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Abstract: AI (artificial intelligence)-based analysis of geospatial data has gained a lot of attention.
Geospatial datasets are multi-dimensional; have spatiotemporal context; exist in disparate formats;
and require sophisticated AI workflows that include not only the AI algorithm training and testing,
but also data preprocessing and result post-processing. This complexity poses a huge challenge
when it comes to full-stack AI workflow management, as researchers often use an assortment of
time-intensive manual operations to manage their projects. However, none of the existing workflow
management software provides a satisfying solution on hybrid resources, full file access, data flow,
code control, and provenance. This paper introduces a new system named Geoweaver to improve the
efficiency of full-stack AI workflow management. It supports linking all the preprocessing, AI training
and testing, and post-processing steps into a single automated workflow. To demonstrate its utility, we
present a use case in which Geoweaver manages end-to-end deep learning for in-time crop mapping
using Landsat data. We show how Geoweaver effectively removes the tedium of managing various
scripts, code, libraries, Jupyter Notebooks, datasets, servers, and platforms, greatly reducing the time,
cost, and effort researchers must spend on such AI-based workflows. The concepts demonstrated
through Geoweaver serve as an important building block in the future of cyberinfrastructure for
AI research.

Keywords: geospatial artificial intelligence; cyberinfrastructure; geoprocessing workflows;
provenance; full stack workflows; geographical information systems (GIS); remote sensing

1. Introduction

Artificial intelligence (AI) is profoundly reshaping the scientific landscape [1]. Adoption of
AI techniques has brought a substantial revolution in how we collect, store, process, and analyze
legacy and current datasets [2–5]. The beneficial features of AI, such as efficiency in execution time,
resource usage, and automation, have made these techniques more attractive to researchers than
traditional scientific analysis routines, and many scientists/engineers are considering or already using
AI techniques in their research and industrial projects [6–8].

The internal mechanisms of AI models are not magic. It is a combination of hardware, software,
and algorithms that simulates typical behaviors of the human brain when confronting problems.
Machine learning is a popular AI approach and has been proven effective in solving many computer
science problems. Much of the core algorithms are not new (e.g., since 1980s) [9–11]. However, only
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in recent years has the advancement of hardware like GPU (graphics processing unit), CPU (central
processing unit), memory, and storage disks allowed machine learning models to digest big data in
a relatively short time [12,13]. The lower computational time costs and drastically improved results
have spurred the wide use of machine learning models, with application in many science disciplines,
from speech recognition [14]; driverless cars [15]; to smart cities [16]; intelligent homes [17]; and many
other fields such as agriculture, environment, manufacturing, transportation, and defense [18–20].
Popular media illustrates an impression that machine learning is constantly changing our way of
living, working, and relaxing from many aspects.

The application scope of machine learning is expanding rapidly in geospatial research. In recent
studies, machine learning has been proven effective for extracting information from the immense
amount of data collected within the geosciences [21–25]. The advantages of machine learning can
support our efforts to develop the best possible predictive understanding of how the complex interacting
geosystem works [23]. Bergen et al pointed out that the use of machine learning in geosciences could
mainly focus on (1) performing the complex predictive tasks that are difficult for numeric models; (2)
directly modeling the processes and interactions by approximating numerical simulations; and (3)
revealing new and often unanticipated patterns, structures, or relationships [23]. In the foreseen future,
machine learning will play a key role in the effort to better understand the complex interactions among
solid earth, ocean, and atmosphere.

Many research investigations have been conducted on geospatial datasets in all the three categories.
For instance, a team of Australian scientists created the first digital map of seabed lithologies by
analyzing ~15,000 samples of sediments found in marine basins [26]. They used the support vector
machine (SVM) model, one of the most-used machine learning models, to create the map (Figure 1),
which formerly required much effort by many people. Besides SVM, there are many other machine
learning techniques (e.g., decision tree, random forest, naive Bayes, neural networks) to implement
artificial intelligence. Deep learning, a popular subset study area of machine learning, studies the
neural networks with deep hidden layers (e.g., hundreds of layers) or wide hidden layers with
many neurons. Typical models of deep learning include feedforward deep neural networks [27],
convolutional neural networks [28], recurrent neural networks [14], and so on. Deep learning has been
actively used in geoscientific studies [7,19]. For example, Li et al proposed a stacked autoencoder
network that inherently considers spatial and temporal correlations and proved their model could
predict the air quality of all stations simultaneously [29]. To address the challenges in cloud-resolving
models on representing subgrid processes, deep learning is used for short-term simulations at a low
computational cost [30]. Rasp et al trained a deep neural network to represent all atmospheric subgrid
processes in a climate model by learning from a multiscale model [30]. Their results demonstrated the
feasibility of using deep learning for climate model parameterization.
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Figure 1. Seabed lithology map by support vector machine (SVM) (screenshot from gplates website
(https://portal.gplates.org/cesium/?view=seabed)).

