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Abstract: The importance of being able to separate the semantics from the actual (X,Y,Z) coordinates
in a point cloud has been actively brought up in recent research. However, there is still no widely
used or accepted data layout paradigm on how to efficiently store and manage such semantic point
cloud data. In this paper, we present a simple data layout that makes use the semantics and that
allows for quick queries. The underlying idea is especially suited for a programming approach
(e.g., queries programmed via Python) but we also present an even simpler implementation of the
underlying technique on a well known relational database management system (RDBMS), namely,
PostgreSQL. The obtained query results suggest that the presented approach can be successfully used
to handle point and range queries on large points clouds.
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1. Introduction

Following the proliferation of highly efficient LiDAR instruments in the last two decades, there has
been an ever increasing growth in the use of laser scanning methods for various mapping applications.
The commonly applied systems include ALS (airborne laser scanning) as attested in Reference [1],
TLS (terrestrial laser scanning) [2] and MLS (mobile laser scanning), see for example, Reference [3].
The emerging mapping systems include personal laser scanning systems and UAV (unmanned aerial
vehicle) based laser scanning. In addition to laser scanning techniques, dense 3D reconstruction of
the environment may be accomplished by image based methods, for example, Reference [4] or depth
camera systems, for example, Reference [5], typically encountered in indoor scanning contexts. Finally,
point cloud data sets are also increasingly available as open data sets, most typically provided by
national mapping agencies.

The aforementioned developments have resulted in a significant increase in the use of point
clouds, and their application in numerous analysis methods and systems. The development of point
cloud processing algorithms has also introduced new aspects to point clouds, namely semantics.
Semantic classification of point clouds may have somewhat different characteristics depending on the
context. In MLS and other terrestrial point clouds (e.g., Reference [6]), it is present as an expansion
of point classification, which is a well established paradigm with ALS data sets. Here, the increasing
amount of object categories and the shift from a 2.5D case to highly detailed 3D scenes increases the
complexity. In indoor environments (e.g., Reference [7]), the semantic point cloud data is commonly
associated with robotics, and often includes identification of individual objects. Finally, the possibility
of associating IDs of individual objects (e.g., building IDs from Geographical Information Systems )
with point cloud segments has been proposed [8].
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Point clouds are often classified as being sparse or dense [9] depending on the point density used
in representing the target object. With regards to their storage however, point clouds are datawise dense
rather than sparse [10], which would imply many missing values. Alvanaki et al. [11] point out that
quite a number of different attributes or properties are associated to each point in a point cloud. Besides
the XYZ coordinates and the RGB color values, there are for instance additional attributes related to
the incident laser pulse (e.g., intensity, scan angle and return-related data) as well as some semantic
data, which is typically an integer value that classifies the targeted object. Nevertheless, we can assume
that the total number of attributes is going to remain in most cases well below 50. In this respect, point
clouds can be characterized as being vertically narrow. As a contrast, in Reference [10], the authors use
the term ‘wide’ for datasets that consist of hundreds if not of thousands of different attributes.

The storage of point cloud files, huge as they may be in their number of points, should present
no problem, for disk storage can be considered to be practically free [12]. Furthermore, the gradual
proliferation of flash-based solid-state-drives (SSDs), which have no moving parts, means that the total
random access latency (i.e., the seek time + the rotational latency) will be minimal [13,14]. This implies
that obtaining fast response times from a point cloud query essentially requires reducing the data
transfer time; that is, the time required to load the data from disk into memory. More precisely, what is
needed is an efficient indexing scheme to quickly locate the desired points. With a point cloud,
the index is comprised of the XYZ coordinates, which incidentally also carry the main information.

Regarding the nature of point clouds, we share the view proposed by van Osteroom et al. [15]
in that since point clouds possess some common characteristics with both raster data and vector
data, it is useful to consider them as a class apart. We note that as pointed out in Reference [16],
since point cloud data is not associated with a regular grid, it can be classified as unstructured data.
Furthermore, point clouds can be characterized as being mostly static data sets [17]; once processed and
cleaned, there is little need for modifying or updating them. This absence of a dynamic dataset means
that the data processing needs of point clouds are very different from an intensive transaction based
processing involving lots of updates [18]. Updating a point cloud may eventually be required over
time though, and can be classified as involving large-scale or small-scale changes [19]. However, our
main concern in using point clouds remains on how to provide fast response times even for complex
(read-only) queries.

In order to make use of the vast amount of data in a point cloud, an efficient storage and retrieval
system is therefore needed. We identify three basic approaches for storing and managing the data
present in point clouds, namely—(1) a file-based approach, (2) a relational database management
system (RDBMS) approach, and (3), the use of big data tools.

The motivation here is not the use of a specific big data tool, but rather using semantic data to
effectively partition the point cloud so as to provide a dramatic increase in query speeds. We present
two different implementations of a semantic-based approach that reduce the data stored in a single
file, or in a single table, depending on its use. The first implementation uses files and directories for
storing the point clouds while the second implementation uses an RDBMS (PostgreSQL). The latter
RDBMS implementation is compared with a benchmark that uses a traditional (flat) RDBMS approach;
the results showed that the presented semantic based RDBMS implementation is noticeably faster than
the benchmark.

The rest of the paper is organized as follows: Section 2 takes an in-depth look at the previously
mentioned three approaches for managing point clouds, while Section 3 presents the sample datasets
and the data layout approach that we used for the two different implementations of the semantic-based
approach. Section 4 focuses on the obtained results for the three datasets and finally, a discussion of
the results and the conclusions inferred can be found in Section 5.
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2. Three Basic Approaches for Storing Point Clouds

2.1. The File-Based Approach

Traditionally, point clouds have been stored in binary files such as the well-known LAS-format or
its compressed format LASzip [20]. The files have then been processed with some specific application
software such as LASTools. A file-based approach is the most basic technique to manage point
clouds, as storage and data retrieval takes place in the original file format. The file-based approach
provides query tools through its own point cloud data management system, commonly known as
PCDMS [16,21].

However, as the data acquisition technologies for point clouds advances, there is a corresponding
increase in the size of the point cloud [22]. Moreover, there are applications that involve laser scanning
and monitoring (such as those that monitor tunnel systems that are part of the public roads) where
there is a need to keep the previously scanned point clouds as well. In such instances, scalability
quickly becomes an issue [23]. Because file-based approaches are generally based on a proprietary-file
format, data sharing among different applications becomes harder [24]. Finally, for the user to run
ad-hoc queries, a file-based application is simply not adequate [11,25].

2.2. The RDBMS Approach

Besides the file-based approach, point clouds can also be stored in an RDBMS such as Oracle or
PostgreSQL. One of the motivating factors in using a RDBMS to store point clouds is their usefulness
in providing access to the data via a powerful user interface, for example, SQL (Structured Query
Language) [26]. Relational databases are widely used for the storage of large point clouds as attested in
the comparative study by van Oosteroom et al. [15]. Relational databases, designed by E.F. Codd [27],
organise data into tables (relations) with a schema defining the relationships between the tables. Each
table is made up of a fixed number of attributes (also known as columns or fields) and each new entry
is a new row in the table, uniquely identified by a primary key [27]. The primary key in an RDBMS is
almost always based on the B-tree index, developed by Bayer and McCreight [28]. As discussed in
Section 2.4, the B-tree index is not really suitable for spatial indexing, which can render point cloud
queries running in an RDBMS slow, particularly when the index required in the query is not already
in memory.

To counter this problem, it is common to use spatial extensions to RDBMS, leading to what is
known as an object-relational database that allow users to define their own abstract data types [29], such as
geometric primitives. The advanced open source RDBMS PostgreSQL for instance, currently in its
version 11.X [30], can be extended through the PostGIS extension due to Blasby [31]. In PostGIS,
point clouds are handled through the separate ‘PC_PATCH’ extension following the work of
Ramsey [32]. With ‘PC_PATCH’, PostGIS generates groups (or patches) of a few hundred, generally
co-located points, so that each row in the table refers to a single patch. While retrieving a given group
of points can be very fast, accessing the individual points, does however, first require unpacking,
or exploding [32] the patch back into the original points which are stored separately.

2.3. The Big Data Approach

Before taking a look at big data approaches, it is useful to define the concept of big data. As pointed
out by Zicari [33], it is better to characterize big data in terms of its characteristics rather than its sheer
size, which is expected to keep on growing. The research group Gartner characterizes big data in terms
of three aspects, commonly known as the ‘3Vs’, which are high-volume (ever-increasing amount of
big-data), high-velocity and high-variety [34]. Velocity is not just about the speed at which new data
gets generated but also describes how fast the incoming data can be processed and stored into the data
repository. As to variety, it refers to the fact that big data originates from different sources, (besides
the social media, data may come through sensors or smart devices) and may thus take on a variety of
forms: structured, unstructured or semi-structured [35].



