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Abstract: Analysis of urban land use dynamics is essential for assessing ecosystem functionalities
and climate change impacts. The focus of this study is on monitoring the characteristics of urban
expansion in Hang-Jia-Hu and evaluating its influences on forests by applying 30-m multispectral
Landsat data and a machine learning algorithm. Firstly, remote sensed images were preprocessed
with radiation calibration, atmospheric correction and topographic correction. Then, the C5.0 decision
tree was used to establish classification trees and then applied to make land use maps. Finally,
spatiotemporal changes were analyzed through dynamic degree and land use transfer matrix. In
addition, average land use transfer probability matrix (ATPM) was utilized for the prediction of land
use area in the next 20 years. The results show that: (1) C5.0 decision tree performed with precise
accuracy in land use classification, with an average total accuracy and kappa coefficient of more
than 90.04% and 0.87. (2) During the last 20 years, land use in Hang-Jia-Hu has changed extensively.
Urban area expanded from 5.84% in 1995 to 21.32% in 2015, which has brought about enormous
impacts on cultivated land, with 198,854 hectares becoming urban, followed by forests with 19,823
hectares. (3) Land use area prediction based on the ATPM revealed that urbanization will continue to
expand at the expense of cultivated land, but the impact on the forests will be greater than the past
two decades. Rationality of urban land structure distribution is important for economic and social
development. Therefore, remotely sensed technology combined with machine learning algorithms is
of great significance to the dynamic detection of resources in the process of urbanization.

Keywords: landsat data; urban expansion; LUCC; forest; Hang-Jia-Hu

1. Introduction

Since the reform and opening up of China in the late 1970s, urbanization in China has attracted
worldwide attention. The proportion of urban population has increased from 18% in 1978 to 50% in
2010 and is projected to increase to 60% by 2020 and 80% or more by 2030 [1,2]. Urbanization has
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become one of the themes of development in most countries in the world and is the most important
factor of driving land use cover change (LUCC) [3,4]. This not only means the promotion of rapid
economic development, but also an increase in building density, reduced green space and increased
urban disasters caused by extreme weather [5,6]. Urban area accounts for less than 3% of the global land
surface, but 90% of the world’s economy, 50% of the world’s population, 60% of energy consumption
and 70% of greenhouse gas emissions come from cities [7]. Therefore, urbanization management is
especially important and land use dynamic monitoring is the most direct manifestation of it.

Land use change occurs every year due to the interaction of natural conditions and human
activities, and it is one of the major driving forces of global change [8,9]. Since the huge influence on
ecosystem functions including ecosystem biodiversity and carbon sinks, the dynamics of land use
patterns have always been the focus of research related to LUCC. Recently, the reduction of forest
area due to LUCC caused by urbanization has had a greater impact on global carbon sequestration
capacity [10,11]. According to relevant research, the area occupied by forest ecosystems is only 27.6% of
the global area, but about 57% of the world’s carbon is fixed by forest ecosystems [12]. Forest resources
are the largest carbon pool in terrestrial ecosystems and play an irreplaceable role in regulating global
carbon balance and mitigating climate change [13,14]. Therefore, dynamic monitoring of changes in
forest resources is increasingly important for mitigating the global warming.

Land use change detection can quickly extract land information and update land use maps
by observing the state of objects during different periods [15,16]. Maps of LUCC can quantify a
wide range of processes such as forest harvesting, forest disturbances, land use pressures and urban
expansion, which are all important for rational use and scientific management of land resources [17,18].
Traditional field surveys can accurately evaluate the development trends and characteristics of LUCC,
but field surveys require a large amount of manpower, material resources, financial resources, and
time, which is impractical for large-scale monitoring of dynamic changes in land use [19]. With the
development of remote sensing technology, satellite remote sensing has been widely used to detect
LUCC [20,21]. The specialty of large-scale and real-time monitoring give remotely sensed observations
salient merits in detection of LUCC and are gradually becoming the most effective means in this
field [22,23]. Methods of dynamic land use monitoring can be divided into two categories: direct
spectral comparison and post-classification comparison [24]. Direct spectral comparison analyzes
images pixel by pixel, which has limits in the interpretation of land information in different periods.
Post-classification comparison directly contrasts the pre- and post-classification results, and thus can
obtain spatiotemporal information for different land types [25]. Since the accuracy of classification can
directly influence the analysis results, the selection of classification methods is becoming an important
part of dynamic change research [26,27].