However, scientists also point out that current AI techniques alone are still unable to fully
understand Earth’s complexity [7]. Studying complex systems like climate and the environment
calls for a hybrid approach of AI and numeric physical modeling, which presents challenges for the
integration of AI in geosciences. Combining these techniques is not straightforward. Managing and
streamlining hybrid AI workflows is presently a very challenging task.

It has been suggested that there are five general phases (https://skymind.ai/wiki/machine-learning-
workflow) in a machine learning workflow: (1) objective definition—identifying a geoscientific problem
and proposing a potential machine learning solution; (2) feasibility study—analyzing the risk of failures
and bottleneck issues; (3) model design, training, and lab evaluation [31,32]; (4) model deployment,
in-production evaluation, and monitoring [33]; and (5) model maintenance, diagnosis, share, and
reusability. In phase 3 and 4, the processing workflow of AI includes not only AI algorithms, but also
preprocessing and post-processing (https://towardsdatascience.com/workflow-of-a-machine-learning-
project-ec1dba419b94). The current AI processing is done by a combination of software, scripts,
libraries, and command-line tools. AI practitioners often maintain their workflows relying on their
own unique methods, which are commonly created without much priority given to accessibility or
ease of use and understanding by others. As many disparate and distributed entities are involved, it
becomes a challenge to streamline all the processes to help scientists to organize their deep learning
projects into a manageable and clear manner. Meanwhile, it is still difficult to share and reuse the
created AI workflows and results among the geoscientific community, which results in low efficiency
in AI model training and application in geosciences. Because of the lack of the details about workflow
and platform environments, it is difficult for scientists to reproduce the results when they have no
access to the original AI workflows.

This paper proposes a scientific workflow management framework to address these AI
workflow-related issues and a prototype system named Geoweaver for validation. We tested the
system with a use case applying deep learning methods to agricultural land cover mapping. The task
involves three distributed servers, GPUs, three programming languages, dozens of command tools,
a geographical information system (GIS), a deep learning toolkit, and multiple public data sources.
Geoweaver allows practitioners to manage all these entities in one place and record the provenance of
every execution in a separate database for future examination. The results prove that the framework
can bring great benefits to the AI community to build, run, monitor, share, track, modify, reproduce,
and reuse their AI workflows in either a single-machine environment or a distributed environment.

https://portal.gplates.org/cesium/?view=seabed
https://skymind.ai/wiki/machine-learning-workflow
https://skymind.ai/wiki/machine-learning-workflow
https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94
https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94
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The existence of Geoweaver could serve as a fundamental tool for the future AI workflow management
and boost the practical application of AI in the geosciences.

2. Big Spatial Data and AI

AI models are a combination of universal mathematical equations. Theoretically, they can be used
on any kind of datasets and fit in most scientific scenarios. One prerequisite of a successful AI model
is a big, less biased, accurate, complete training dataset, which requires continuous and large-scale
raw datasets [34]. An ideal training dataset collected in the previous century is often difficult to find,
as 90% of the current data in the world were created in just the past few years (https://www.xsnet.
com/blog/bid/205405/the-v-s-of-big-data-velocity-volume-value-variety-and-veracity). Every day,
huge amounts of data are collected from mobile phones, cameras, laptops, satellites, and sensors
from around the world and stored by data facilities under the management of tens of thousands
of institutes, organizations, agencies, and individuals [35]. The term “big data” describes the
large volume of data, both structured (clearly defined data types) and unstructured (everything
else) (https://www.datamation.com/big-data/structured-vs-unstructured-data.html), accumulated by
businesses on a day-to-day basis. Scientists summarized big data challenges into several “V”s, including
volume, velocity, variety, veracity, and value [36]. Data owners, providers, or keepers have invested
significantly to develop solutions that address these challenges [37]. The availability of big data is
good news for AI applications, however, extracting a training dataset from big data presents a set of
associated challenges [34].

In 2012, the U.S. government announced big data initiatives of more than $200 million in research
and development investments for National Science Foundation [38]. Fundamental research innovations
have been made in both the upstream and downstream of data, for example, data model, storing, query
and transferring strategies, computing paradigm, and data infrastructure [39], which have resulted in
the creation of a group of software tools, libraries, and hardware devices. Some commonly used tools
include Apache Hadoop [40], Apache Spark [41], HBase [42], Hive [43], MongoDB [44], Google Earth
Engine [45], Amazon S3 [46], Amazon EC2, Jupyter Notebook [47], and so on. These tools together
have enabled the efficient processing and analysis of big datasets collected from the entirety of human
society. Practitioners of the geosciences have been early adopters in the field of big data and AI-assisted
analysis, with many instances of the use of big data techniques successfully addressing geographic
information science problems [48–51]. Today, both the industrial and academic sectors are embracing
big data challenges and developing new theories and technologies for information discovery from
big spatial data. Many traditional analysis methods created for use on small-scale data and requiring
manual processes are unable to cope with the increasing volume of geospatial data available today.
It is a big challenge for conventional GIS operations to process such abundance of spatial datasets
and deliver timely information to stakeholders [52]. AI techniques present a promising automatic
solution: AI does not require manual processes and can digest large-scale data very quickly using
modern hardware. The most important thing is that the tremendous live data traffic will not affect AI
normal operation on a daily basis. From every aspect, AI seems to be an ideal solution for the current
big spatial data issues.