ISPRS Int. J. Geo-Inf. 2020, 9, 72 4 of 28

Since point cloud data is not typically processed and cleaned in real-time and because it is
numerical in nature, it really cannot be said to possess the big data characteristics of velocity and
variety. Therefore, we shall follow in the footsteps of Evans et al. [36] and, for our purposes, define big
data simply as any spatial data that meets at least one of the three basic characteristics V’s of big data,
that is, volume, velocity or variety. In light of this, point cloud data may therefore be classified as big
data merely based on its sheer volume.

The third approach for managing point clouds involves the use of big data tools, which can be
characterized by their ability to scale out by distributing the data over a cluster of several nodes [37].
Because the bottleneck in data intensive applications are the I/O operations, big data tools strive to
parallelize these operations so that each node uses the share of data residing in its local disk.

Big data tools can be basically grouped into NoSQL databases and Hadoop-based systems.
NoSQL databases differ from traditional relational databases in several aspects. A NoSQL database
basically omits the relational model, often lacks a full SQL implementation, and generally provides a
weaker notion of data consistency: the data may not always be up-to-date, though it will eventually
become consistent [38,39].

NoSQL databases can be grouped into four main categories as follows:

1. Key-value stores where values (which may also be completely unstructured, that is, Blobs) are
stored under a unique key. The values in key-values pairs may be of different types and may be
added at runtime without the risk of generating a conflict [40]. In Reference [41], the authors note
that key-value stores have evolved so that it is possible to test for the existence of a value without
knowing the key (value-based lookup).

2. Column-oriented stores, also known as wide-column stores, partition the data vertically so that
distinct values of a given column get stored consecutively in the same file [42]. Columns may be
further grouped into families so that each family gets stored contiguously on disk. In this respect,
a wide-column store can be seen as an extension of key-value stores; each column-family is a
collection of (nested) key-value pairs [41].

3. Document stores. A document-based store uses key-value pairs, where the value now refers
to a semi-structured format, which is typically a JSON or JSON-like format as found in
MongoDB [38,39].

4. Graph databases which excel in managing data with many relationships [40]. An example would
be social networks data. With the use of convolutional neural networks in point clouds [43],
graphs are a promising tool, especially in the process of classifying the semantics of the point
cloud. Since graph databases can be considered as a class to themselves, we do not examine their
use with points clouds in this work.

Regarding document-based stores, MongoDB has been used for managing point clouds [23].
However, MongoDB was used mainly for converting LAS-files into local coordinates, where each
point cloud tile (a total of over 1300 tiles) was stored in a document, representing a total of 400 billion
points [23]. MongoDB does not solve the issue of indexing, as it uses a B-tree index [44] so that the
same limitations for indexing 3D as found in RDBMS apply.

Key-value and column-oriented stores present an interesting solution for managing point clouds
which are, as previously mentioned, vertically narrow. The few non-key attributes (i.e., the non XYZ
data) can be stored in a few files so that the desired attribute, such as RGB colors or the intensity can
be accessed very quickly.

Besides NoSQL, the other major approach for managing big data, Hadoop-based systems,
can be divided into either (1) basic Hadoop-based frameworks or (2) SQL-on-Hadoop-based systems.
Both categories make use of Hadoop, the open source equivalent of MapReduce [45]. Using Hadoop
means using the MapReduce paradigm which relieves the user from the burden of how to parallelize
the task at hand since it executes the program in parallel over a cluster [46]. What is noteworthy is
that though this cluster of PCs is made up of so-called commodity PCs [45], each node in the cluster is
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often a high-end commodity PC, meaning that though it is readily available at computer stores, it is
generally from the high end of the spectrum memory-wise as many big data implementations tend to
be power hungry [47].

Nevertheless, SQL-on-Hadoop-based system have received much attention [48,49] for they
provide the benefits of SQL in querying the data. However, Vo et al. [17] note how Hadoop-based
approaches work best when the task clearly lends itself to be run in parallel, such as treating a point
cloud as a group of independent tiles. Moreover, as described in a benchmark [50], though offering
better performance and scalability in querying a point cloud than PostgreSQL, the authors found
out that configuring an SQL-on-Hadoop-based system (Spark SQL) for optimal performance can be
daunting and indeed requires lots of memory.

2.4. On Indexing Multidimensional Data: The B+Tree Index

In this section we focus on the B+-tree index.
When storing single dimensional values in a RDBMS, the natural choice is the B-tree [28] or more

precisely, one of many its variants [51], known as a B+-tree and generally attributed to Wedekind [52,53].
Like the B-tree, the B+-tree also consists of one root and of nodes that are either interior nodes or leaves.
Each node is effectively a disk page, more commonly known as a disk block, and so unless the contents
of a particular node that needs to be accessed have already been read in and remain in memory in
the so-called buffer pool [18], accessing such a node will also require a disk I/O operation. The B+-tree
differs from the B-tree in that the data is stored only at the leaves of the nodes. The interior nodes,
or the non-leaf nodes, hold the different search key values that act as a guide when searching for a
particular key. As these interior nodes do not store information regarding the data itself, they can
accommodate a larger number of different key values than in the B-tree [54]. The fundamental idea of
the B-tree/ B+-tree has been aptly expressed by the designers themselves [28]:

We assume that the index itself is so voluminous that only rather small parts of it can be kept
in main store at one time.

Even though this premise dates back from the early 1970’s and even though today’s buffer
pools can allocate large portions of memory for the data and the index [55], we find that it applies
surprisingly well today to point clouds which usually require a PC with a minimum of 16GB RAM for
basic processing.

Since we cannot rely on being able to keep the whole point cloud in memory, the main issue with
point clouds remains that of indexing: how can we keep the index small enough, so that at least parts
of it fits into memory? With RDBMS, we can reduce the index granularity [17] through the previously
mentioned grouping of points into blocks or patches, but as pointed out in References [15,56], there is
a cost to pay. Regarding queries, the implication is that individual points in a block are invisible to the
query processor until the block is exploded into the original individual points.

One might try to use the B-tree for indexing points in the (X, Y, Z)-space by using compound
index/concatenated attributes [57]. However, as pointed out by Bayer and Markl [58], the use of
multiple secondary indexes and that of a composite index (i.e., as obtained through concatenating
three attributes holding values for X, Y and Z) both result in indexes that have their own drawbacks.
Since by nature, a B-tree index can cluster data only for a single attribute, having a clustered index
on a composite key made up of two attributes X and Y, will effectively only make use of the first
dimension X when retrieving the disk pages [58]. The same applies in the use of a secondary index for
each coordinate.

Bayer and Markl [58] introduced the so-called UB-tree, specifically for indexing multidimensional
data. The underlying idea of the UB-tree is to use bit-interleaving so as to first transform a coordinate
value from several dimensions into a single integer value; this value then becomes the index for a
standard B-tree. As it turns out, the UB-tree approach is practically identical to the one found in the
use of space filling curves.
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As space filling curves are discussed at length in the literature, for example, References [16,59–61]
we will not present the theory here. We merely note that using a 3D space filling curve representation
made up of 128 bits and assuming an accuracy of 1cm, would enable storing an area the size of 2 × 106

km2 [50]. However, we found that using 128 bits is computationally too expensive and therefore chose
to use other means of indexing.

2.5. Semantic3D: A Simple Semantic Point Cloud Scheme

As this works deals with 3D point clouds that are enhanced with semantic labels [6,62], we need
to store a semantic ID for each point P0 in the point cloud. The classification scheme, denoted SID,
is directly based on the so-called Semantic3D classification due to Hackel et al. [63] where SID takes on
values in the range 0 to 8 and indicates the highest entity level to which point P0 semantically belongs
to. In that scheme for instance, SID values of 3 and 4 refer to high and low vegetation respectively,
while SID = 5 implies a building [63]. Points that could not be classified following the scanning process
are given a value of SID = 0. We also assume that an intensity value I is available for each point P0

(because we were not using point clouds for visualization, we chose not to include the color values
(R, G, B) so as to speed things up). More precisely then, associated to each point P0, we store its
(X, Y, Z) coordinates, an intensity value I, and the semantic label or class ID, denoted SID.

Regarding the semantics, it is of course expected that some points will be part of a hierarchy of
entities. For instance, a point P0 may denote a door that is part of a façade, which, in turn, is part of a
building. For simplicity though, and to keep the focus on the presented layout, we chose to skip all
the sub-classes (such as door and façade) in this study. This means that semantic classification
is understood to mean that each classified point belongs to a single semantic class, similar to
Weinmann et al. (2017) [64]. So for the previously mentioned point P0, its SID = 5, representing
the highest-level entity, for example, a building.

With regards to the file arrangement, we follow Hackel et al. [63] and assume that a given point
cloud dataset consists of two separate files, a file Points(X, Y, Z, I) and another file Semantics(SID).
Because the file Semantics (for brevity, we write Semantics as shorthand for the file Semantics(SID)

and Points as shorthand for the file Points(X, Y, Z, I)) has exactly the same ordering and hence the
same number of rows as file Points, no separate index is needed for the file Semantics.

The arrangement just described is in fact an example of a column-based layout. File Semantics is
a a single-column file whereas the file Points, comprising a total of four columns, is an example
of a column-family [65] as it groups the fundamental LiDAR information into a single entity.
For convenience, we refer to the aforementioned two-file arrangement as the Semantic3D format.