Classification methods such as K-Nearest Neighbor, support vector machine, and the maximum
likelihood method, due to the interpretable output results, the amount of large calculation work,
and the weak correlation analysis between attributes, are rarely used in precise classification studies.
As a core technology in the field of artificial intelligence research, machine learning is widely used
in computer graphics, recommendation systems, software engineering, and bioinformatics [28–30].
Machine learning can train and experience data according to the large amount of information provided
by the datasets and simultaneously optimizes its own algorithm rules [31,32], which has attracted
much attention in improving the accuracy of image classification in recent years. Currently, common
machine learning classification algorithms include deep learning neural networks and decision trees.
Deep learning in classification requires a large number of parameters, such as the weights, and the
thresholds; the learning process cannot be observed, and the output is difficult to interpret [33].
Decision tree theory [34,35] has previously been used to classify remote sensing dataset and offers some
advantages over other classification methods [36,37]. Visual rules of decision tree in the classification
process allow users to alter the range of the node threshold in accordance with the target need and
then extract the terrestrial information more accurately. The C5.0 decision tree is a new algorithm
developed from the original ID3 [38]. It uses the boosting method to generate a series of decision trees
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to determine the best classification variables and optimal segmentation points through information
gain ratio (Info Gain Ratio). For image data with different resolutions, C5.0 decision tree can improve
the classification accuracy to a large extent. Cui et al. [39] proposed a method of extracting national
bamboo forest information based on decision tree combined with mixed pixel decomposition by using
MODIS reflectivity product and the classification accuracy was more than 80% at different times.
Funkenberg et al. [40] used C5.0 algorithm to detect dynamic change of grassland in Mekong by using
Landsat images showed that area converted from grassland to other land types due to natural disasters
in 1991 was 77%. Lv et al. [41] used images from the GeoEye-1 satellite with a resolution of 0.5 m to
study automatic identification methods for farmland forest networks, showing that the accuracy of the
automatic recognition was above 92% and the average accuracy was 92.97%.

Hang-Jia-Hu is located in the Yangtze River Delta in Zhejiang province [42,43]. As a region of
rapid economic evolution, urbanization has become the main and most crucial driving force in LUCC
during this rapid economic development. This paper aims to use Landsat time series data, applying a
post-classification comparison method based on C5.0 decision tree to analyze spatial changes of urban
expansion in Hang-Jia-Hu during the past 20 years. In addition, the impact of urban expansion on
forest is then evaluated. Finally, the tendency of land use change in the next 20 years is predicted by
applying the development law of land use change over the past 20 years.

2. Study Area and Datasets

2.1. Study Area

Hang-Jia-Hu region is located in the northern part of Zhejiang Province in China (Figure 1),
ranging from 118◦50’15” E to 121◦19’6”E and from 29◦42’52” N to 31◦11’53” N. Its climate is subtropical
monsoon, and annual average temperature is 15~18 ◦C with an average annual precipitation of about
1100 mm. The study area is about 1.476 million hectares including Jiaxing, the majority of Huzhou
and the northeastern part of Hangzhou. Specific regions include Linan (LN), Yuhang (YH), Jiaxing
(JX), Jiashan (Js), Anji (AJ), Fuyang (FY), Pinghu (PH), Deqing (DQ), Hangzhou (HangZ), Tongxiang
(TX), Hanning (HN), Haiyan (HY), Huzhou (HuZ), Xioashan (XS) and Changxing (CX). Forests in this
place are mainly distributed in the southwest, and the main forest types are broadleaf forest (BLF),
coniferous forest (CNF), and bamboo forest (BMF).

2.2. Datasets and Processing

Satellite 30-m multispectral data of Landsat5 TM (1995, 2000, 2005, 2009) and Landsat8 OLI
(2015) were downloaded from the United States Geological Survey (USGS, http://glovis.usgs.gov/).
We selected cloud-free images from the years with ground observations for 3 scenes that cover our
study area (Table 1). Due to the overall poor image quality of study area in 2010, we decided to use the
images in 2009 to correspond with field data in 2010.

Table 1. Acquisition date of the image datasets.