However, the spatiotemporal features of geospatial datasets often create more difficulties for the
AI models to successfully learn and predict. On the basis of our previous experiences, we conclude
five reasons that spatiotemporal data require additional attention:

(1) Difficulty in calibrating training datasets: This problem often occurs in remote sensing data.
The spatial resolution determines the size of each pixel and how much land it covers. For instance,
if AI models use remote sensing data as inputs and ground-collected data as outputs, the accuracy
can be critically affected if images are slightly shifted, resulting in ground sample points matching
the wrong pixels. Appropriate project transformation and resampling algorithms are required to
ensure the location match between input and output is right. Otherwise, the model will be very
hard to converge and the trained models are useless.

https://www.xsnet.com/blog/bid/205405/the-v-s-of-big-data-velocity-volume-value-variety-and-veracity
https://www.xsnet.com/blog/bid/205405/the-v-s-of-big-data-velocity-volume-value-variety-and-veracity
https://www.datamation.com/big-data/structured-vs-unstructured-data.html
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(2) Difficulty in synchronizing observation time: Most spatial information is also time-sensitive.
The observation time is important to associate observed events with triggering causes and later
potential consequences. Dealing with spatial data must keep in mind the data’s exact observation
time, approximate observation period, and time zones (if the dataset is regional). In many
studies, high temporal resolution granules are processed into more coarse resolution products, for
example, daily, weekly, biweekly, monthly, or annual products [32]. The time processing could
use maximum, minimum, average, standard deviation, and even some customized algorithms.

(3) Difficulty in reducing the bias in training datasets: Most spatial datasets are naturally biased.
For instance, in the North Dakota agriculture, the growing acres of canola are much smaller
than soybean, creating bias in datasets that contain more soybean samples than canola. Bias
creates problems for AI training, as AI will get much better accuracy on unbiased datasets. Extra
processes need be done to reduce the bias in the training dataset such as batch normalization
or restraining the representation sample numbers of each category in the training datasets [53].
However, one should be aware that bias is not the only reason for poor fitting performances
and reducing bias might cause the trained model to underfit in the major classes and overfit in
the minor classes. Scientists are still looking for solutions to balance between major and minor
class samples.

(4) Difficulty in treating data gaps: Data gaps caused by mechanical issues, weather, cloud, and
human reasons are very common in long-term observatory datasets. A typical example of
mechanics failure is the gap on the Landsat 7 imagery caused by the Scan Line Correction failure
since 2003. Clouds are the major reason blocking satellites from observing the land surface.
Misconduct by device operators can also cause gaps in the datasets. Data gaps may lead to
missing information of key phenomenon and make AI models unable to capture the patterns.
There are several proposed solutions to fill the gaps, but require human invention and take a long
time, which is not very efficient for big data.

(5) Difficulty in dealing with spatiotemporal data fuzziness: Fuzzy data, which are datasets using
qualitative descriptions instead of quantitative measures, are everywhere [54]. Social media
text [55], for example, will give a fuzzy location like “San Francisco” and fuzzy time like
“yesterday” about some observed event. Spatiotemporal analysis normally requires a precise
location (longitude/latitude) and time (accurate to hours/minutes/seconds) [56]. Feeding fuzzy
information into AI models might make the models even more inaccurate. How to deal with
fuzzy spatiotemporal data is also an important issue faced by AI today [57].

In summary, the location and time information inherent in spatiotemporal data, and the high
dimensionality of these data, require additional attention by AI engineers compared with other
traditional use cases. The difficulties enumerated above, present even when dealing with small
volumes of data, become more serious when big data are involved. The main bottleneck of using
AI in spatial data is the compatibility between the requirements of AI models and the complicated
structure of big spatial data. To address these issues, specialized tools and software are essential, and
may be better developed under open and sharing terms and conditions, so that the entire big data
community can contribute to solutions, while avoiding private unique non-interoperable data types,
interfaces, and structures. This work is one of these efforts to propose an open source software named
GeoWeaver as a solution to the mentioned challenges. In the software, GeoWeaver integrates the
capabilities of various existing libraries and software, for example, GDAL (geospatial data abstraction
library) /GRASS (geographic resources analysis support system) for calibration; USGS (United States
Geological Survey) EarthExplorer Python client to get the observations within the same period; Python
scikit-learn package for clustering and smoothing the data gaps, among others; and CUDA (compute
unified device architecture) DNN (deep neural network) for high performance model training, and so
on. Compared with existing workflow management software (WfMS), GeoWeaver could better couple
these heterogenous softwares into an automated workflow with less manual intervention and intuitive
one-stop user experiences.
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3. Workflow Management Software

