBSOD) could be used to test spatial skills and self-reported skills, respectively. The participants
were asked to complete two tests before the experiment to ensure they had similar skills. In addition,
as the Tobii X120 could not support the participants to check the stimuli again, the participants were
informed to remember the experimental stimuli during the experimental procedure.
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experimental stimuli in task 3.

In the formal experiment, the participants were asked to complete three tasks (Figure 2b). The
instructions for the participants are described below:

• Task #1 (landmark selection): Assume that you are shopping in a mall. When the experiment
begins, you will view eight indoor scene images one at a time. Please select the most attractive
landmark (store, bench, elevator or signs) in each image. When you find the result, click on the
landmark to proceed. There is no time limit for you to find the landmark.

• Task #2 (self-localization): You will find your location on the map. First, you should observe an
indoor scene image carefully and try to memorize the necessary landmark information as much
as possible. You are not allowed to look at the image again. Then, you should find the location
and click on it on the indoor map. Two locations should be found in this phase.

• Task #3 (orientation): You will find your orientation in the indoor scene image with the assistance
of landmarks. You should remember the landmark information related to the route from A to B
on the indoor map. Then, you will point out the correct orientation to get to B and click on it on
the image. Two orientations need to be noted in this task. After that, the experiment ends.

4.1.3. Stimuli

Twelve panoramas were created as indoor scene images for the eye-tracking experiment. The
panoramas were photographed using a Canon 800D camera with an 18–55 mm lens in Zhengzhou
David Mall, China. The camera was fixed on a 1.5-m tripod. We took 60 pictures at each location. The
computer-generated panoramas were made using PTGui (www.ptgui.com). However, 360◦ panoramas
were not used because image distortions occurred as the 360◦ panoramas were dragged. In the
meantime, it was difficult for the participants to recognize detailed information in the 360◦ panorama
shown in one picture due to the limitation of screen size. Thus, we selected half of the panorama with
a 180◦ visual angle (Figure 2c,d).

Based on the experimental procedure, eight indoor scene images were selected in task 1
(Figure 3a–h). When the participants observed one image, they clicked on their favorite landmark in
the stimuli. After the experiment, the most attractive landmarks, highlighted in Figure 3a–h, were

www.ptgui.com
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defined as AOIs for analyzing the eye-tracking data. The AOIs were divided by research though Tobii
Analyzer, which could be used to collect and calculate eye-tracking data within or without the AOIs.
The display of these eight images followed the Latin square principle.
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for self-location; (a3,b3,c3,d3) Indoor map for orientation.

The participants were required to view images to find their locations in task 2 and to remember
the navigation routes to find their orientations in task 3. In order to avoid the participants observing
the same indoor scene images in task 2 and 3, the participants were divided into two groups. The order
of experimental stimuli was different between Groups 1 and 2. For the participants in Group 1, the
order was Figure 4 a2-a1-b2-b1 in task 2 and Figure 4 c1-c3-d1-d3 in task 3. For Group 2, the order was
Figure 4 c2-c1-d2-d1 in task 2 and Figure 4 a1-a3-b1-b3 in task 3.

4.1.4. Participants

A total of forty-six young male students majoring in cartography were recruited to join our pilot
experiment as an experimental lesson. The results of five participants were omitted because their sample
rates (calculated by Tobii Analyser) were below 80% [51]. Four participants were omitted because
they did not pass SBSOD and MRT. Five participants did not continue to conduct the experiment
because they were familiar with the David Mall. Thus, thirty-two participants continued to conduct
the formal experiments. According to the experimental stimuli, the participants were divided into two
groups. The sixteen participants in Group 1 were aged between 18 and 29 years old (mean age = 23.97,
SD = 1.54). In Group 2, the sixteen participants were aged between 18 and 27 years old (mean age =

22.63, SD = 1.67).
All of the participants were familiar with computing technology. They all had normal or

corrected-to-normal vision and could complete the experiment independently. The experiment was
reviewed and approved by the local institutional review board (IRB). All of the participants provided
their written informed consent to participate in the experiment.