WRS2 Row/Path. 1995 2000 2005 2009 2015

Landsat5 TM Landsat5 TM Landsat5 TM Landsat5 TM Landsat8 OLI

118039 12/08/1995 06/06/2000 27/11/2005 17/07/2009 03/08/2015
119039 09/12/1995 17/09/2000 17/10/2005 13/01/2009 13/10/2015
120039 06/05/1995 10/10/2000 24/10/2005 06/12/2009 06/02/2015

Remote sensed data is easily influenced by water vapor, aerosol, bidirectional reflection and data
transmission, which can result in serious fluctuations of time series data and influence the desired
effect in data analysis [44,45]. Therefore, this study applied Fast Line-of-sight Atmospheric Analysis
of Spectral Hypercubes (FLAASH) [46,47] to correct each image for the purpose of eliminating the
part of the effect caused by the atmosphere. Since the terrain may affect the brightness values of
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original imagery, a digital elevation model (DEM) was used to make terrain correction for pixel
values. In addition, terrain correction data was downloaded from the Geospatial Data Cloud website
(http://www.gscloud.cn/).ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 4 of 20 
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According to the original “Technical Regulations for Inventory for Forest Management Planning
and Design” of the former Ministry of Forestry in 1996 and the “Technical Operation Rules for Forest
Management Planning and Design in Zhejiang Province” in 1997, the land use types of this study
were determined as BMF, BLF, CNF, cultivated land (CTL), water, and urban (including buildings and
roads) [48,49]. Field observation of classification verification plots of BMF, BLF and CNF were derived
from the data of National Forest Inventory (NFI) in Zhejiang province. The investigation method of
NFI is systematic sampling, which is usually evenly placed at the intersection of kilometer grids of
1:50,000 topographic maps. Each plot size is 28.5 m × 28.5 m [50]. Verification plots of other land use
types were obtained from field investigation and image visual interpretation. Specific verification
number of different land use types are shown in Table 2.

Table 2. Number of verification plots in different years.

Year Urban Water CTL BLF CNF BMF Total

1995 46 37 51 45 48 45 272
2000 47 35 43 41 40 48 254
2005 47 39 46 47 44 48 271
2009 48 36 40 46 42 56 268
2015 42 40 49 45 47 46 269

http://www.gscloud.cn/
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3. Study Methodology

3.1. C5.0 Decision Tree

Decision tree is a typical supervised classification method of machine learning algorithm [51,52].
It generates a decision tree or rules in line with inductive learning of training data and then uses
them to classify remotely sensed images. Decision tree models require no assumptions about data
distribution and can process high-dimensional data sets quickly [53,54]. C5.0 decision tree [55] is a
binary tree structure formed by cyclic analysis of the training dataset composed of feature attributes
and target variables. It consists of a root node, a series of branches and a final node and is classified by
the ultimate node.

Information Gain (Info Gain) [56] is defined in information theory as the difference between the
entropy of a dataset to be classified and the conditional entropy of a selected feature. It is an indicator
used to select features in a decision tree algorithm. The larger Info Gain is, the better selectivity of this
feature is. Info Gain Ratio [57] is also called the information gain rate and is calculated by Info Gain
and information entropy of the feature. C5.0 decision tree calculates the Info Gain Ratio of all features,
and some of them with relatively high value in distinguishing land types will be selected as the tested
variables of operational nodes to divide dataset. Then, pruning and merging nodes can make balanced
of accuracy and complexity of decision tree. Finally, optimal classification rules by constructing the best
multi-branched tree structure is used to classify images of the study area. The decision tree generated
is easy to interpret without requiring a large amount of training time to establish [58,59].

3.2. Construction of the Decision Tree

Decision tree construction usually includes selection of variables, decision tree generation, and
pruning of the decision tree [60]. Variables selection is a process of calculating Info Gain Ratio of all
variables and choosing optimal variables with high values as the segmentation to divide datasets.
Branches will be pruned when the weighted error of node is beyond its father node. Then, an optimal
decision tree is generated. This study used the See5.0 classifier coupled with ENVI classic 5.0 to
construct the decision tree [61]. The amount of training data in each land use type was set to be the
same (800 pixels) so as to reduce the deviation of classifier system. Despite the visible classification
rules of the C5.0 algorithm, observing the classification results when modifying the node threshold
of decision tree or optimizing the training data can improve the accuracy of analysis. Considering
different land use types will show different spectrum and texture information from season to season,
so we decided to construct a corresponding classification decision tree for images in different periods,
whereby separate classifications can make classification results more accurate and reliable.

It is obvious that the characteristics of the remotely sensed image will greatly depend on the spectra
in the classification. In addition to the original image bands, the first three principal components (PC_1,
PC_2, PC_3) [62] by component analysis and vegetation indices—normalized vegetation index (NDVI),
enhanced vegetation index (EVI), SAVI (Soil Adjusted Vegetation Index) and improved normalized
difference water index (MNDWI)—were extracted by using band operation and were all set as input
variables in the classification (Table 3).

Table 3. Remote sensing variables of land use classification.