Workflow management software (WfMS) is one of the urgently required software for big data AI
application, and maybe the most important one in the foreseeable future [58–62]. In this section, we
investigated the state-of-art of workflow systems that might be usable for managing AI workflows.
“Workflow” is very general term and may be interpreted in many ways. For example, many Earth
scientists often refer a Jupyter Notebook or a bash script as a workflow [47]. GIS users call the chains in
ArcGIS ModelBuilder a workflow [63]. Businesspeople refer to their production lines as a workflow [64].
In the web environment, web service chains are workflows [59,65,66]. None of these interpretations
are incorrect. Despite the big differences in the apparent forms, the so-called workflows by various
groups of people share several common key components:

3.1. Atomic Process

As the fundamental elements in a workflow, atomic processes are the tasks that act on and in
some way transform or create data. Most traditional workflow management systems expect all the
atomic processes in a workflow to conform to specific predetermined types. For instance, the ArcGIS
ModelBuilder allows the tools from ArcGIS (including customized tools) as atomic processes [63]. The
Oracle business process execution language (BPEL) process manager can compose web services with
SOAP-WSDL (Simple Object Access Protocol – Web Services Description Language) [67]. Information
about other WfMS can be found in Table 1. Scientific software complexity in the context of geosciences
breaks this conformity, with atomic processes of variable functionality and granularity. For example,
Python has become the dominant language and environment for AI workflows [68]. AI workflows
written in Python involve many calls of python libraries and distributed Jupyter Notebooks. Most of
the computations must be completed remotely on systems with GPUs installed or capable of executing
highly parallel codes. Shell scripts and command lines are another two important atomic processes for
transforming big spatial data into an AI-ready format and post-processing results into understandable
value-added products. The granularity of atomic processes in AI workflows is constantly changing
according to the personal preferences and habits of the workflow authors. Practitioners may tend to
encapsulate all the business logic into one huge atomic process, while some others prefer to itemize the
business logic into smaller discrete tasks to attain more granularity in the workflow progress. WfMS
should be designed to be flexible to grant the freedom of changing the granularity of atomic processes to
AI engineers.

Table 1. Supported atomic processes by existing workflow management software (WfMS).

Name Atomic Process Workflow Language License

ArcGIS Model Builder ArcGIS toolbox Self-Defined Commercial

QGIS Processing Builder GDAL, QGIS, GRASS, SAGA Self-Defined GNU GPL
(General Public License)

Apache Taverna

Local Java code
SOAP web services
RESTful services
R processor
Shell scripts
Xpath scripts

SCUFL2 Apache v2.0

Kepler
Web services
Unix commands
Shell scripts

Kepler Archive
BSD
(Berkeley Software
Distribution)
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Table 1. Cont.

Name Atomic Process Workflow Language License

Cylc Shell scripts Directed Acyclic Graph GPL v3.0

Galaxy Built-in bio process Gxformat2 AFL
(Academic Free License)

Pegasus-WMS Local shell scripts
Built-in processes DAX Apache v2.0

Apache Airflow Bash, Python Directed Acyclic Graph Apache v2.0

3.2. Function Chain

Simply speaking, a workflow is a bunch of linked processes [69]. Some processes (downstream
process) depend on the outputs of other processes (upstream process). This dependency is the
main driver of the workflow composition. The links among the processes are normally called “data
flow”. Once the processes are chained together, WfMS will allow users to execute the workflow
automatically and check the real-time status of the execution, which will require much less human
intervention compared with manually executing the separate processes individually. To facilitate reuse
and replication, the WfMS communities, for example, Workflow Management Coalition (WfMC) [70],
World Wide Web Consortium (W3C) [71], Organization for the Advancement of Structured Information
Standard (OASIS) (https://www.oasis-open.org/standards), myExperiment [72], Galaxy [73], and
Kepler [74], proposed a series of workflow languages that describe and record these workflow links
and the involved processes. The standard languages commonly used in the industrial sector include
BPEL (business process execution language), BPMN (business process model and notation), common
workflow language (CWL), and so on. For scientific workflows, most WfMS define their own languages,
such as Taverna SCUFL2 (Simple Conceptual Unified Flow Language), YAWL (Yet Another Workflow
Language), Kepler, and so on. These workflow languages provide abstractions and information models
for processes. WfMS uses these abstractions and models to execute the corresponding workflows.
However, hundreds of WfMS have been developed, but only a handful supports the common workflow
language. Most created workflows cannot be shared among different WfMS. Therefore, when choosing
WfMS, one needs to be very cautious because the course of transitioning workflows to another WfMS
later would be difficult.