In order to be able to quickly locate the files Semantics and Points containing point cloud data
belonging to a certain semantic class SID, we make use of directories as explained in Section 3.2,
which details a data layout that is compatible with the Semantic3D format while making fast queries
possible. We refer to this technique of separating point cloud data based on the semantic classification
of each point through the generic term Semantic Data Based Layout or simply SDBL and defer its details
to Sections 3.2 and 3.3. When using the SDBL approach together with directories, the queries need to
be programmed separately, and as described in Section 3.9, we used Python.

As will be shown in Section 3.3, it is possible to apply the SDBL approach when using RDBMS
as well, albeit without the use of directories or Python. In our case, we selected the widely available
PostgreSQL as the RDBMS. We chose PostgreSQL as the RDBMS because it is widely used in the
academia with point clouds and is one of the few RDBMS to support the concept of grouping points
into patches [32]. To easily distinguish between the two approaches, we will refer to using SDBL
programmatically via directories (and files) as simply SDBL via Python, and refer to using SDBL
through a RDBMS as SDBL via PostgreSQL.
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3. Materials and Methods

We first describe the sample point cloud dataset, then take a deeper look at the underlying SDBL
which allows fast queries when used via Python (and directories) or via PostgreSQL.

3.1. The Sample Point Clouds

We used three different point clouds of varying sizes, with the smallest dataset consisting of a
few hundred thousand points and the largest containing nearly half a billion points. The datasets are
referred to here as the (i) SMALL, (ii) MEDIUM and (iii) LARGE dataset and are briefly described in
Table 1.

The SMALL dataset (Figure 1) differs slightly from the two other datasets with respect to the
use of semantic SID. As its file is not obtained through Semantic3D [63], and represents mostly
buildings, SID takes on here only two different values, namely 0 (no classification) or a large integer
value that represents the building ID associated with each point. However, to be in line with the
classification semantics of Semantic3D, we assume that each point in the SMALL dataset that is
classified as a building is first associated with SID = 5 and then also associated with a large integer
value identifying a particular building. The SMALL dataset was downsampled so as to obtain a
dataset that is clearly smaller than the MEDIUM dataset. In Section 4.1.1, we use the original, extended
and non-downsampled SMALL dataset to test more complex queries. That dataset is used only in
Section 4.1.1 and is referred to as the extended SMALL dataset. Therefore the term SMALL dataset,
when used as such, is understood to refer to the downsampled SMALL dataset. The downsampled
SMALL dataset contains a total of 84 buildings, each averaging roughly 500 points, with the rest of
the points being unclassified. Other than this classification difference, the three datasets possess an
identical file structure.

(a) The point cloud from the SMALL dataset with
natural RGB coloring.

(b) The point cloud from the SMALL dataset where
individual buildings have been randomly assigned
their own colors. Grey areas denote unclassified
points which are not buildings.

Figure 1. The point cloud visualization for the SMALL dataset representing a collection of buildings
in the Otaniemi district that is part of the Espoo municipality in Finland. The dataset was produced
from the openly available, classified airborne laser scanning (ALS) point cloud provided by the Finnish
National Land Survey [66], by obtaining a unique building ID for all points in a building from the
topographic database [67] via spatial correlation using the QGIS application (Version 2.18.12). The ALS
point cloud was then manually segmented for Otaniemi and downsampled to produce the final point
cloud. The semantic ID is only used to denote specific buildings (all other points are assigned a value
of 0), which number a total of 84.
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Figure 2. A point cloud visualization for the MEDIUM dataset from Semantic3D [63] representing
Bildstein station. File: http://semantic3d.net/data/point-clouds/training1/bildstein_station1_xyz_
intensity_rgb.7z.

Figure 3. A point cloud visualization for the LARGE dataset from Semantic3D [63] representing a
station. File: http://semantic3d.net/data/point-clouds/training1/sg27_station2_intensity_rgb.7z.

Table 1. The three datasets that were used, of which the MEDIUM and LARGE are from
Semantic3D.net [63].

SMALL Dataset MEDIUM Dataset LARGE Dataset

368,408 points representing the
Otaniemi area in Espoo Finland.
Source: National Land Survey
of Finland, cropped sub-sample
based on the ETR-TM35FIN
coordinate system

29,697,591 points from Bildstein
station, source: Semantic3D [63],
file: bildstein\_station1\_xyz\
_intensity\_rgb.7z.

496,702,861 points from a station,
source: Semantic3D [63], file:sg27\
_station2\_intensity\_rgb.7z.

3.2. Using SDBL via Python

We assume that when querying point clouds, the user will be interested in objects belonging
to a specific semantic class, such as finding certain buildings in a given location. (A list of potential
semantic applications of points clouds is given in Reference [68]). In light of this, when SDBL is applied
via Python, it basically means the data layout makes use of directories that reflect the various semantic
classes while the queries are written in Python. More precisely, we first arrange the data according to
the different semantic classes, so that for each distinct semantic label SID 0 to 8, a separate directory
named ID_SID is created, resulting in a total of nine separate directories.

For instance, the directory named ‘ID_0’ would include a file Points, which contains all the points
whose semantic label SID is equal to 0 (unclassified points), while in directory ‘ID_5’, the file Points
would contain only points whose semantic label SID = 5 (i.e., buildings). It is worth noting that when
using SDBL via Python and thus through directories, the semantic class SID itself does not need to
be stored in a file, since that information is already contained in the name of the directory ID_SID.
To summarize, SDBL via Python is a layout where the previously mentioned file Semantics has become
unnecessary and the original Points file that contained all the points in the dataset has now been
decomposed into a new set of Points files, with each Points file residing in a sub-directory named
‘ID_SID’ so that all points in file Points belong to the same semantic class SID. Finally, we note that

http://semantic3d.net/data/point-clouds/training1/bildstein_station1_xyz_intensity_rgb.7z
http://semantic3d.net/data/point-clouds/training1/bildstein_station1_xyz_intensity_rgb.7z
http://semantic3d.net/data/point-clouds/training1/sg27_station2_intensity_rgb.7z
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to handle any particular query, the user is normally expected to supply at least the semantic class.
However, it is possible to use this technique when the semantic ID or SID is unknown as discussed in
Section 4.3, although in such a case, the SDBL loses some of its inherent advantage that may lead to
slower queries.

3.3. Using SDBL via PostgreSQL

To show that the basic idea in SDBL can also be used with a RDBMS, we implemented SDBL
via PostgreSQL using the exact same three datasets. So as to use a data layout with tables that bears
similarity to the basic idea behind SDBL, we use horizontal or row partitioning [69] to partition the
data into a set of tables T_SID where SID = 0, 1, 2, . . . , 8 so that each table T_SID stores points related
to a single semantic class. Row partitioning, also known as horizontal fragmentation, is a technique
that reduces the number of rows in a larger table by splitting the rows into a set of fragmented tables
according to the common values of a partitioning attribute. In our case, the partitioning attribute is,
of course, none other than the semantic ID attribute SID, meaning that the first fragmented table
T_0 will contain rows referring only to SID = 0, the second fragmented table T_1 will contain the
rows referring only to SID = 1, and so on. A partitioned or fragmented table TSID is thus made up
of only rows that represent points that share a common semantic class SID. Once the dataset has
been partitioned into a set of PostgreSQL tables, retrieving those points that are related to buildings
(SID = 5) in the MEDIUM dataset for instance amounts to running a simple SQL query such as
SELECT * FROM T_MEDIUM_5, since all required points are now contained in the single fragmented
table T_MEDIUM_5.

3.4. The Queries That Were Used

We ran five queries for the three different datasets, as depicted in Tables 2 and 3. For all three
datasets, there was a basic (semantic) point query Q1 that consisted of simply retrieving all the points
associated with buildings. Since the SMALL dataset contained building IDs, two additional point
queries (Q1A and Q1B) that referred to two specific building IDs were used for this dataset, as shown in
Table 2. We note in passing that while the authors in Reference [17] use the term point query to denote
a query that retrieves a single point and its properties from the point cloud, we use it in the more
broader spatial query sense to simply denote a query that requires an exact match (as opposed to a
given range) for a certain attribute.

As for the MEDIUM (Figure 2) and LARGE (Figure 3) datasets, a range query Q2A was used to
further restrict the results of point query Q1 to find only those points whose X-coordinate was > 20.
As for point query Q2B (Table 3), it simply finds those points that are associated with SID = 2 (natural
terrain). For all three datasets, two range queries (illustrated in Figure 4) were tested, a rectangular
query Q3 and a radial query Q4. Both of these queries use the result set from query Q1, in other other
words, they are applied to only those points that belong to buildings. The radial query Q4 was so
designed that for all three datasets, it would return a clearly smaller result set of points than query Q3.
Lastly, in order to get a feeling of how a point query that does not specify the semantic ID would fare,
we ran an additional point query that retrieves a single point from the LARGE dataset as detailed in
Section 4.3.
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Table 2. The five different queries used for the SMALL dataset, which differ slightly from the ones
used for the MEDIUM and LARGE datasets. Note that loading of points implies finding the correct set
of points and loading them into memory.