Type Name Calculation Models or
Descriptions Abbreviation Remarks

Original Band

Band1 band1 (band2 *) B1
Suitable Landsat5 TM
(1995, 2000, 2005,2009)

and Landsat8 OLI (2015)
data with *

Band2 band2 (band3 *) B2
Band3 band3 (band4 *) B3
Band4 band4 (band5 *) B4
Band5 band5 (band6 *) B5
Band6 band6 (band7 *) B6
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Table 3. Cont.

Type Name Calculation Models or
Descriptions Abbreviation Remarks

Vegetation Index

NDVI (B4 − B3)/(B4+B3) B7
L take value for 0.5

[63,64]EVI 2.5 × (B4 − B3)/(B4 + 6 × B3 −
7.5 × B1 + 1) B8

SAVI (B4 − B3) (1 + L)/(B4 + B3 + L) B9
MNDWI (B3 − B5)/(B3 + B5) B10

Component
Eigenvalue

PC_1 First principal component B11 Principal component
analysis in ENVI

software
PC_2 Second principal component B12
PC_3 Third principal component B13

3.3. Evalution of Urban Expansion

One indicator of dynamic change in evaluating urbanization is dynamic degree [65]. This refers
to the amplitude of change of urban area during a given period of time, and it can intuitively reveal
the speed of change of a number of pixels in urban areas [66,67]. The formula is calculated as follows:

K =
Ub −Ua

Ua
×

1
T
× 100% (1)

In Equation (1): K is the dynamic degree of urban area change, and refers to the average annual
rate of urban area change. Ua and Ub are the area of the urban cover at the beginning and the end of
the period, respectively. T is the time interval of the study. When K is greater than 0, it indicates that
the area of urban cover shows an expanding trend. Otherwise, it represents a decreasing trend.

Contribution rate (P) refers to the contribution rate of other land use types to urban change [68].
This paper uses the land use transfer matrix to calculate P.

Pi =
Mi∑n

i=1 Mi
× 100% (2)

In Equations (2), Pi is the contribution rate of a given land use type to urban growth; Mi is the area
of a given land use type that has been converted into urban use; i is the land use type, i = 1, 2, 3, 4, 5.

3.4. Land Use Prediction

The land use transfer matrix is an important representation for describing and measuring changes
in LUCC [69]. It can provide us with the source and composition of land use type transfer in the initial
and final stages of research, which is an important way of studying the temporal and spatial evolution
of LUCC [70]. In this study, the land use transfer matrix was employed to calculate P and ATPM. Then,
we used ATPM to compute the land use area in 2000, 2005, 2009 and 2015, which is defined as the
predicted area, and compared the predicted results with the classified area based on the C5.0 algorithm.
The determination coefficient R2 and RMSE (Root Mean Square Error) between the predicted area and
the classified area of land use were used to explain the fitness of the ATPM with respect to prediction.
The high R2 and small RMSE mean the ATPM has a good effect on predicting the area of land use, and
it could be applied to predicting the area of different land use areas in 2020, 2025, 2030 and 2035. R2

and RMSE are calculated as follows:

R2 = 1−
n∑

i=1

(pi − oi)
2/

n∑
i=1

(oi − oi)
2 (3)

RMSE =

√√
1
n

n∑
i=1

(pi − oi)
2 (4)



ISPRS Int. J. Geo-Inf. 2020, 9, 64 7 of 18

In Equations (3) and (4), R2 and RMSE are indicators of simulation accuracy; oi is the classified
area of land types in a given year; pi is the predicted area of land use calculated by the average land
use transfer probability matrix multiplied by the classified area in the previous year; oi is the average
classified area of different land types in a given year.

4. Results and Analysis

4.1. Classification Decision Trees

The a, b, c, d and e in Figure 2 respectively represent the optimal classification decision tree in
1995, 2000, 2005, 2009 and 2015.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 8 of 20 
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Figure 2. Optimal decision trees of image classification from 1995 to 2015 (a–e).