3.3. Error Control

Another important objective of WfMS is error control. Big data processing may execute for
days or even months before desired results are achieved; it is inevitable that exceptions will occur
during such a long computational duration. Any design of WfMS must anticipate and be prepared to
handle the occurrence of errors in workflow execution. Owing to the common occurrence in big data
processing environments that components are written in different programming languages and run
in distributed virtual platforms, this can be a difficult challenge to realize and a non-trivial solution
is required [75]. Strategies for error control are generally comprised of two steps: error capturing
and error handling. WfMS must monitor the status of each individual process to capture the possible
error events. This requires that the individual processes have a channel for WfMS to observe their
real-time status (especially if the process will last very long time). Once an error occurs, the WfMS
may handle it in one of three ways: (1) stop the entire workflow, (2) rerun the process, or (3) skip the
failed process to continue. In the big data case, one recommended solution is to only rerun the failed
processes to avoid duplicated time waste on the upstream successfully executed processes; however,
this may depend on specific cases. For those common errors such as network disruption, memory
leak, time out, or hardware failures, the WfMS should provide some predefined solutions to decrease
the necessary interaction of users. In recent studies, many WfMS attempt to realize automatic error
detection and recovery without human intervention. This may be achievable for basic errors, while for
most high-complexity errors (in debugging phase), human analysis and operation is still required.

https://www.oasis-open.org/standards
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3.4. Provenance

Given the complex architectures common in machine learning, for example, in neural networks
with sometimes hundreds or thousands of layers weighted with parameters that are not humanly
interpretable, AI techniques are contributing to a widening crisis in repeatability, replicability, and
reproducibility [76–80]. A key, but often misunderstood enabling concept in these issues is that of
provenance [81–84]. High quality provenance records contain process and pedigree information about
what, how, where, and when the geospatial or other data are derived. The records of components,
inputs, systems, and processes that provide a historical context all belong to what may be termed
retrospective provenance. Similar prospective provenance records may be used for possible future
computational activities (refined workflow execution). Geospatial data are inherently problematic in
terms of replicability (e.g., because of spatial heterogeneity [85]), and the corresponding need for high
quality geospatial provenance information appears to be very high.

Provenance is extremely important in the world of data and geospatial data production and its
benefits go beyond replicability-related challenges to include quality, transparency, and trust [82,83,86,87].
However, there are serious unanswered questions about potential conflict between provenance, privacy,
and intellectual property. Furthermore, development of provenance standards for AI workflows has not
reached maturity. At a large scope, W3C has released a recommendation for a web provenance data
model called PROV-DM (Provenance Data Model) [71], which defines a basic universal core data model
for almost all kinds of the provenance information. However, there is uncertainty about using such a
recommendation to record the provenance generated by AI workflows that incorporate big geospatial data.
More research is also needed to solve data representation issues associated with provenance compression,
storage, query, retirement, and so on.

3.5. Big Data Processing Workflow

Training AI models requires big training datasets, which are derived by big data processing
workflow. However, managing big data processing workflows is much more complicated than
managing conventional small-scale workflows. This section reviews the current status of big data
processing workflow management and analyzes the challenges we are facing today.

Many big data processing frameworks have been used in response to carrying large-scale
computational experiments in geoscience [88]. Scientific workflows are used to combine traditional
high-performance computing with big data analytics paradigms [89]. Computational-intensive
scientific experiments are normally conducted in large data centers of national laboratories such as
DOE (Department of Energy) Oak Ridge National Laboratory, San Diego Supercomputer Center,
National Center for Supercomputing Applications in University of Illinois at Urbana-Champaign, and
CISL (Computational and Information Systems Lab) Supercomputers in NCAR (National Center for
Atmospheric Research). These supercomputer centers provide users with some client tools to manage
their experiment workflow remotely, such as Cylc [90]. Owing to security and maintenance reasons,
supercomputers can provide a limited environment for users to incubate their experiments.

Cloud computing is another popular paradigm for large-scale data processing today [91–93]. It is
based on resource sharing and virtualization to provide a transparent, scalable, and elastic environment,
which can be expanded or reduced on demand [94]. With cloud computing, clustered virtual machines,
as well as big data processing frameworks like Hadoop and Spark, may be instantiated and installed
to create a private big data processing architecture with little effort, and avoiding the need to enter into
a queue for resource allocation [48]. The big data software tools can automatically enforce data locality
and minimize data transfers, and allow scientific workflows to be executed in parallel. For instance,
suppose there is a task to average the petabyte data of global precipitation from hourly to daily. The
WfMS can help organize all the involved processes in the ETL (extract, transform, load) routine of
MapReduce workflow [51,95]. Big data are first digested and split into data batches in distributed
file systems like HDFS (Hadoop Distributed File System) [40]. Each batch is going to be mapped into
key/value pairs, and fed into reduced nodes for applying predefined algorithms. The processing of all
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the batches is carried out in parallel. The results are further reduced into tuples and stored in the HDFS.
People can use tools like Apache Hive to query data from the HDFS using a language that is very
similar to traditional SQL (Structured Query Language). Apache HBase is a popular NoSQL database
that runs on top of HDFS and supports Hadoop to handle large volumes of structured, semi-structured,
and unstructured data [42]. WfMS are mainly used for managing data ingest and data pipelines.