Query ID Description

Point Query Q1 Load all points where SID = 5 (buildings).
Point Query Q1A Load all points that refer to a particular building ID (ID = 416793804).
Point Query Q1B Load all points that refer to a particular building ID (ID = 41679427).
Rectangular Query Q3 Load all points that refer to buildings and that are within a given rectangle.
Radial Query Q4 Load all points that refer to buildings and that are within a given radius.

Table 3. The five different queries used for the MEDIUM and LARGE datasets.

Query ID Description

Point Query Q1 Load all points where SID = 5 (buildings).
Range Q2A Load all points that refer to buildings and where the x-coordinate > 20
Point Query Q2B Load all points where SID = 2 (natural terrain).
Rectangular Query Q3 Load all points that refer to buildings and that are within a given rectangle.
Radial Query Q4 Load all points that refer to buildings and that are within a given radius.

(a) An example of an area returned by
a rectangular range query: the colored
rectangular area (defined in the query
using two diagonally opposite (X, Y)
points) contains the set of red-colored
points returned by the query.

(b) An example of an area returned by
a radial range query: the colored circle
(defined in the query through its center
(X, Y) and its radius) contains the set of
red-colored points returned by the query.

Figure 4. Two different range queries: rectangular (a) and radial (b).

3.5. Querying the Data in SDBL Using Python

We assume that a data layout according to SDBL via Python has been created for a given dataset
as outlined previously. Now when using SDBL via Python, querying all the points that are part of
some building, that is, those with semantic class SID = 5, amounts to simply reading the contents
of a single file, namely the file Points that is stored under the sub-directory named ‘ID_5’. A brief
excerpt of the required Python code is shown in the Appendix A, Listing A1 where the function
get_sem_xyz_points takes two parameters, cur_dir and semanticID, which refer to the data layout
parent directory and to the semantic class respectively. Using the pandas [70] and feather packages [71],
the function get_sem_xyz_points quickly reads (in line 5) a subset of the point cloud that is stored
under the path supplied by the user in cur_dir and followed by sub-directory ‘ID_5’ (line 3) from a
binary file (named ‘xyz.fff’ as shown in line 4). Thus, in order to obtain all the points that are related to
buildings, one can simply issue the function call get_sem_xyz_points (MyPath, ’5’) where MyPath

MyPath
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refers to the directory containing the point cloud datasets. Applying a restriction and finding the set of
desired points is accomplished via the pandas query function as shown in Listing A2.

We note that for the SMALL dataset, there would be additional sub-directories under the directory
‘ID_5’, with each sub-directory corresponding to a separate building ID as explained in Section 3.7.
In order to test how the query times would be affected by increasing the number of sub-directories
under the directory ‘ID_5’, we used the extended SMALL dataset. This test, along with the extended
SMALL dataset, is described separately in Section 4.1.1.

3.6. Querying the Same SDBL Data in PostgreSQL

Querying using SDBL via PostgreSQL occurs through the fragmented tables as discussed
previously in Section 3.3. While it is customary to retain the partitioning attribute in a fragmented table
in case the tables need to be later rebuilt into the original unfragmented table, in our implementation
we did not deem it necessary to include the column SID. The fragmented tables are thus each made up
of four attributes, namely (X, Y, Z, I). The SMALL dataset, as mentioned previously, is an exception
in that all classified points refer to a specific building ID, so a semantic ID column does need to
be included in table T_5 in order to hold the large integer values that identify a specific building.
However, as the table for the SMALL dataset was rather small in size, a standard B-tree index on just
the attributes (X, Y, Z) was deemed enough, without resorting to the creation of a secondary index
on SID.

It is worthwhile to note the difference between the just described horizontal partitioning and
the patching (‘PC_PATCH’) [32] approach available in PostgreSQL (also found in Oracle as point
cloud blocks). While patching reduces the index granularity by creating groups of co-located points,
horizontal fragmentation reduces the number of rows in a given table without changing the index
granularity. More importantly, fragmentation provides us with a mechanism of directly accessing
semantic data since if all rows/points in a table share the same semantic ID, there is no longer the need
to specify that attribute in a query.

Moreover, so as to get a better idea of the speed of the fragmented PostgreSQL table approach,
we also used a PostGIS version of the fragmented approach in addition to the basic unfragmented
approach, which acted as a benchmark for PostgreSQL queries. The unfragmented benchmark
approach used a basic PostgreSQL table made up of five columns (X, Y, Z, I, S) with a secondary index
for column S, which refers to the semantic ID or SID.

Finally, for the SMALL dataset, we also tested a blocked Patch-table approach, which uses the
PC_PATCH. In this approach, the building ID acts as a grouping attribute, so that each patch or block
(there are 84 of them) is made up of points (an average of 500 points per patch) that belong to the same
building ID. To make the Patch-table approach as fast as possible, we dropped the intensity column,
so that the table effectively consisted of only four columns: the (X, Y, Z) attributes and the semantic
attribute SID.

In the following, we summarize the approaches that were used to test SDBL via PostgreSQL tables:

1. Fragmented table : the dataset is fragmented into rows so that all points in a table belong to
the same SID. The index is a basic B-tree composite (X, Y, Z) non-clustered index. A total of
nine fragmented tables are generated for the MEDIUM and the LARGE datasets, and only two
fragmented tables (SID = 0 and SID = 5) for the SMALL dataset. The attributes in each fragment
table are (X, Y, Z, I).

2. Fragmented PostGIS table (SMALL and MEDIUM datasets only): basically as above, but now the
attributes are (X, Y, Z) and S (for the SMALL dataset) and (X, Y, Z) and I (for the MEDIUM
dataset). These four attributes are incorporated into the PostGIS type ‘Point’. For the SMALL
dataset, the index is made up of three separate functional indexes, which are for attributes X,
Y and S (referring to SID). For the MEDIUM dataset, only two functional indexes are needed,
for attributes X and Y. This PostGIS option is tested only for the SMALL and MEDIUM datasets,
and only two fragmented tables (those that are actually queried) are generated for each dataset.
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3. Unfragmented benchmark table: the dataset, now comprised of attributes (X, Y, Z, I, S) is contained
in a single flat PostgreSQL table (without PostGIS) and without the use of fragmentation. This table
acts as a benchmark for the other PostgreSQL tests and since it contains points from different
semantic IDs, an additional B-tree index on attribute SID was created in addition to the basic
B-tree composite (X, Y, Z) (non-clustered) index.

4. Patch-table: this approach is only used with the SMALL dataset. The patches are created out of
points that have the same building ID and the table is indexed via a GIST index on the PCPOINT
type. The single patch-table contains the four attributes (X, Y, Z, S).

3.7. Data Preparation for Using SDBL via Python

Before taking a look at the results in Section 4, we give some background on how the data was
prepared to be used with SDBL. In order to prepare the point cloud datasets for use with SDBL via
Python, we wrote a Python script (as specified in Section 3.9, we used Python version 3.7.1) that,
for each of the datasets, partitions the data into directories according to the semantic class SID. For the
MEDIUM and LARGE datasets, this means creating nine directories (one for each semantic class SID
in the range 0 to 8) and generating the file Points(X, Y, Z, I) under each directory. For the SMALL
dataset, this entails creating two main directories (one for semantic class SID = 0 and for semantic
class SID = 5) and then creating under directory ‘ID_5’, a sub-directory ‘ID_BUILDING_ID’ for each
separate BUILDING_ID (containing a separate Points file for the building in question) , resulting in a
total of 84 sub-directories, the number of different buildings in the SMALL dataset.

For each dataset, the Points-files are stored separately on disk under the appropriate sub-directory
using the fast binary feather format [71]. These files are then loaded into a pandas dataframe as needed
for queries; the implicit index automatically created by pandas [70] was deemed sufficient and hence
no explicit index was created.

Because in Section 4.3 we also tested queries that did not include the semantic class SID, we also
store the minimum and maximum of X, Y and Z coordinates of each dataset in a separate file (a total
of six values per each dataset). Having these six extreme values stored separately allows us not to
have to load all nine Points-files when looking for a certain point (X, Y, Z). In other words, should the
point (X, Y, Z) that is being queried not be contained within the stored minima and maxima, we can
simply skip loading that particular Points-file.

3.8. Data Preparation for Using SDBL via PostgreSQL

As for preparing the data for PostgreSQL, we made use of the same Python script that was used
to query SDBL via Python. Once a specific dataset had been prepared for Python use so that all nine
Points files had been written to their respective files using the feather package, the Python script was
run and an option was chosen from the menu to convert the appropriate set of files into PostgreSQL
tables. More precisely, the script used the SQLAlchemy [72] package to convert each Points file into a
corresponding fragmented PostgreSQL table. These tables were subsequently indexed via columns
(X, Y, Z).

Recall that the SMALL dataset is an exception in that the fragmented PostgreSQL table does
contain a column S to hold the semantic ID (SID) which now refers to a building ID. Therefore,
the preparation time for the SMALL dataset includes the time required to generate an additional B-tree
index on attribute S using pgAdmin. For the MEDIUM and LARGE datasets however, all the data
preparation for the fragmented PostgreSQL tables is done via the Python script.