4.2. Results

4.2.1. Landmark Salience Based on Eye-Tracking Data

To answer question 1, with regard to whether eye-tracking data can be used to calculate landmark
salience, eye-tracking data were selected and weighted using five algorithms. According to the
participants’ selection, the stimulated landmark salience (Ssti) results were 0.594, 0.906, 0.750, 0.594,
0.875, 0.813, 0.688 and 0.875 in Figure 3a–h, respectively.
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1. Feature selection

All of the images (Figure 3a–h) in task 1 were used for feature selection. One-way ANOVA was
used to compare the significance relationships between stimulated landmark salience (Ssti) and the
eye-tracking data (Seye); the results are shown in Table 6. Clearly, seven features have significant
differences with stimulated landmark salience. These features, including total fixation duration, total
fixation counts, gaze duration, fixation counts, total saccade duration, saccade duration and pupil
difference, were selected to calculate the visual salience based on eye-tracking data. These features
included fixation, saccade and pupil type, ensuring that all types of eye metric were considered in
our research.

Table 6. Eye movement feature selection.

Type Features Mean SD ANOVA

Fixation F p
Total total fixation duration (s) 4.861 1.010 5.135 0.032 *

total fixation counts 15.332 2.548 9.002 0.015 *
total fixation dispersion 2105.042 716.124 2.411 0.123

AOI time to first fixation (s) 0.612 0.353 1.277 0.277
first fixation duration (s) 0.440 0.124 0.156 0.635

gaze duration (s) 2.637 0.723 3.713 0.041 *
fixation dispersion 320.402 71.188 0.263 0.419

fixation counts 5.945 1.432 6.578 0.014 *
Saccade

Total total saccade duration (s) 0.561 0.093 18.351 0.001 *
total saccade counts 13.134 3.086 1.770 0.205
saccade amplitude 81.199 19.145 1.754 0.265

AOI saccade duration (s) 0.292 0.063 6.613 0.004 *
saccade counts 7.059 3.067 0.971 0.252

saccade amplitude 49.419 16.540 1.910 0.244
regression 1.480 0.565 1.138 0.094

Pupil
Total pupil size 3.771 0.040 3.597 0.071
AOI AOI pupil size 3.875 0.041 3.783 0.068

pupil difference 0.157 0.040 8.310 0.001 *

* means p < 0.05.

2. Feature weighting

To build the visual salience formula based on eye-tracking data, the eye-tracking data in Figure 3a–f
in task 1 were used to measure the coefficient. Both statistical regression and weighting methods could
be used to calculate the coefficient. To choose the best method, SPSS 11.0 was applied to compare these
weighting algorithms. The results are shown in Table 7.

Table 7. Weighting algorithm for eye-tracking data.

Eye-Tracking Data PLSR AHP EWM SDM CRITIC

Fixation
total fixation duration λ1 0.005 0.172 0.108 0.187 0.142
total fixation counts λ2 0.007 0.180 0.112 0.171 0.154
gaze duration (s) λ3 −0.034 0.088 0.206 0.107 0.135
fixation counts λ4 0.003 0.116 0.139 0.128 0.122

Saccade
total saccade duration λ5 −0.212 0.137 0.166 0.143 0.150
saccade duration λ6 1.631 0.174 0.116 0.145 0.147

Pupil
pupil difference λ7 1.348 0.132 0.152 0.117 0.18

Intercept C 0.128



ISPRS Int. J. Geo-Inf. 2020, 9, 97 15 of 26

3. Results accuracy

The eye-tracking data in Figure 3g,h were collected to test the accuracy of the weighting algorithm.
Figure 5 shows the difference value (dv) results of the participants. Clearly, the difference value of the
SDM is higher than that of the other algorithms from five participants (dv = 5.86) to 32 participants
(dv = 3.99), proving that the SDM is the worst method for calculating the coefficient. All of the lowest
difference value results are observed for PLSR, which shows that PLSR is the best weighting method in
this experiment. This finding confirms the previous evidence showing that PLSR is the most accurate
method for visual salience based on eye-tracking data, as proposed by Jia [14].ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  15 of 26 
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Figure 5. Accuracy of weighting algorithms.

4. Landmark salience based on eye-tracking data

Figure 5 shows that the different value results decrease as the number of participants among these
algorithms increases. The average difference between 30 and 32 participants is 0.01, which shows that
the number of participants is sufficient for this research. The formula of landmark salience based on
eye-tracking data is shown as follows:

Seye(x) = 0.005λ1 + 0.007λ2 − 0.034λ3 + 0.003λ4 − 0.212λ5 + 1.631λ6 + 1.349λ7 + 0.128

4.2.2. Differences in Landmark Salience between Self-Location and Orientation

To answer question 2, with regard to whether differences in landmark salience occur between
the self-location and orientation tasks, the visual salience of nineteen landmarks in tasks 2 and 3 was
calculated based on eye-tracking data (formula in Section 3.1), and one-way ANOVA was applied to
analyse the significant differences. The results are shown in Table 8.