There are many other big data processing frameworks in addition to the Apache family [96].
For scientific workflow, Python plays an important role today. The ecosystem of numerous Python
libraries allows scientists to manage their experiments just using Python code. Pangeo community is
one of the largest fruits by the groups who try to use Python libraries to meet the big data challenges
in geosciences [97]. Pangeo is not a software, but a Python environment in which people will get all
the required libraries for processing large scale datasets, for example, global ocean remote sensing
database. The core libraries for parallel processing are Xarray and Zarr. Running on cloud platforms or
supercomputers, the Pangeo environment [97] has shown its feasibility in solving large-scale geoscience
problems via processing a huge amount of Earth observations accumulated in the past decades.

4. Framework

To meet the challenges above, we propose a novel framework for managing large-scale AI-based
geoprocessing workflow. The framework is designed to help scientists to sort out their AI experiment
and improve the automation and reusability. As shown in Figure 2, the framework is based on the
existing software ecosystem of AI and big spatial data by integrating many mature systems together in
one place for users to call. The core design is divided into three modules according to the entities they
deal with; that is, host, process, and workflow. The details are introduced below.
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4.1. Host

This module is the foundation of the entire framework and the major difference from the other
WfMS. It opens the entry to the existing resources like servers, virtual machines, Jupyter server
instances, and third-party computing platforms such as Google Earth Engine and Google Colab. This
module integrates the API (application programming interface) client to enable the manipulation of the
targeted resources. To facilitate quick and easy adoption of the platform, an interface that is familiar to
users accustomed to common existing tools is recommended. For example, this module can include an
SSH (Secure Shell) console to access and type in command lines to remote servers (including physical
servers or virtual machines provided by cloud platforms), a file browser, and code editing windows.
The host module also provides file transfer services, allowing for file upload from local to remote
servers, and file download from remote servers to the local computer.

Another important designed function is to take over the management of the system environment.
The system environment is primarily the set of variables that define the current settings for the
execution environment. System environments are very complicated owing to the variety and version
compatibility of dependent libraries. Setting the path and environment variables will differ depending
on the version of operating system of the machines. Environment variables often differ between systems
owing to discrepancies in installation locations of dependencies, a major cause of problems and often
a barrier to replicating an experiment on a new machine. To better manage environments, software
like package managers, such as conda or venv for Python, commonly used with the distribution of
packages, have been developed. A virtual environment is a directory that contains a specific collection
of Python packages. Via these management tools, the environment can be restored by the host module
so that the program can be successfully executed. An alternative to independently manage all the
environment variables is using containerization technologies (Docker and Kubernetes). Containers
can provide a production-ready environment for deploying applications in no time by eliminating the
need to install, manage, and operate the environment dependencies.

The host module also should be able to interact with third-party platforms like Jupyter Notebook
server and Google Earth Engine. Using their open API, host module can send messages to start processes
on those platforms. The function allows this framework to integrate with powerful high-performance
computing platforms in the public domain. Users can smoothly transfer their workflows from these
platforms to this framework.

4.2. Process

The process module includes five submodules and one database. The supported atomic processes
should include the widely used scripts, programs, commands, or code. As the current AI experiments
most commonly employ Python, the process module should at a minimum support Python, Jupyter
Notebook, shell scripts (i.e., Bash), and SSH for running system-level programs. The AI libraries like
DeepLearning4j, Keras [4], PyTorch [98], Caffe, Tensorflow [99], and so on are directly accessible in
the Python or Jupyter processes. A process creator/editor is a dialog in which users can create new
processes or edit old processes. There should be a text area for rendering Shell scripts, Java/Python
code snippets, and software commands with colors for intuitive reading. The newly created processes
should be stored in a database (MySQL, or H2). A task scheduler is responsible for scheduling the
process execution requests in the waiting list and assign the tasks with appropriate platforms from the
resource pool. A process runner is responsible for binding via SSH channels and executing processes
on assigned platforms. The execution needs to first transfer the latest code to the remote servers and
trigger the code by sending commands. The process monitor can listen to all the events occurred during
the execution and report the real-time status. Once the execution is over, the result messages together
with the inputs and executed code shall be saved into the database for later inquiry. A provenance
manager is responsible for querying and analyzing the stored history information of every processes
execution to evaluate data quality or recover the process execution from failures.
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4.3. Workflow

The workflow module provides two major functions: (1) composing workflows out of atomic
processes from the process module; and (2) managing the query, edit, execution, monitoring, and
retirement of workflows. Like other graphical workflow systems, the workflow creator should have
a graphical panel as the work canvas for drag-n-drop processes and linking them into a workflow.
An interface should be developed to allow users to compose workflow. There are many recent
developments in JavaScript frameworks, namely React, Angular, and Vue.js, as well as JavaScript
libraries such as D3.js and CodeMirror, that can aid in building websites to provide a rich user
experience through fully feature user interfaces. Via the interfaces, people can drag and drop the
atomic processes and draw lines to connect them into workflows. The created workflows represent the
knowledge of large-scale data processing and are stored in the database. A toolbar should be developed
to manage the workflows, including searching the existing workflows, running and monitoring the
workflows, and checking the history of workflow execution. The workflow module provides real-time
feedbacks of the member process statuses by indicating with different colors or showing progress bars.
To make the workflow knowledge sharable, this module should also allow people to export and import
(or upload and download) the workflows. User should be able to export their workflows from old
instance and import their workflows into a new instance where they can directly work as usual.