The various optimal decision trees indicate that there is a big difference among the variables
and nodes threshold of segmentation in different years. Overall, the original bands are most of the
variables used to build the decision tree, and the structure of the variables used by each tree varies
greatly. Although images are processed to a uniform atmospheric correction, the difference in the time
of image acquisition still have some effect, and there are also differences in the spectral image values of
Landsat TM and Landsat OLI. Therefore, the values of the optimal characteristic bands selected when
extracting forest information will be different. In Figure 2, with respect to vegetation, the original
image bands and the first three components were mainly used to construct the rules from 1995 to
2009. In addition, B6 is the segmentation variable for discriminating the three forest types. B4, B5
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and B6 are mainly used to extract bamboo forest from the other two forest types, especially B4, which
divides it and broadleaf forest in 1995 and 2005. However, B7 (NDVI) seems to be more important in
the segmentation of land types in 2015. This is mainly because of the formation date of the different
images. NDVI, as the standard index for monitoring the growth state of vegetation, is able to separate
them from other land types, and the vegetation in 2015 is growing in maturity, exhibiting a high value.
As for urban and water, B5 and B6 are the core segmentation variables, and are prominent from other
bands with different thresholds in different years.

4.2. Classification Result and Verification Accuracy

The results of land use maps in Hang-Jia-Hu based on the application of the optimal decision
trees are shown in Figure 3.
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The accuracy of land use classification in 1995, 2000, 2005, 2009 and 2015 is shown in Table 4. In
addition to the BMF with an average accuracy of 88.42%, the accuracy of other land uses in different
years are all above 90%. The overall accuracies of different periods are all above 90%, with an average
accuracy of 93.40%. Kappa coefficients are all above 0.88, which means that the classifications show
precise results. This illustrates that the classification of land use using the C5.0 decision tree exhibits
good performance.
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Table 4. Classification accuracy of land use types in different years.

Year
Average of PA and UA (%) Overall

Accuracy (%)
Kappa

CoefficientUrban Water CTL BLF CNF BMF

1995 92.39 98.22 90.69 94.65 89.50 81.18 90.59 0.87
2000 100.00 92.86 87.50 90.10 92.72 86.31 93.30 0.90
2005 92.11 91.60 96.16 94.37 91.38 89.28 96.92 0.96
2009 92.10 91.67 85.21 94.16 95.45 91.84 90.04 0.88
2015 95.84 100.00 97.50 90.23 94.77 87.06 95.94 0.95

Average 94.49 94.87 91.41 92.70 91.48 88.42 93.40 0.91

Note: PA and UA are the producer accuracy and user accuracy, respectively.

4.3. Analysis of Urban Expansion

The urban area in Hang-Jia-Hu region changed considerably. The dynamic degree of urbanization
and the average urban area from 1995 to 2015 in 13 districts are shown in Figure 4. The dynamics
degree of different districts varied greatly. In most districts, after a small-scale reduction of urban area,
there was a large expansion in the next stage. This may be because the demolition of urban areas and
their subsequent reconstruction. During 2000 and 2005, the dynamics were larger than other stages,
and were positive in all districts. Several districts with a relatively large urban dynamic degree were
not major cities, but rather those with a smaller average urban area. This illustrates that expansion has
a greater impact on districts with smaller urban areas. For example, HN, JS and TX have the relatively
high dynamic of urban expansion that is beyond the amplitude in HangZ, JX and HZ. Moreover, even
though there was a small decline in some districts in specific periods, there were still some where the
urban area increased continuously. Dynamic degree in FY, HN, HangZ, JX, XS and YH were positive in
the four periods, which means that the urban area in these districts was in a state of expansion.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 10 of 20 

 

1995 92.39 98.22 90.69 94.65 89.50 81.18 90.59 0.87 

2000 100.00 92.86 87.50 90.10 92.72 86.31 93.30 0.90 

2005 92.11 91.60 96.16 94.37 91.38 89.28 96.92 0.96 

2009 92.10 91.67 85.21 94.16 95.45 91.84 90.04 0.88 

2015 95.84 100.00 97.50 90.23 94.77 87.06 95.94 0.95 

Average 94.49 94.87 91.41 92.70 91.48 88.42 93.40 0.91 

Note: PA and UA are the producer accuracy and user accuracy, respectively. 

4.3. Analysis of Urban Expansion 

The urban area in Hang-Jia-Hu region changed considerably. The dynamic degree of 
urbanization and the average urban area from 1995 to 2015 in 13 districts are shown in Figure 4. The 
dynamics degree of different districts varied greatly. In most districts, after a small-scale reduction 
of urban area, there was a large expansion in the next stage. This may be because the demolition of 
urban areas and their subsequent reconstruction. During 2000 and 2005, the dynamics were larger 
than other stages, and were positive in all districts. Several districts with a relatively large urban 
dynamic degree were not major cities, but rather those with a smaller average urban area. This 
illustrates that expansion has a greater impact on districts with smaller urban areas. For example, 
HN, JS and TX have the relatively high dynamic of urban expansion that is beyond the amplitude in 
HangZ, JX and HZ. Moreover, even though there was a small decline in some districts in specific 
periods, there were still some where the urban area increased continuously. Dynamic degree in FY, 
HN, HangZ, JX, XS and YH were positive in the four periods, which means that the urban area in 
these districts was in a state of expansion. 