As for the unfragmented PostgreSQL benchmark table, for each dataset, it was created using
pgAdmin, indexed on (X, Y, Z) and populated with data from the fragmented tables (using SQL).
An additional index was then added on column S since an unfragmented table contains different
semantic IDs.

We also tested PostGIS for the SMALL and MEDIUM datasets (without ‘PC_PATCH’). For the
SMALL dataset, we created a PostGIS table with four attributes (X, Y, Z, S) and populated it using
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the function PC_MAKEPOINT(1,ARRAY[X,Y,Z,S]) with data from a fragmented PostgreSQL table as
shown in the Appendix A, in Listing A5. Since S represents the building ID to which point (X, Y, Z)
belongs to, after populating the SMALL dataset PostGIS table, a functional index was generated on
three columns, namely X, Y and S.

As for using PostGIS with the MEDIUM dataset, two different PostGIS tables were generated,
one fragmented with SID = 2 and another fragmented with SID = 5 (these two fragments
were sufficient for the queries). These two tables contained the four attributes (X, Y, Z, I)
and were populated using the appropriate PostgreSQL fragmented table and the function
PC_MAKEPOINT(1,ARRAY[X,Y,Z,I]). Once these two PostGIS tables were populated with their data,
a functional index was generated for each table on just two columns, X and Y.

We note that the preparation times for SDBL via PostgreSQL using the fragmented tables approach
as presented in Section 4 always include creating all possible table fragments. However, for the other
PostGIS approaches, preparation times only include the time for creating the minimal fragments that
are actually required for the queries.

Finally, ‘PC_PATCH’ was tested for the SMALL dataset only. This entailed creating patches
according to the semantic ID value of those points where SID = 5 using data from a PostGIS table
fragment. The table of patches was then indexed using a GIST index as shown in Listing A3.

3.9. The Software and Hardware That Was Used

A high performance Dell desktop (Precision 5820) with 64GB RAM and a 3.6 GHz Xeon 6-core,
running on a 64bit Windows 10 and equipped with an internal 1TB SSD for disk storage was used
for all the tests. The software for the SDBL layout was written entirely in 64bit Python (Python 3.7.1)
using miniconda3 and making use of the pandas [70] and feather [71] packages.

As a RDBMS, we used PostgreSQL 10.8, together with pgAdmin (version 4.3) for running the
queries. To evaluate the performance of a PostgreSQL query, the ‘Query Tool’ in pgAdmin was used to
run each query. However, so as to obtain an accurate time, for each query we issued the command
‘EXPLAIN ANALYZE stmt’, where stmt is the query that was run. The query time is the sum obtained
from the planning and execution times and it is these values which are reported in the result tables,
that is, Table 4 (SMALL dataset), Table 5 (MEDIUM dataset), Table 6 (LARGE dataset) and Table 7
(special point-query without semantic ID). The hot queries for SDBL via PostgreSQL are shown in
parentheses in these tables, the reported time for a hot query is the average of three runs for the query
after the very first run, the so-called cold query.
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Table 4. The data loading times along with the query times for five queries using the SMALL dataset. For the database implementation the query times for hot queries
are shown in parenthesis. All times are in milliseconds.

Small Dataset (ms) Preparation Time Point Query Q1 Point Query Q2A Point Query Q2B Rectangular Query Q3 Radial Query Q4

Generate Semantic
Files/Load Data

Points with Class
ID = 5 (Buildings)

Points in Building with
ID = 416793804

Points in Building with
ID = 416794274

Points from Query Q1
within a Given Rectangle

Points from Query Q1
within a Given Radius

Python 3885 12.34 14.23 15.79 12.27 42.27
Fragmented table 4080 8.99 (3.46) 1.92 (0.32) 2.4 (0.42) 7.76 (5.35) 4.47 (1.99)
Fragmented PostGIS table 14,555 110.403 (107.952) 11.99 (4.17) 13.66 ( 5.66) 17.5 (16.03) 26.62 (16.81)
Unfragmented benchmark table (No PostGIS) 6919 53.88 (40.75) 1.77 (0.31) 2.16 (0.46) 205.14 (203.91) 52.94 (12.9)
Patch table 13,128 83.85 (79.00) 86.71 (81.47) 86.26 (72.24) 226.1 (207.81) 273.05 (177.93)
No of points returned - 41,865 1386 1951 19,722 2556

Table 5. The preparation time along with the query times (in milliseconds) for five queries using the MEDIUM dataset. The fragmented table (without PostGIS) clearly
provides for the fastest queries among the PostgreSQL approaches, even outperforming the Python approach for queries Q3 and Q4.

Medium Dataset (ms) Preparation Time Point Query Q1 Range Query Q2A Point Query Q2B Rectangular Query Q3 Radial Query Q4

Generate Semantic
Files/Load Data

Points with Class ID
= 5 (Buildings)

Points with Class ID = 5
and X > 20

Points with Class ID =
2 (Natural Terrain)

Points from Query Q1
within a Given Rectangle

Points from Query Q1
within a Given Radius

Python 43,806 46.53 62.48 93.39 109.344 108.67
Fragmented table 347,500 155.3 (153.61) 174.42 (154.93) 595.43 (444.49) 102.33 (59.60) 84.04 (42.77)
Fragmented PostGIS table 48,791 3311.96 (2330.27) 2123.12 (1999.72) 6307.97 (6106.05) 2758.13 (2618.52) 2207.35 (2123.22)
Unfragmented benchmark table (No PostGIS) 274,937 225.72 (154.99) 518.52 (188.78) 1009.53 (722.183) 327.3 (180.11) 381 (200.1)
No of points returned - 1,242,205 385,664 3,508,530 261,911 68,160

Table 6. The preparation time along with the query times for five queries using the LARGE dataset. Quering using SDBL via Python is still the fastest approach for the
simple queries Q1, Q2A and Q2B. All times are in seconds.

Large Dataset (s) Preparation Time Point Query Q1 Range Query Q2A Point Query Q2B Rectangular Query Q3 Radial Query Q4

Generate Semantic
Files/Load Data

Points with Class ID
= 5 (Buildings)

Points with Class ID = 5
and X > 20

Points with Class ID =
2 (Natural Terrain)

Points from Query Q1
within a Given Rectangle

Points from Query Q1
within a Given Radius

Python 426 1.37 3.44 3.06 3.64 5.65
Fragmented table 5882 27.87 (10.92) 10.56 (10.41) 61.43 (21.45) 1.83 (1.39) 1.15 (0.89)
Unfragmented benchmark table (No PostGIS) 9368 73.01 (22.49) 122.07 (22.5) 103.32 (72.18) 20.25 (2.43) 14.24 (1.23)
No of points returned - 89,036,106 33,361,461 184,550,983 945,357 246,762
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Table 7. The time in milliseconds to locate a single point in the LARGE dataset. For the Python
approach, the time in parentheses is the time needed to create an index after loading the file. For the
two table approaches, the time in parentheses is the time for a hot query.

Point Query for Large Dataset (Returns a
Single Point) (ms) Python with Pandas (ms) Fragmented Table (ms) Unfragmented Table (ms)

Locating a specific point (X = 42.552, Y =
94.641, Z = 2.531) that has SID = 6
(hardscape).

7880
(47,710)

29.5
(1.5)

45.5
(0.22)

4. Results

In the following sections, for each of the three datasets, we first present the results using SBDL
via a Python approach followed by the results when using SBDL via fragmented tables PostgreSQL.
The time required to prepare the dataset for Python is reported in the first column and first row of
each of the results table (Tables 4–6).

4.1. The Results for the Small Dataset

The preparation time for the SMALL dataset when using SDBL via Python takes less than 4 s or
3885 ms as shown in Table 4 and is only very slightly faster than the preparation time for using the
fragmented PostgreSQL table. The preparation time for the latter, 4080 ms, is made up of the time
to use the Python script to generate just two fragmented tables for SID = 0 and SID = 5 and index
them on the attributes (X, Y, Z) (requiring 3810 ms). Additionally, for the table fragment SID = 5,
we used pgAdmin to build a secondary index for attribute S in order to quickly retrieve the building
IDs, an operation that required just 270 ms.

As for the data preparation time for the fragmented PostGIS tables (14,555 ms), it is made up of
the time to create the two PostGIS table fragments SID = 0 and SID = 5 (605 ms), the time to populate
them with corresponding data (2257 ms) from the PostgreSQL tables along with the time required to
build three functional indexes on attributes X,Y and S (11,693 ms) for the table fragment SID = 5 only.

The data preparation time for the unfragmented benchmark is nearly 7 s (6919 ms) and is made
up of the time to create the table (177 ms), the time needed to add one semantic ID column and to
index it (759 ms), along with the time to populate it with data (5983 ms) from the two fragmented
PostgreSQL tables.