5. A Prototype: Geoweaver

We have developed a prototype named Geoweaver [100,101] to validate the framework. The
interface design is displayed in Figure 3. It simply consists of a workspace canvas, right-side menu
panel, navigation toolbar, workflow toolbar, and log out window. On the right-side menu panel, there
are three folders: host, process, and workflow. Each folder has child nodes. In the host folder, each
child node is a machine, either a physical remote server or a virtual machine. Each machine node
follows four buttons: SSH console button, file uploading button, file browser/downloading button,
and host deleting button. In the process folder, there are four child folders: shell scripts, python code,
Jupyter notebooks, and built-in processes. Each folder contains the processes in the same language or
format. The execution mechanisms for different folders are different.
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github.io/Geoweaver). It uses an MIT license, which is very permissive for both commercial and
non-commercial reuse.

6. Use Case: AI-Based Agriculture Mapping

We experimented Geoweaver by our current research of using Landsat images and deep learning
classification algorithms to study land cover changes and corresponding socio-economic influences
[3,5,102–107]. The AI workflow has already been published in the work of [5]. We replicate the
workflow in GeoWeaver and run it on new test data and successfully reproduced new crop maps [101]
(Figures 4 and 5).
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First, we downloaded the cropland data layer (CDL) from USDA (United States Department
of Agriculture) NASS (National Agricultural Statistics Service) [108] as reference data to predict the
unknown areas and periods. In this workflow, LSTM (long short term memory) [109] is utilized as the
classification method. The Landsat and CDL are first preprocessed into small tiles of images (example
data could be found at https://github.com/ZihengSun/Ag-Net-Dataset). There are several tutorial
Ag-Net Jupyter notebooks (https://github.com/ESIPFed/Ag-Net). We leveraged cloud computing
(GeoBrain Cloud) [110–112] and parallel processing (NVIDIA CUDA GPU) [93,113] to meet the
challenge of processing tremendous number of pixels in remote sensing images (a single Landsat 8
scene contains more than 34 million pixels) [114]. The classified maps will help agriculture monitoring,
prediction, and decision making [107,115]. The entire experiment poses too many management issues
for scientists to handle. We must contend with difficulties in maintaining organization and personal
communication, hardware communication constraints, and vexing configuration problems. We keenly
need a management software solution to help sort out the steps and processes, and provide us with
an overview dashboard to operate, manage the underlying facilities via the Internet, and track down
issues and provenance. In our case, we need it to serve functions to create an intuitive compound
workflow for the LSTM-based classification from raw images to land cover maps, run the workflow
on GeoBrain Cloud with Tensorflow and CUDA [4,99], track the provenance of each map [116], and
share the results with other scientists via Email or social media. The results show the workflow in
GeoWeaver can successfully classify the Landsat images accurately compared with the USDA crop
maps (Figure 5).

In the experiment, Geoweaver helped us to flexibly adjust the granularity of atomic processes in
the workflow. We redesigned the workflow for better management by combining all the processing
steps of Landsat images together into one atomic process “landsat-preprocessing”, and combining
all the preprocessing steps of CDL into “cdl-preprocessing”. We merged the code into one Shell
process that has larger granularity. The larger process will make it easier to cope with the situations
like data source change, for example, changing the input images from Landsat 8 to Landsat 5 (band
specifications are different). Via GeoWeaver, the merge/decomposition of code could be easily done by
creating new processes and splitting a large step into snippets or merging tedious steps into a large
process. Compared with other WfMS, Geoweaver provides more flexibility on allowing users to resize
the granularity of atomic processes.

Geoweaver also helped us in migrating the workflow around without rewriting anything. We
have deployed multiple instances of Geoweaver on GeoBrain Cloud in the case of network limitations
or accidental situations like power outage and server collapse. One Geoweaver instance has no access
to GPU server and one Geoweaver instance does. Initially we created the workflow on the non-GPU
Geoweaver instance. To leverage GPU, we download the workflow together with the process code
as a package and upload it into the Geoweaver instance with GPU access. It works smoothly on the
new instance and the transition is very time-saving compared with manually moving the workflow
from one environment to another. This also reflects the fact that Geoweaver reduces the barriers of
reproducing the experiment in a new environment.

During the workflow recreation, it was of great convenience that Geoweaver was able to chain
hybrid processes written in multiple languages and run them on multiple remote servers. The
downloading scripts and preprocessing scripts are written in Shell. The ag-net-train and ag-net-ready
and evaluate-results are in Python. The ShowCropMap process is a built-in process of Geoweaver,
which retrieves the result files from the remote servers and displays them in visual form in the
Geoweaver interface.