Task 2 (self-location) was significantly different from task 3 (orientation) in landmark salience
(F = 4.156 p = 0.048 < 0.05), indicating that the participants have a different visual performance
regarding the AOIs in tasks 2 and 3.

Differences in landmark salience between tasks 2 and 3 are present in each AOI. According to
Table 8, nineteen AOIs show significant differences in landmark salience between the self-location
and orientation tasks. The participants in task 3 paid significantly greater visual attention to store
AOIs (AOI1 = 1.105, AOI5 = 0.789, AOI6 = 1.287, AOI11 = 1.074, AOI14 = 1.148, AOI16 = 1.085 and
AOI19 = 0.723) than did those in task 2 (AOI1 = 0.851, AOI5 = 0.413, AOI11 = 0.663, AOI14 = 0.835,
AOI16 = 0.817 and AOI19 = 0.339). The elevator AOIs also show similar significant differences; the
landmark salience of the elevator in task 3 is significantly higher than that in task 2, indicating that the
participants paid more attention to store and elevator landmarks in the orientation task. However, it is
difficult to determine the landmark salience of benches. Although the landmark salience of the bench
in task 3 (AOI4 = 0.481) is significantly lower than those in task 2 (AOI4 = 0.346), those in AOI9 do not
show the same tendency.
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Table 8. Visual salience differences between task 2 and task 3.

AOI
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4.2.3. Landmark Salience Model for Self-Location and Orientation

The previous results in Section 4.2.2 show that differences in landmark salience occur between
tasks 2 and 3. Thus, the landmark salience model can be constructed for the self-location and orientation
tasks. Based on the modelling process, the landmark salience attractiveness was normalized, and the
results were compared with the landmark salience based on eye-tracking data in tasks 2 and 3 using
one-way ANOVA. Then, landmark salience attractiveness with a significant difference was selected for
regression through PLSR. The results are shown in Table 9.

Table 9 shows that the landmark salience model includes nine factors for both tasks 2 and 3.
The brightness, explicit marks and adjacent object factors were not selected for landmark salience
modelling. In addition, the coefficients of the selected factors were not the same. In task 2, the visual
distance was significantly negatively correlated with Seye. In task 3, the visual distance and degree of
familiarity factors were negatively correlated with Seye.

Table 9. The coefficients of landmark salience attractiveness in tasks 2 and 3.

Measure Property Type Task 2 ANOVA Task 3 ANOVA

Coefficient F p Coefficient F p

Visual Shape factor f1 0.018 10.852 0.002 * 0.005 8.977 0.004 *
Deviation f2 0.107 14.465 0.000 * 0.218 24.945 0.001 *
Hue f3 0.060 12.388 0.001 * 0.159 23.355 0.001 *
Brightness f4 — 0.081 778 — 1.146 0.291
Façade area f5 0.0003 9.293 0.004 * 0.001 8.368 0.006 *
Visual
distance f6 −0.011 27.756 000 * −0.014 26.769 0.000 *

Intercept b1 0.559 — — 0.706 — —

Semantic Semantic
Importance f7 1.259 70.211 0.000 * 3.362 65.393 0.000 *

Explicit
marks f8 — 0.021 0.884 — 1.966 0.169

Degree of
familiarity f9 0.054 3.792 0.047 * −0.098 10.829 0.002 *

intercept b2 0.368 — - 0.332 — —

Structural Adjacent
routes f10 0.048 40.4 0.000 * 0.088 32.449 0.000 *

Adjacent
objects f11 — 3.4 0.073 — 1.244 0.272

Location f12 0.228 8.124 0.007 * 0.339 5.298 0.021 *
Intercept b3 0.283 — — 0.288 — —

* means p < 0.05.