The query results for the SMALL dataset, also shown in Table 4, are unique in that for all queries,
the fragmented table approach is faster than the Python approach. For instance, for the point query
Q2A, the Python approach requires 14.23 ms to retrieve into memory all the 1386 points that are
contained in a single file (with building ID = 416793804). In contrast, the PostgreSQL query (Listing A4
in the Appendix A) is able to retrieve the same set of points from a fragmented table that contains all
the points related to buildings in just 1.92 ms. We attribute this speed of PostgreSQL partly to the fact
that the result set is in all queries relatively small, meaning a RDBMS can access the required data with
a minimum of disk I/O operations. However, the Python query Q2A is also straightforward to execute,
for it consists of mainly reading into memory a single binary file located under the sub-directory
MyPath\ID_5\416793804\. In other words, there is no need to search for the correct Points file, since its
location is pre-determined from the building ID. Perhaps the Python approach is slightly slower than
the fragmented PostgreSQL approach simply due to the additional overhead associated with the
Python script, which comes into play when the query processing times are small.

The fragmented approach is for most queries clearly faster than the benchmark unfragmented
approach, except for queries Q2A and Q2B which return a small result set and for which there is very
little difference in the query times. For instance, for query Q2A the query times for the fragmented
table and the benchmark table are respectively 1.92 ms and 1.77 ms.
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Finally, we also tested the use of ‘PC_PATCH’ for point query Q1 using the code in Listing A7.
The results show that using patches or blocking does add to slowness, in fact the row marked ‘Patch
table’ in Table 4 has the slowest query results throughout.

4.1.1. A More Complex Query Using the Extended Small Dataset

We recall that in the case of the SMALL dataset, SDBL via Python stores each Points file for a
given building ID under its own sub-folder (in addition to storing all the building IDs in a single
larger Points file under folder ‘ID_5’). Since it would be interesting to see the effect of a large number
of sub-directories on a more complex query using the SDBL via Python, we resorted to using the
extended version of the SMALL dataset. The extended version contains a larger geographic area with
a higher point density, containing a total of 8,971,327 points representing 1940 different building IDs,
which in turn, were comprised of a total of 906,926 points. We used a query that finds the maximum
value for the Z-coordinate for each building ID in a basic (X, Y) range while excluding two particular
building IDs. More precisely, we varied the range X ≥ Xmin AND Y ≥ Ymin by using five different
pairs of values for Xmin and Ymin as shown in the ranges R1–R5 in Table 8 (while excluding building
IDs ‘416793804’ and ‘416794274’). This effectively results in five queries.

Table 8. The five more complex queries that access the extended small dataset and their completion
times in milliseconds for three different implementations. The column ‘No of building IDs touched’
refers to the number of building IDs that contributed points towards the query. The hot query times for
the fragmented table (fourth column) were almost identical to the cold query times and are therefore
not shown.

Complex Queries (Five Different Ranges)
Uses the Extended Small Dataset
to locate the Max. Z-Coordinate
in Each Building ID Other Than
ID = ‘41679380’ and ID = ‘416794274’
in a Given (X, Y) Region Rx, Defined Below.

No of Building
IDs Touched

Python with
Groupby (ms)

Fragmented
Table (ms)

Python w/o
Groupby (ms)

R1 : X >= 379,020 and Y >= 6,674,206 61 125 250 590
R2 : X >= 379,520 and Y >= 6,667,206 165 156 230 1010
R3 : X >= 378,520 and Y >= 6,667,206 433 219 260 2120
R4 : X >= 378,200 and Y >= 6,667,006 663 297 240 3220
R5 : X >= 378,020 and Y >= 6,664,206 905 310 280 4150

Each of these five queries was run in three different implementations, with two Python variations,
referred to as Python-with-groupby and Python-without-groupby and one fragmented PostgreSQL
table implementation. The SQL query for the fragmented table case where Xmin = 378,020 and
Ymin = 6,664,206 is shown in Listing 2.

Although both Python implementations use SDBL via Python, they differ in how they access
the data. The Python-with-groupby applies the pandas groupby function on a single dataframe that
is obtained by reading a single larger Points file under folder ‘ID_5’ (prior to applying the groupby
function, the pandas query function was used to find the matching set of building IDs that fit the given
(X, Y) range and the two non-desired buiding IDs were excluded). The use of the pandas groupby is
illustrated in Listing 1. The preparation time for both Python implementations was the same, 485 s,
whereas the preparation time for the fragmented PostgreSQL table was obtained similarly as for the
downsampled SMALL dataset and turned out to be 119 s.

Listing 1: Applying the pandas function groupby to the dataset Pts_BlockXY which contains
the set of points in the desired range with the two unwanted buildings excluded as specified
in the query of Section 4.1.1.

1 Pts_Block_grouped = Pts_BlockXY.loc[Pts_BlockXY.groupby(’s’).z.idxmax()]
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As for the Python-without-groupby approach, it processes each Points file that meets the query
criteria, albeit avoiding reading those Points files whose extreme values for X and Y do not meet the
given (X, Y) range as described in Section 3.7. This effectively means that if one of the five queries
over range Ri returns Ni building IDs, the Python-without-groupby will have read and processed Ni
Points files. The three implementation approaches are briefly summarized below.

1. Python-with-groupby: uses a single Points file under folder ‘ID_5’ that is read into a dataframe.
The dataframe is then pre-processed so that building IDs marked for exclusion in the query are
dropped and only points within the given (X, Y) range are included. Finally, the pandas groupby
function is applied to the resulting dataframe to yield the final set of maximum Z-coordinate
points (Pts_Block_grouped in Listing 1) for each building ID.

2. Python-without-groupby: reads each Points file from a separate sub-folder (under parent folder
‘ID_5’) that is within the given (X, Y) range (and which does not belong to a building ID marked
for exclusion) into a temporary dataframe df. From df, the maximum Z-coordinate is then
computed and appended to a list to yield the final result.

3. Fragmented table: uses a PostgreSQL table that contains all the points (rows) related to buildings,
with a table structure that is identical to the one used for the downsampled SMALL dataset.
The fragmented table contains 906,926 rows, the number of points related to buildings in the
extended dataset.

The results are shown in Table 8 and in a graph format in Figure 5. From Table 8, it is seen
that when the query touches (or refers to) a total of 61 buildings, all three queries complete well
under 1 s, with Python-with-groupby and the fragmented table queries completing within 300 ms
(125 ms and 250 ms respectively). The table also shows that when 905 building IDs are returned,
the Python-with-groupby and fragmented table queries still complete in around 300 ms (310 ms
and 280 ms respectively). However, the performance of the Python-without-groupby query has
slowed down remarkably, taking over 3 s (3220 ms) to complete. This is attributed to the fact that
the query actually needs to read and query 905 Points files. As can be seen from the graph (Figure 5),
the line-segment marked ‘Python without groupby’ sharply degrades in performance as the number
of building IDs (and thus the number of Points files) processed exceeds 165. This is in contrast with
the Python-with-groupby approach which can always read all the building IDs from just a single
Points file.

Listing 2: The PostgreSQL complex query using the extended SMALL dataset for finding the
highest Z-coordinate point among each building in a given (X,Y) region (X ≥ 378,020 and
Y ≥ 6,664,206), while excluding two building IDs (ID = ‘41679380’ and ID = ‘416794274’).
Among the five range queries run, this query resulted in the largest number of building IDs,
numbering 905.

1 EXPLAIN ANALYZE
2 SELECT MAX(Z) FROM P2xyz_s_5
3 WHERE X > = 378020 AND Y > = 6664206
4 GROUP BY S HAVING S NOT IN (’416793804’,’416794274’)
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Figure 5. A graph representing the time in milliseconds for the five different types of more complex
queries using the extended small dataset as defined in Table 8. Note how the performance of the
Python-without-groupby queries rapidly deteriorate due to the need to process an increasing number
of Points files, with one Points file being read and processed for each separate building ID.

4.2. The Results for the Medium Dataset

For the MEDIUM dataset, the results are shown in Table 5. The data is loaded into the fragmented
PostgreSQL tables (time required is 43,806 ms) using a Python script similarly as with the SMALL
dataset, except that the semantic ID is no longer stored in a table column since it now represents a
semantic class (according to semantic3D [63]) and therefore all points/rows in a table share the same
SID value.

The preparation time for the fragmented PostGIS tables (48,791 ms) consisted of the time to create
and populate the PostGIS fragments with attributes (X, Y, Z, I) using data from the corresponding
PostgreSQL fragments (42,755 ms) and to create two functional indexes on X and Y for the fragment
with SID = 5 (requiring 6036 ms). The other fragments did not require functional indexes as no
reference is made to their coordinates in the queries.

Regarding the preparation time for the unfragmented benchmark PostgreSQL table (274,937 ms),
it consists of creating an empty table with columns (X, Y, Z, I, S) (requiring 217 ms), populating
the table with data from the nine fragmented tables (251,330 ms) and indexing it on the attribute
SID (23,390 ms).