 

Figure 4. Dynamic degree and average area of urban in 13 districts from 1995 to 2015. 

Urban area has increased by 2.65 times in the past two decades. To clearly understand the 
changes of urban expansion in different regions, we created a spatial distribution map of urban 
expansion at different stages (Figure 5). Urban dynamic degree in Jiaxing City at 18.21% was the 
highest, followed by Hangzhou City at 13.62%. Urban expansion in Huzhou City was not greatly 
similar to the other two areas, and had the smallest value of urban dynamic at 7.2%. Evolution of 
spatial distribution of urban growth in different years varied from region to region. Urban growth in 
Jiaxing City seemed to expand from the urban center to the surrounding areas, especially in the main 
city of Jiaxing. In Hangzhou City, urbanization was concentrated in the urban core of HangZ and XS, 
and the direction of urban expansion was from the northeast to the southwest. Urban change in 
Huzhou City was distributed in the main city of HZ and DQ. Large-scale urban growth in DQ region 

0

8

16

24

32

40

-20

0

20

40

60

80

DQ FY HN HY HangZ HZ JS JX LA PH TX XS YH

Av
er

ag
e 

ur
ba

n 
ar

ea
 (1

03 h
a)

D
yn

am
ic

 D
eg

re
e 

(%
)

Districts

1995-2000 2000-2005 2005-2009 2009-2015 Average urban area

Figure 4. Dynamic degree and average area of urban in 13 districts from 1995 to 2015.

Urban area has increased by 2.65 times in the past two decades. To clearly understand the changes
of urban expansion in different regions, we created a spatial distribution map of urban expansion at
different stages (Figure 5). Urban dynamic degree in Jiaxing City at 18.21% was the highest, followed
by Hangzhou City at 13.62%. Urban expansion in Huzhou City was not greatly similar to the other
two areas, and had the smallest value of urban dynamic at 7.2%. Evolution of spatial distribution of
urban growth in different years varied from region to region. Urban growth in Jiaxing City seemed
to expand from the urban center to the surrounding areas, especially in the main city of Jiaxing. In
Hangzhou City, urbanization was concentrated in the urban core of HangZ and XS, and the direction
of urban expansion was from the northeast to the southwest. Urban change in Huzhou City was
distributed in the main city of HZ and DQ. Large-scale urban growth in DQ region mainly occurred in
the stage from 2000 to 2005. The spatial distribution of urban changes in the main city of Hang-Jia-Hu
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are presented in the black frames marked A, B and C in Figure 5. We selected three city center areas
in HangZ City, JX City and HZ City, with analysis window sizes of 58,871 hectares, 31,192 hectares
and 16,317 hectares, respectively. The urban area in the main city of HangZ (Figure 5A) increased
from 16,116.3 hectares to 36,607.6 hectares, representing a size increase of 2.27 times. Its growth was
mainly in the northeast from 1995 to 2000 and in the northwest from 2005 to 2015. In addition to the
first stage, urban growth was centralized in northwest in the following three stages, which indicated
that urbanization in the core of HangZ City had a tendency of northwest expansion. Urban change
omnidirectionally from the original central area to the surrounding area was the major characteristics
of JX (Figure 5B). Urbanization was the most intense, with an area increment of 12,677.5 hectares, or
6.68 times. In addition, the expansion rate was the fastest in the stage from 2000 to 2005. In addition,
the degree of expansion was much smaller than previously during the 2009 to 2015 stage. In the main
city of HZ (Figure 5C), the urban expansion phenomenon seems the most moderate, with an area
growth of 1.9 times. The expansion before 2005 was mainly concentrated around the center of the city.
After 2005, it expanded to the north, the west and the northeast.
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4.4. Impact of Urbanization on Forests