According to Table 9, the landmark salience models are generated as follows:
The landmark salience model for self-location:

Ssel f−location
visual (x) = 0.018 f1 + 0.107 f2 + 0.060 f3 + 0.0003 f5 − 0.011 f6 + 1.259

Ssel f−location
semantic (x) = 1.259 f7 + 0.054 f9 + 0.368

Ssel f−location
structural (x) = 0.048 f10 + 0.228 f12 + 0.283

Ssel f−location
landmark (x) = 1/3(Ssel f−location

visual (x) + Ssel f−location
semantic (x) + Ssel f−location

structural (x))

The landmark salience model for orientation:

Sorientation
visual (x) = 0.005 f1 + 0.218 f2 + 0.159 f3 + 0.001 f5 − 0.014 f6 + 0.706

Sorientation
semantic (x) = 3.362 f7 − 0.098 f9 + 0.332
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Sorientation
structural (x) = 0.088 f10 + 0.339 f12 + 0.288

Sorientation
landmark (x) = 1/3

(
Sorientation

visual (x) + Sorientation
semantic (x) + Sorientation

structural (x)
)

5. Discussion

In this section, we first analyse the important factors that influence the generation of the indoor
landmark salience model. We then discuss the differences in landmark salience between the self-location
and orientation tasks from the perspective of the participants and indoor environments. Finally, we
compare the accuracy of our model with previous weighting methods and propose improvements to
our model.

5.1. Important Factors for the Landmark Salience Model

As indicated by the previous findings in Sections 4.2.1 and 4.2.2, question 1 with regard to whether
landmark salience can be calculated by eye-tracking data has been answered. In this part, three
important factors for the construction of the landmark salience model are shown.

The first factor is the type of eye-tracking data. To prove the reliability of the selected eye-tracking
data (combined features), seven types of feature (combined features, fixation, saccade, pupil,
fixation+saccade, fixation+pupil and saccade+pupil) were collected in the images of task 1, and
PLSR was applied to calculate the coefficient. The difference value results between the stimulated
visual salience and the predicted salience of the seven features are shown in Figure 6. Clearly, the
combined feature has the lowest difference value (mean = 0.0022, SD = 0.0004), making it possible to
improve the accuracy of visual salience based on fixation features and other types of eye-tracking data.

The second factor is the weighting algorithm. The previous results in Section 5.1 prove that PLSR
is the best algorithm in this research. There are two reasons for this conclusion. On the one hand, the
selected eye-tracking data are significantly different from the stimulated visual salience (Table 8), and
the ANOVA results based on SPSS show that eye-tracking data follow a normal distribution, which
means that the selected features could be used to establish multiple linear regression equations [14].
On the other hand, in PLSR, the stimulated visual salience and eye-tracking data are measured as
dependent and independent variables, respectively, while the other algorithms consider only the
variability of eye-tracking data.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  19 of 26 
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The last factor is the significance of landmark salience attractiveness. Table 9 reveals that the
factor coefficients for the self-location and orientation tasks are different. For instance, the degree of
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familiarity is significantly positively correlated in the self-location group, but it is negatively correlated
with landmark salience based on eye-tracking data in the orientation group.

5.2. Differences in Landmark Salience between Self-Location and Orientation

Section 4.2 answered question 2 with regard to whether differences in landmark salience occurred
between the self-location and orientation tasks. To explain this problem, the participants’ visual
behaviours and indoor environments are analysed in this section.

5.2.1. Differences in the Participants’ Visual Behaviours

A t-test was applied to prove that the participants have significantly different visual behaviours in
self-location and orientation (Table 10). There are significant differences between the two tasks in four
types of eye-tracking data (total fixation duration, gaze duration, total saccade duration and saccade
duration). For instance, the participants in the self-location group had a gaze duration of 1.124 s (SD =

0.535) on the self-location task, which is significantly less than that of the participants in the orientation
task (mean = 1.818 s, SD = 0.789), indicating that the participants’ gaze duration was shorter on the
self-location task than on the orientation task.

Similar differences in total saccade features occur. The total saccade duration of the groups in
tasks 2 and 3 was 1.059 s (SD = 0.176) and 1.597 s (SD = 0.126), respectively, which indicates that
the participants in the self-location group had a significantly shorter saccade duration than did the
orientation group (t = −20.207, p < 0.001). However, there are no significant differences in pupil
features (pupil size, AOI pupil size and pupil difference) between the self-location and orientation
groups, which indicates that the participants have similar pupil behaviours with regard to the AOIs in
tasks 2 and 3.

Table 10. Differences in eye-tracking data between tasks 2 and 3.

Eye Movement Feature Task2 Task3 t-Test

M ± SD M ± SD t p

Fixation
total fixation duration (s) 6.636 ± 0.955 10.694 ± 1.335 −16.089 0.001 *
first fixation duration (s) 0.335 ± 0.239 0.339 ± 0.230 −0.105 0.918
gaze duration (s) 1.124 ± 0.535 1.818 ± 0.789 −4.083 0.001 *

Saccade
total saccade duration (s) 1.059± 0.176 1.597 ± 0.126 −20.207 0.001 *
saccade duration (s) 0.255 ± 0.104 0.314 ± 0.153 −3.734 0.001 *

Pupil
pupil size 3.771 ± 0.023 3.767 ± 0.018 −0.743 0.984
AOI pupil size 3.895 ± 0.048 3.898 ± 0.043 −0.685 0.456
pupil difference 0.124 ± 0.045 0.131 ± 0.061 −0.423 0.338

* means p < 0.05.