Regarding the actual queries, the Python approach and the fragmented PostgreSQL approach
clearly employ two entirely different different memory models: the former tries to keep the entire data
in memory, while the latter fetches the required datapages from disk as needed. So it is interesting
to note that with the MEDIUM dataset, although the Python approach is still relatively fast, for the
range queries Q3 and Q4, the fragmented PostgreSQL table approach is even slightly faster. For the
point query Q2B that simply returns a large set of rows, the Python approach is clearly faster (93.39 vs.
595.43 ms). This is probably due to the fact that this particular query is processed through sequential
reads which translate to about 40 disk page accesses (with a block size of 8 K) in order to read all the
data for semantic class ID SID = 2 (the table occupies 337 MB).

The fragmented PostGIS table approach is, as expected, clearly slower than the fragmented
PostgreSQL approach, but also slower than the unfragmented benchmark PostgreSQL approach
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(which combines data from all the semantic IDs). This is at least partly due to the extra time required
to convert the binary point representation into a more readable format with the help of the function
PC_ASTEXT(pt) as shown in Listing A6.

4.3. The Results for the Large Dataset

We loaded the data into the fragmented PostgreSQL tables in the same way as was done with the
MEDIUM dataset, and the large size of the dataset was clearly apparent in the required preparation
time, which was now slightly over 1 h 38 min, or as shown in seconds in Table 6, 5882 s.

The preparation time for the unfragmented benchmark PostgreSQL table (9368 s), as with the
MEDIUM dataset, consisted of creating an empty table with columns (X, Y, Z, I, S) and populating it
with data from the nine fragmented tables (requiring 8923 s) and indexing it on the attribute S (i.e.,
SID), requiring a further 445 s.

When examining the results of the LARGE dataset in Table 6, we recognize the same phenomenon
that was visible with the previous MEDIUM dataset, whereby the fragmented table approach provides
the fastest times for the range queries Q3 and Q4 but is markedly slower for other queries. What is
noteworthy is that now the unfragmented table approach turns out to be markedly slower throughout
than the fragmented tables. For instance, the times for the unfragmented and fragmented PostgreSQL
query Q3 are 20.25 s vs. 3.64 s and for query Q4 14.24 s vs. 5.65 s respectively.

As for using the SDBL via Python for point queries that return a single point without specifying
SID proved to be rather easy to achieve. We modified the Python script so that given a point (X, Y, Z),
it scans all nine semantic Points files for the required point until it is found. And as mentioned in
Section 3.7, we made use of the minima and maxima of (X, Y, Z) for each semantic ID file so that a file
was loaded into memory only if the point being queried was contained within the separarely stored
minima and maxima.

Similarly, in order to use SDBL via PostgreSQL to query a single point without specifying SID,
the fragmented table approach was simply extended through the use of the SQL union-operator in
the query as shown in Listing 3. In such a case, the query assumes that the points to retrieve may
be in any one (or several) table fragments, and therefore all nine (SID 0 to 8) table fragments need
to be queried. However, the results in Table 7 suggest that this is neither a complex nor slow query
to process. For purposes of comparison, we also queried the unfragmented table (from the LARGE
dataset) using the point query in Listing 4. The query for the fragmented table was slightly faster
(29.5 ms) than the query for the unfragmented table (45.5 ms).

Listing 3: A PostgreSQL point query making use of the UNION-operator (range 0 to 8) for
finding a given point without knowledge of its semantic ID.

1 EXPLAIN ANALYZE
2 SELECT * FROM P2xyz_L_0 WHERE X = 42.552 AND Y = 94.641 AND Z = 2.531
3 UNION
4 SELECT * FROM P2xyz_L_1 WHERE X = 42.552 AND Y = 94.641 AND Z = 2.531
5 ......
6 UNION
7 SELECT * FROM P2xyz_L_8 WHERE X = 42.552 AND Y = 94.641 AND Z = 2.531

Listing 4: A PostgreSQL point query that directly accesses a single point from a
non-fragmented table that contains all points in the dataset.

1 EXPLAIN ANALYZE SELECT * FROM P2xyz_L WHERE X = 42.552
2 AND Y = 94.641 AND Z = 2.531

The results in Table 7 show that querying without a semantic ID certainly can be done rather
easily. For the Python implementation, we also tried creating an explicit index on (X, Y, Z), but the
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time required to create the index far outweighed any benefits as building the index and running the
point query now took over 47 s to complete (47,710 ms) as seen from Table 7. Running the same
point query in Python using just the implicit index generated by pandas [70] proved to be satisfactory,
and required 7780 ms.

5. Discussion and Conclusions

The SDBL approach was presented using two quite different formats, as it can be implemented via
Python and pandas making use of directories or via the use of PostgreSQL as a RDBMS. The SDBL via
Python approach can be characterized as a simple column-oriented store with the additional twist that
semantic indexing is provided via the use of directories. The semantic3D data [63] with the semantic
class stored for each point in a separate file (file Semantics) is helpful as the semantic information does
not augment the size of the Points file with the actual point cloud data. The SDBL via Python approach
takes this semantic layout one step further by eliminating the need for the file Semantics as the large
Points file gets decomposed into smaller Points files that share the same semantic class and are stored
in the same directory that carries the name of the semantic class.

On the other hand, the SDBL via PostgreSQL approach reduces the size of a relational table that
holds point cloud data by fragmenting a larger table into smaller ones according to the semantic
class: a particular table ends up containing rows or points that all belong to the same semantic ID.
The two presented approaches, SDBL via Python and SDB via PostgreSQL also differ with respect
to their memory model. When using SDBL via Python, the primary data working object is the
pandas dataframe, which albeit its strong resemblance to a relational table in terms of its structure,
is nevertheless non-persistent [73]. In other words, it is up to the programmer to choose a suitable data
format (such as the feather package which we used) in order to save the dataframe onto disk for later
use. The pandas package gets its speed from in-memory processing, that is, by attempting to keep all
the required data in memory. This is in contrast with using SDBL via PostgreSQL, which gets its speed
from the ability to quickly locate the correct data rows and then transfer the required disk blocks from
disk into memory. We next briefly discuss the advantages and limitations of the two SDBL approaches.

5.1. Advantages of the Presented SDBL Approach

While breaking up large point clouds into smaller files—commonly known as tiling [23]—is
useful as a means of archiving and distributing the point cloud data, it does impose an additional
loading time which slows down queries considerably [74]. Moreover, tiling cannot guarantee that
points belonging to the same semantic class will end up in the same tile file. In fact, different points of
the same semantic object are bound to end up in separate tiles when the object’s edges cross the tile
boundaries [75,76]. The SDBL via Python approach maintains semantic-based files and is therefore one
way of overcoming this problem. Moreover, the SDBL via Python approach, though it is categorized
as a column-oriented store, is easy to implement and maintain as it does not rely on any third-party
big data tool (e.g., Hadoop). Compared to a file-based approach such as LAStools [77], SDBL via
Python is likely to result in a much smaller set of files, even if there are hierarchies involved, for
Reference [15] report that their test data set was comprised of over 60,000 files. Moreover, SDBL via
Python is specifically designed for querying via semantic classes, and there is no need for an additional
indexing mechanism since indexing is handled through the operating system: the different folders
contain different semantic classes. These features give SDBL via Python an advantage over file-based
solutions for queries where semantics play a fundamental role, such as in the fields of autonomous
driving and industrial robotic applications [78] or when using indoor navigation or BIM (Building
Information Modeling) [79].

As for using SDBL via PostgreSQL, Bayer, the father of the B-tree, has aptly pointed out [80] that
the relational database model as such already incorporates multi-dimensionality. A record from a
given table with n attributes can be seen as a point in space with n dimensions [80]. The challenge
in using a RDBMS to store and effectively access point clouds therefore essentially rests on the index.
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More specifically, as we cannot assume that a large point cloud dataset will fit into memory, we would
like that at least the index, or most of it, will be in memory so as to speed up queries. In fact, the authors
of Reference [56] purposefully maintain the number of rows in a table below a few millions.

Reducing the total number of points/rows in a table through fragmentation is one way of
achieving this. Moreover, fragmenting a table according to its semantic ID increases the likelihood
that points that are co-located are stored contiguously on disk, thus eventually increasing the data
retrieval speed. And as the results for the MEDIUM and LARGE datasets showed, the fragmented
PostgreSQL approach is clearly faster than the unfragmented PostgreSQL approach for all queries.
For the SMALL dataset, point queries Q2A and Q2B turn out to be slightly faster for the unfragmented
PostgreSQL table than the fragmented tables PostgreSQL approach, but this small difference may be
attributed to measurement inaccuracy as for the other queries in the SMALL dataset (Q1, Q3 and Q2A)
the fragmented tables approach is clearly faster than the unfragmented table approach.

If there is no compelling need to use a RDBMS for storing a point cloud, then using SDBL
programmatically with Python (along with the pandas and feather packages) and directories should
provide satisfactory results. The use of directories and their naming according to SID provides
for a quick way of locating data based on semantic classes. The benefits is that indexing is now
effectively taken care of by the underlying operating system, which is responsible for file and directory
management. The idea of using directories as the indexing-mechanism is taken from our previous
work [81].