We analyzed the area change of land use in this study and its contribution to urban expansion
(Figure 6). Based on the results, CTL, which is the main source of urban expansion, has led to a
significant area loss over the last two decades. The trend of contribution rate to urban expansion
decreased continuously (from 91.61% in the first stage to 82.23% in the final stage), but it remained the
main source of urban expansion throughout the study period. BLF and BMF also showed an increasing
trend in their contribution rate to urban area when it exhibited a small increase. The allocation of
forest resources is always in dynamic balance. CNF, with the largest value, is the most likely source of
urban expansion prior to 2009, but it also decreases in its contribution to the increase in urban area
due to the decrease in area. In addition, BLF became the major source of expansion between 2009 and
2015. However, although the overall forest area decreased, its contribution rate to urban expansion
gradually increased, which indicates that the probability of future urban expansion using BLF and
BMF as sources of expansion will gradually increase. The changing factors of water bodies are more
complicated. At the same time, due to the difficulty of transforming water bodies into urban areas, its
area and the contribution rate to the increase in urban area has no obvious evolution to follow. Overall,
the vegetation in this study observed strong laws regarding area and contribution rate to urban growth
during the urbanization process. A sustained urban expansion with a certain land use type as a source
of expansion will result in a significant decline in the land area. At the same time, this will also lead to
a gradual decrease in the probability of becoming a source of expansion, thus exhibiting a reaction
phenomenon in the process of urbanization.
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Figure 6. Area proportion (a) and contribution rate to urban expansion (b) from 1995 to 2015.

According to the statistics, the total amount of forests lost due to urban expansion was 19,823
hectares, which accounts for 71.05% of the total decrease in forest. This illustrates that urbanization is
the major factor leading to the decrease in forests. Figure 7 reflects the spatial distribution of forest
areas changing into urban areas (Figure 7a) and the specific changes in different stages (Figure 7b).
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Figure 7. (a) Changing distribution of area from forest to urban land use, (b) different stages of
forest changes.

Forest reduction occurred mainly at the junction of urban and forest areas, which were mainly
distributed in the central and western parts of HZ, DQ, HangZ, XS and FY. It is clear that the forest
area gradually decreased from 1995 to 2015. The reduction from 1995 to 2000 is most obvious in the
western part of HZ. In addition, the area loss was the most significant from 2005 to 2009, with a decline
of 12.18%, which accounted for 43% of the total reduction in the study period. The declines in 2009 and
2015 were significantly less, which was also a result of the decrease of the contribution rate of forest
to urban growth. The direction of forest area reduction was from northeast to southwest, which is
consistent with the overall direction of urban expansion. Forest loss due to urbanization was centrally
distributed in the southern part of HZ and FY. In particular, FY, which had the largest dynamic degree
(above 24%) of urban expansion, accounted for the highest ratio of forest reduction, further indicating
that urban expansion is synchronized with the reduction of forest in this region.

4.5. Prediction of LUCC for the Next 20 Years

We obtained the transition probability matrices of four periods through the land use transfer
matrix and the land area of the four periods, and obtained the ATPM of the four probability matrices
(Table 5). The ATPM was multiplied by the land areas of 1995, 2000, 2005, and 2009 to obtain the land
areas of 2000, 2005, 2009, and 2015, and the results were compared with the classification areas of the
corresponding years. Then, R2 and RMSE were used to observe the correlation and error between the
predicted area and the classified area. The results are shown in Figure 8.

Table 5. The ATPM of four probability matrices in four stages.

Land Type Unclassified Urban Water CTL BLF CNF BMF

Unclassified 0.961 0.015 0.002 0.007 0.005 0.007 0.003
Urban 0.008 0.705 0.002 0.244 0.012 0.018 0.011
Water 0.003 0.093 0.761 0.127 0.007 0.006 0.003
CTL 0.014 0.035 0.045 0.814 0.021 0.045 0.026
BLF 0.006 0.009 0.005 0.009 0.756 0.114 0.101
CNF 0.003 0.008 0.009 0.005 0.104 0.830 0.041
BMF 0.005 0.006 0.003 0.007 0.112 0.116 0.751
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Figure 8. Classified and predicted land use area proportion from 2000 to 2015.

The forests in Figures 8 and 9 include BLF, CNF and BMF. The area proportion in Figure 8 shows
that the predicted area has a strong relationship with the classified area. The R2 between the classified
area and the predicted area in 2000, 2005, 2009 and 2015 are in the range of 0.94 and 0.99, with RMSE
ranging from 1.61 × 104 hm2 to 7.86 × 104 hm2. This means that the predicted results displayed a
precise accuracy, which further illustrated that the ATPM could perform well when predicting land
area from 2000 to 2015 and could be applied in the prediction of area use for the next 20 years.
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Figure 9. Area proportion of land use area from 1995 to 2035.