5.2.2. Differences in Indoor Environments

In this section, we select gaze duration and saccade duration. The t-test results show that
the participants pay significantly different amounts of attention to indoor landmark types between
self-location and orientation (Figure 7).

The participants in the orientation group had a significantly longer gaze duration (mean = 2.242 s,
SD = 0.547) and saccade duration (mean = 0.401 s, SD = 0.141) on store landmarks than did the
participants in the self-location group (mean = 1.179 s, SD = 0.442; mean = 0.207 s, SD = 0.107). A similar
trend also occurs for the elevator landmark. The mean gaze duration and saccade duration of the
participants in the orientation group were 1.725 s (SD = 0.858) and 0.255 s (SD = 0.121), respectively,
which were significantly higher than those in the self-location group, indicating that the store and
elevator landmarks were significantly more attractive to the orientation group than to the self-location
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group. Although the participants in the orientation group had a significantly shorter gaze duration
on signs (t = −2.698, p = 0.004), the saccade duration on signs did not show a significant difference
between the self-location and orientation groups (t = −0.521, p = 0.309).
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There are two reasons for this phenomenon. First, we selected an indoor mall as the experimental
environment; stores are the most important landmarks in a shopping centre, and participants are prone
to observe store landmarks. Second, according to the landmark salience model, explicit marks play an
important role in semantic salience, which indicates that it is easier for participants to find this factor
attractive. Store landmarks have explicit marks, but the others do not.

5.3. Compared with Previous Research

Previous research has mainly calculated landmark salience by equal weighting, expert knowledge
and instance-based scoring method. For example, the original salience model sets all weights as
equal [7], and this method has been adapted by different salience models [17,26]. Nuhn [8] proposed
a salience model that weights results using expert knowledge based on formal research. Zhu [19]
constructed an instance-based scoring system to evaluate indoor landmark salience. Thus, the PLSR,
equal weighting, expert knowledge and instance-based scoring methods were selected to compare the
accuracy of landmark salience evaluation methods.

The landmark salience weighting results calculated by PLSR are mentioned in Section 4.2. The
weighting results evaluated by the equal weighting method are shown in Table 11. As for the expert
knowledge method, seven researchers with a PhD in cartography were invited to weight the importance
of indoor landmark salience, and the results are shown in Table 11. Regarding the instance-based
scoring method, the landmark salience attractiveness and weighting results are adapted from Zhu [19].
The landmark salience measured by the three algorithms was compared with the landmark salience
based on eye-tracking data in Section 4.2.2. The difference value results are shown in Figure 8.

As presented in Figure 8, the circle size represents the landmark salience difference between
eye-tracking data and four weighting methods. The larger the size of the circle, the bigger the difference
value. The difference values of PLSR are lower than the other three weighting methods in both task 2
and 3. The highest difference value shown in AOI18 was calculated by equal weighting in both tasks 2
and 3. However, the difference value calculated by equal weighting is lower than those calculated by
expert knowledge and instance-based scoring method in AOI13 in task 3. Thus, the most accurate
weighting method in this study is PLSR. The accuracy of the other three weighting methods changes in
different landmark attractiveness and tasks.
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Table 11. Weighting results of four methods between tasks 2 and 3.

Visual Shape Deviation Hue Brightness Façade
area Distance Prominence Unique

label

Task2
PLSR 0.018 0.107 0.060 — 0.0003 −0.011 — —
Equal 0.166 0.166 0.166 0.166 0.160 0.166 — —
Expert 0.370 0.150 0.340 0.120 0.100 −0.080 — —

Instance — — — — 0.0565 — 0.3437 0.1394
Task3

PLSR 0.005 0.218 0.159 — 0.001 −0.014 — —
Equal 0.166 0.166 0.166 0.166 0.16 0.166 — —
Expert 0.350 0.210 0.280 0.230 0.090 −0.160 — —

Instance — — — — 0.0565 — 0.3437 0.1394

Semantic Importance Marks Familiarity Uniqueness Structural Route Object Location Spatial extent Permanence