5.2. Limitations of the Presented SDBL Approach

Though we did not use the color attributes (R, G, B), the presented approach does not actually
limit their use. Including the color attributes will, of course, result in slightly larger files/tables and
hence it is likely that there will be a noticeable reduction in the speed of the queries related to large
datasets. In fact, the current implementation for the MEDIUM dataset (that did not use colors) was
successfully run in a configuration with only 8GB of RAM, albeit with much slower query times.

While the presented approach is built on the premise that each query includes the semantic ID,
it is possible to apply it to point queries that do not specify the SID, as was shown in Section 4.3. In this
respect, we do not foresee any major obstacle in using SDBL in various applications. However, if SDBL
via Python is used with a set of several queries where each query refers to a different semantic ID,
this will imply that for each query, the data will need to be loaded from a file into a pandas dataframe
(in memory) for the purpose of a single query. Though SDBL should be of benefit here in that it reduces
the size of the files, the Python script will nevertheless need to load each Points file from disk for the
purpose of running a single query. As the Semantic3D format uses a total of nine semantic classes,
without sub-hierarchies, the maximum number of Points files will not therefore exceed nine.

The results for the more complex query type using the extended SMALL dataset in Section 4.1.1
show that if a relatively large number (say well over 100) of Points files are read, the performance of
Python via SDBL quickly degenerates into a file-based approach, meaning that the advantages gained
by the memory-based pandas dataset approach are lost. However, in the case of sub-hierarchies and
a query that accesses a large number of semantic sub-classes (i.e., building IDs) , this situation can
easily be remedied by using a single larger Points file that resides in the parent folder and contains
all points in the sub-folders. This approach is effectively the one used for the Python-with-groupby
query (Section 4.1.1); it should also prove useful when using queries that involve points in boundary
semantic classes (such as a building and the ground underneath it).

Should such Points files become very large (say well over 200 million rows), the query times
could be made faster by breaking up the semantic ID classes in question into a sub-hierarchy, which in
turn could be stored in corresponding sub-directories. So for instance, the semantic class for buildings
could be further classified into a sub-hierarchy of roofs and façades as was done in Reference [82]. This
arrangement should prove useful provided the query needs to access specific semantic objects and care
is taken to avoid the problem of accessing too many Points files in a query as previously discussed.
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The use of a sub-hierarchy can also be used to counteract the fact that the distribution of the semantic
IDs is likely to be uneven for the different semantic classes [78].

Finally, as this study was limited to using easily deployable, one node solutions, we did not test
how SBDL would benefit from parallel processing.

5.3. How the Presented SDBL Approach Relates to Previous Work

In their articles [56,83] on creating a point cloud server, Cura et al. envisage grouping point clouds
according to various properties, including semantic data. The authors note that if for instance building
data is grouped together, care must be taken not to have too large a group since finding a particular
point would then entail reading the whole group [56]. The benefit in using SDBL via Python is that
the data related to the active SID is likely to be in memory. As an example, if the user issues a query
related to buildings, the building dataset remains in memory (as a pandas dataframe) until the user
switches the semantic ID to some other target such as high vegetation (SID = 3).

Cura et al. [56] use a RDBMS (PostgreSQL and PostGIS) where the number of points is reduced
through patching and refer to their interesting design as PCS, short for Point Cloud Server. However,
unlike with our SDBL via PostgreSQL, using PCS does not require that all points in a patch belong
to the same semantic class. Moreover, SDBL via PostgreSQL does not use patches or compress the
points. Interestingly, PCS makes use of functional indexes to allow querying patches of points without
exploding them. Whenever a new patch is generated, several functional indexes on different properties
are computed and stored in a ‘simplified format’ (with less accuracy and hence less space) in the
database. It then becomes possible to disregard whole patches of points (e.g., those that are not
buildings) without exploding them [56]. When a suitable patch is found however, its points do of
course need to be exploded in order to be retrieved. The query times reported for the PCS approach
separate the process of finding a patch from actually retrieving and unpacking it [56] and therefore the
times provided are not directly comparable with our approach.

Van Oosterom et al. [15] conducted a large and detailed benchmark on querying very large point
clouds that includes using PostgreSQL (without patches) and PostGIS with patches. In one of their
rectangular queries (query no 2) on dataset ‘210M’, (210,631,597 points) using PostgreSQL with patches
and with no additional attributes besides (X, Y, Z), the authors reported a hot query time of 2.15 s (the
authors used a powerful server with 128 GB RAM and 2 × 8-core Intel Xeon processors) for a query
that returned 563,108 points. In contrast, our SDBL via PostgreSQL fragmented rectangular query
that returned 945,357 points completed in 1.39 s for the LARGE dataset (total of nearly half a billion
points). It should come as no suprise that the query times we found for the fragmented PostgreSQL
approach are competitive with query times for a similar query using PostGIS with patches that was
run in a more powerful hardware platform. After all, since the SBDL via PostgreSQL query assumes
that all points in the rectangular area belong to the same semantic class, it can therefore make use of a
fragmented table that is much smaller row-wise (only 8,903,610 rows) than the total number of points
in the dataset.

In Reference [25], Poux et al. define a framework for a Smart Point Cloud or SPC which separates
the semantics from the geographical within a framework of three classes. SPC uses an interesting
semantic classification scheme where each point is classified at level 0 if it relates to the ground or
other boundaries such as walls and ceilings. When the point is part of an object O1 that rests on the
ground (such as a table), it is classified at level 1 and, if the object O1 acts as a host to another object O2,
then that object O2 is known as the first guest and is classified at a level immediately above, that is, level
2 in this case [25]. Such a scheme should prove very useful for indoor point cloud segmentation [79]
and could be implemented using SDBL via Python for instance.

In Reference [84], Poux details how a point cloud can be processed so as to extract the semantic
data and store it into a point cloud database (PostgreSQL V.9.6) for semantic queries. The author shows
how an SQL point query would return the name of the object that hosts the given point. However,
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the emphasis of the work is on classifying the semantics of a point cloud efficiently (an area of 68
rooms is analyzed and classified in just 59 min) rather than querying.

5.4. Future Directions

It would be interesting to test the presented SDBL via a Python and via a PostgreSQL approach
with a large, real world point cloud dataset that would incorporate semantic ID hierarchies.
For instance, if buildings are further classified into roof and façades, this would simply require
the use of two additional sub-directories for the SBDL via Python approach and the use of two
additional fragmented tables for the SBDL via PostgreSQL approach. One would expect that the query
times would not become significantly slower, and testing this premise should make for a promising
future research project.
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Appendix A

Listing A1: Python function for retrieving all the points in a given semantic class semanticID.

1 def get_sem_xyz_points(cur_dir,semanticID):
2 SDIR_PREFIX = "ID_"
3 semantic_dir1 = os.path.join(cur_dir, SDIR_PREFIX + semanticID)
4 semantic_dir = os.path.join(semantic_dir1, "xyz.fff")
5 return feather.read_dataframe(semantic_dir)

Listing A2: The Python function for executing a basic range (i.e., rectangular) query.

1 def qry_pts_inxy_range(ptsblock,min_x,min_y):
2 AND_ = ’ & ’;OFF_X = 500;OFF_Y = 500
3 restrict = ’’
4 if min_x is not None:
5 restrict = restrict + ’ x > = ’ + repr(min_x)
6 restrict = restrict + AND_ + ’ x < = ’ + repr(min_x + OFF_X)
7 if min_y is not None:
8 if restrict ! = ’’:
9 restrict = restrict + ’ & ’

10 else:
11 pass
12 restrict = restrict + ’ y > = ’ + repr(min_y)
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13 restrict = restrict + AND_ + ’ y < = ’ + repr(min_y + OFF_Y)
14 else:
15 pass
16 return ptsblock.query(restrict)

Listing A3: Creating an index for the SMALL dataset table of patches.

1 CREATE INDEX Semantics ON S_Lidar USING GIST(geometry(pa));

Listing A4: The PostgreSQL point query Q2A for the SMALL dataset using fragmented table
‘P2xyz_s_5’.

1 EXPLAIN ANALYZE SELECT * FROM P2xyz_s_5 WHERE s = ‘416793804’;

Listing A5: The SQL command for the SMALL dataset to populate a fragmented PostGIS table for
SID = 5 with data from the fragmented PostgreSQL table ‘p2xyz_s_5’. Notice the use of S for the
semantic ID, which acts as the building ID.

1 INSERT INTO Points_s_5(pt)
2 SELECT PC_MAKEPOINT(1,ARRAY[X,Y,X,5]) FROM p2xyz_s_5 AS VALUES;

Listing A6: The PostGIS point query Q2A for the SMALL dataset using fragmented table ‘Points_s_2’
to retrieve all points that belong to semantic ID = 2 (natural terrain).

1 EXPLAIN ANALYZE SELECT PC_ASTEXT(PT) FROM Points_s_2;

Listing A7: The PostGIS ‘PC_Patch’ point query Q1 for the SMALL dataset using table ‘S_lidar’ with
patches (each patch consists of the points in a particular building).

1 EXPLAIN ANALYZE SELECT pt
2 FROM S_lidar, Pc_Explode(pa) AS pt WHERE PC_Get(pt, ‘S’) = ‘5’
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