Based on the ATPM, we calculated the land use area from 2020 to 2035 and drew the overall area
trend for the land use dynamics of the previous 20 years and the next 20 years (Figure 9). According to
the structure of land use from 1995 to 2015, urban expansion is accompanied by an intense reduction
in CTL and a slight decline in forest area. In addition, based on the prediction results from 2020 to
2035, CTL will continue to decline, although the magnitude of change will be relatively lower than
before. However, the phenomenon of forest reduction will be more obvious than in the previous 20
years, especially in 2030 and 2035. This shows that urbanization will continue to reduce CTL as a
source of expansion in the next 20 years, but the impact on forests will gradually increase. With this
pattern, and considering no other external economic and social factors, urban expansion will continue
to occur, growing more serious and leading to the large-scale occupation of CTL, causing greater area
loss of forest.

5. Discussion

We used remote sensing data combined with decision tree to analyze the spatiotemporal evolution
of urban expansion in Hang-Jia-Hu and its impact on forests. In the process of using the C5.0 algorithm
to establish classification rules, we found that the original band accounted for 51.7% of the variables
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involved in constructing the classification tree, while the vegetation index was only 20.7%. This
shows that the vegetation index is not always the criterion used to distinguish between vegetation
and non-vegetation in the classification process. At the same time, due to the uncertainty of the
image spectral information, the optimal segmentation variables of different regions and different time
periods also have large differences. The accuracy of land use maps is especially important for land use
change analysis. The temporal mismatch between remote sensing and field survey data due to the
lack of cloud-free Landsat scenes corresponding to the exact times of ground observation can lead to
accuracy error in the verification results [19]. We used images from 2009 as a substitute for 2010, which
caused error in the verification process. In addition, accuracy verification results of the land use maps
showed that BFM was the major reason for the overall decrease in accuracy. This is because different
impervious surfaces have similar spectral signatures, which can result in misclassification [71]. The
spectral characteristics of BMF are close to those of BLF and CNF, resulting in a high degree of error in
the process of manual visual interpretation and selection of training samples for the establishment of
the decision tree. In addition, due to the significance of forests with respect to ecosystem functionalities,
the effect of minor changes in forests on humans cannot be ignored. The analysis of urbanization in
this study reveals that urbanization, mainly at the expense of CTL, also has a huge impact on forests.
Therefore, accurate monitoring of forest changes is of great significance. In particular, forest loss in
urban interior locations should attended to more closely. However, detection of urban forests based on
remote sensing technology mainly uses hyperspectral and high-resolution data, because it is difficult
to accurately detect subtle changes in low- and medium-resolution satellite data. Improving the time
and spatial resolution of the datasets and the evaluation methods of urban research may improve
the accuracy of measurements of urbanization. Finally, ATPM in this study represents the trend of
the change in land use area in Hang-Jia-Hu during the last two decades, and it was used to predict
the trend for the next 20 years with a certain degree of reliability. Furthermore, R2 and RMSE in the
prediction results of the past 20 years also show that ATPM has higher accuracy in the prediction of
land use area. However, the prediction results of this study can only represent the general situation
of the land area change for the next 20 years under the current development trend, but not specific
trends in future development. Since the overall trend of urban development on a large regional scale
can be used by land resource managers in order to draw meaningful conclusions at a macro scale and
implement rational planning, urban prediction is of great significance for urban planners and builders.

6. Conclusions

Based on the multitemporal Landsat imagery and the C5.0 decision tree, we analyzed the changes
in urban expansion and their impact on forests in the Hang-Jia-Hu region. The results showed that
using the C5.0 algorithm to establish decision trees for image data acquired in different years can
reduce the terrestrial homologue phenomenon caused by different dates of image acquisition, which
can greatly improve the extraction accuracy. During the past two decades, land use in Hang-Jia-Hu
region has changed greatly. The urban area increased by 2.65 times (nearly 209,100 hectares) with
respect to the original. JX City, with the largest dynamic degree of urban growth, expanded from the
urban center to the surroundings, especially in the JX district. HangZ City, with an urban dynamic
of 13.62%, gradually expanded westward. This phenomenon was more obvious in LA district and
FY district. With the process of urbanization, the CTL area shows a significant decline, changing
from covering an area from 60.37% in 1995 to and area of 37.58% in 2015, as a result of the massive
occupation of urban expansion. In terms of the pace of CTL decline, its contribution rate to urban
growth gradually decreased. The total area of BLF, CNF and BMF presented a small amplitude of
reduction, but its contribution to urban expansion was incremental, which means that the probability
of future urbanization using forests as a source of expansion will increase. Land use area prediction
indicates that in the next 20 years, urban use will continue to expand at the expense of CTL, but this
impact will become more tempered than in the past 20 years. On the contrary, forests will be affected
more seriously in the future because of urban expansion.
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