Task2 Task2
PLSR 1.259 — 0.054 — PLSR 0.048 — 0.228 — —
Equal 0.334 0.333 0.333 — Equal 0.334 0.333 0.333 — —
Expert 0.290 0.380 0.330 — Expert 0.280 0.300 0.420 — —

Instance — 0.0156 0.1070 0.0408 Instance — — 0.1988 0.0261 0.0721
Task3 Task3

PLSR 3.362 — −0.098 — PLSR 0.088 — 0.339 — —
Equal 0.334 0.333 0.333 — Equal 0.334 0.333 0.333 — —
Expert 0.230 0.350 0.420 — Expert 0.250 0.280 0.470 — —

Instance — 0.0156 0.1070 0.0408 Instance — — 0.1988 0.0261 0.0721
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5.4. Improvements for Current Studies

Prior studies have considered landmark salience differences in personal dimensions, time
dimensions (day and night) and environmental dimensions (indoor and outdoor), but few researchers
have determined the differences in salience among various wayfinding tasks. For example, Nuhn and
Timpf [8] defined the personal dimensions of landmarks, including spatial knowledge, interests, goals
and backgrounds. Additionally, the salience of an object is different across people with various personal
dimensions. Duckham, Winter, and Robinson [4] introduced nighttime vs. daytime factors into
computing the salience of individual landmarks. Regarding the environmental dimension, researchers
have proposed a salience model for both indoor and outdoor settings [24,27,28]. However, they could
not determine the differences in salience in various tasks. This article provides a method to calculate
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landmark salience based on participants’ eye-tracking data, and the landmark salience models are
different between self-location and orientation tasks.

The indoor landmark salience proposed in this article could be applied to design indoor maps for
different tasks. For instance, we calculated landmark salience results in the first floor of the David
Mall. Landmarks with high salience results could be regarded as areas of interest (AOI) [26]. Thus, we
selected landmarks with salience results higher than the mean results as AOIs. The indoor maps for
self-location and orientation were design by ArcMap 10.1 (Figure 9). Figure 9 shows that AOIs are
different between indoor maps for self-location and orientation. For instance, Coach and BOTTEGA
are AOIs in indoor maps for orientation, but they are not AOIs in indoor map for self-location.
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In addition, the existing research has applied visual input technologies to realize human–computer
interactions for navigation. Richter [17] pointed out that interaction between humans and computers
has a specific focus on wayfinding. Additionally, landmark references have been proven to show the
importance and benefits of this interaction. Landmark salience based on eye-tracking data can be
theoretically inputted into real-time indoor navigation. For instance, participants can only passively
receive landmark information when using traditional navigation applications. Thus, it is possible
to construct a real-time gaze-aware navigation assistant that can actively detect the participant’s eye
movements [15], calculate the visual salience and recommend attractive landmarks to the participant
in the future.

6. Conclusions and Future Research

This study aimed to establish an indoor landmark salience model based on eye-tracking data
and to compare the differences in salience between self-location and orientation. The results show
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two findings. Finding 1 proves that eye-tracking data could be used to measure indoor landmark
salience. For instance, seven types of eye movement could be applied to analyse salience, and the
salience result of the combined eye-tracking data was more accurate than that of the other types of
eye movements. In addition, the PLSR weighting algorithm was more accurate than the other current
weighting methods. Finding 2 shows that significant differences in landmark salience occurred between
self-location and orientation. The participants paid more attention to landmarks that were stores
and elevators in the orientation task. Thus, it is necessary to generate an indoor landmark salience
model for different tasks. This study can contribute to the development of an indoor navigation map
design in cartography and GIScience. For instance, landmarks with higher landmark salience could be
highlighted in indoor navigation maps. In the meantime, it is meaningful for cartographers to redesign
indoor maps for different wayfinding tasks.

However, since the experimental materials were statistical images, we did not discuss visual
performance in real-world environments. The first challenge of indoor real-world experiments is how
to calculate landmark salience attractiveness. For example, the information on shape factors, visual
distance or façade areas keeps changing as the participants walk. It is difficult to define the exact visual
factors of different landmarks. The second challenge is distraction caused by customers in a mall.
Participants might be attracted by the people in real-world environments, and their concentration in
the experiment may decrease.

As discussed in the previous section, future research can focus on the definition and calculation
of landmark salience attractiveness in changing scenes. Moreover, future research can conduct
experiments to detect the landmark salience attractiveness in various indoor scenes, such as airports,
hospitals or conference centres.
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