The training of neural networks was repeated dozens of times owing to the frequent adjustments
in the preprocessing steps and the neural network configuration. Each execution of the workflow
triggers the process monitor and provenance manager to start collecting and recording the provenance
information. All the successes and failures are saved and available for query via the history button. The
history table has a column “Status”, which has four options: Done, Failed, Pending, Stopped. Errors in

https://github.com/ZihengSun/Ag-Net-Dataset
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Geoweaver workflow are properly detected and thoroughly recorded to inform the users. Geoweaver
makes them available in a consistent one-stop manner, which saves a lot of wasteful execution of the
workflow by analyzing the recorded provenance and tuning the neural network models to optimal
status quickly.

The overall data volume in the experiment is 9.5 terabytes (including the original Landsat/CDL
data and semi-finished data products). It was boring and a challenge before for the researchers to
manually monitor the process running on such a dataset. Geoweaver coordinates between the file
storage system and the users via its host module. It allows users to access and manage the files in one
place and guides users to focus on the algorithms without being lost in the sea of data files. Big data
workflow could be monitored via web browser and becomes more controllable. Geoweaver uses its
flexible running module and real-time monitoring module to help us get rid of constant standbys and
the fear of GPU memory leak or missing the overfitting/underfitting turning point. In the foreseeable
future, high performance computing services (e.g., Google Earth Engine, Hadoop/Spark, Pangeo) will
be supported in Geoweaver and further shorten the waiting time in big data processing tasks.

7. Discussion

There are several reasons Geoweaver is a capable and comprehensive scientific workflow
management system. Geoweaver is targeting several key problems in the current landscape of
AI scientific research. Scientists often find themselves asking the following questions: Where is my
code? Where is my data? How can I find my historical results? How do I manage multiple servers,
HPCs, and laptops simultaneously? How can I link my experiment into an automatic workflow? AI
workflow is complicated and huge. It involves many libraries, tools, systems, platforms, machines,
or even super computers. Existing workflow systems fall short on managing multiple programming
languages, multiple servers, and multiple datasets. In most scenarios, small group of scientists
have very limited choices in research management tools. Geoweaver has a unique combination of
five very useful features, which make its experiences more complete than other current WfMS for
AI practitioners.

(1) Hybrid Workflow: Geoweaver can help AI practitioners to take advantage of both public
resources and private resources and combine them together into one workflow. The training
dataset preparation needs a lot of legacy datasets and the programs transforming them into
AI-ready format. However, the AI model training facilities are mostly in the public domain, such
as Amazon EC2 GPU instances. It is hard to connect the legacy data processing with the AI model
training using other WfMS. Geoweaver uses the host module and dynamic computing binding to
allow scientists to combine the processes executed on private servers and the public platforms
into one workflow and enable the hybrid workflow management in one place.

(2) Full Access of Remote Files: As mentioned above, most files associated with AI workflow are
stored on remote servers/virtual machines. Users always appreciate the tools that allow them to
have full and convenient control over the actual files, including creating new files, browsing file
folder structure, downloading files, and editing files in place. Geoweaver is not only a workflow
system, but also a file management system of multiple remote servers.

(3) Hidden Data Flow: Business workflows such as BPEL usually separate the content of workflow
into two divisions: control flow and data flow. The former defines the sequence of involved
processes, and the latter defines the data transfer among input and output variables. It takes
a lot of attention to maintain the data flow once the data are big and the file count is dynamic.
Geoweaver can create a familiar environment for people to create the workflows without concern
about the data flow. Each process is independent and data flow is taken care of by the process
content logic.

(4) Code-Machine Separation: Another feature of Geoweaver is that it separates the code from the
execution machine. There are couples of benefits by doing this. The code will be managed in
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one place and version control for better code integrity would be much easier. Geoweaver will
dynamically write code into a file on the remote servers and execute the code. Once the process is
over, Geoweaver will remove the code from the remote servers. Regarding the fact that the GPU
servers are usually shared by multiple users, the mechanism will better protect the code privacy
from other users on the same machine.

(5) Process-Oriented Provenance: Distinct from data-centric provenance architecture, Geoweaver
uses process as major objects to record provenance. The recorded information is also different.
In Geoweaver, the inputs are the executed code content, and the outputs are the execution log.
Rather than storing partially completed data products, process-oriented provenance can save disk
space and enrich the history information of the final data products. Process-oriented provenance
can prevent barriers to reproduction of the workflow that would otherwise be caused by changes
to the code.

8. Conclusions

This paper proposes a scientific workflow framework to address these AI workflow-related issues.
A prototype system named Geoweaver is implemented for validation. We tested the system by a
use case of AI-based agricultural land cover classification. The task involves several distributed
servers, GPUs, three programming languages, dozens of command tools, geographical information
system, deep learning toolkit, and multiple public data sources. Geoweaver makes all these entities
manageable in one place and record the provenance of every execution in a separate database for
future examine. This study proves that the proposed framework can bring great conveniences to the
AI community to build, run, monitor, share, track, modify, replicate, and reuse their AI workflows in
either a single-machine environment or distributed environment. The concepts demonstrated through
Geoweaver serve as an important building block in the future of cyberinfrastructure for AI research.
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