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Abstract: Vegetation phenology is highly sensitive to climate change, and the phenological responses
of vegetation to climate factors vary over time and space. Research on the vegetation phenology
in different climatic regimes will help clarify the key factors affecting vegetation changes. In this
paper, based on a time-series reconstruction of Moderate-Resolution Imaging Spectroradiometer
(MODIS) normalized difference vegetation index (NDVI) data using the Savitzky–Golay filtering
method, the phenology parameters of vegetation were extracted, and the Spatio-temporal changes
from 2001 to 2016 were analyzed. Moreover, the response characteristics of the vegetation phenology
to climate changes, such as changes in temperature, precipitation, and sunshine hours, were discussed.
The results showed that the responses of vegetation phenology to climatic factors varied within
different climatic regimes and that the Spatio-temporal responses were primarily controlled by the
local climatic and topographic conditions. The following were the three key findings. (1) The start of
the growing season (SOS) has a regular variation with the latitude, and that in the north is later than
that in the south. (2) In arid areas in the north, the SOS is mainly affected by the temperature, and
the end of the growing season (EOS) is affected by precipitation, while in humid areas in the south,
the SOS is mainly affected by precipitation, and the EOS is affected by the temperature. (3) Human
activities play an important role in vegetation phenology changes. These findings would help predict
and evaluate the stability of different ecosystems.
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1. Introduction

Phenology is the study of seasonally recurring plant and animal life cycle stages or phenophases,
such as the leafing and flowering of plants, the maturation of agricultural crops, the emergence of insects,
and the migration of birds [1]. Phenology is considered the pulse of our planet (www.usanpn.org).
The International Biological Program (IBP) defined phenology as a recurring event that our ancestors
used to guide agricultural production for thousands of years [2]. Phenology can reflect the climate
and environmental changes and is an important indicator of changes in the natural environment [3,4].
Moreover, plants are an important part of the ecosystem, providing the main portions of matter and
energy [5]. Phenology plays a crucial role in the carbon balance of terrestrial ecosystems [6]. Therefore,
it is very important to study vegetation phenology. A change in vegetation phenology has many
consequences for ecological processes, agriculture, forestry, human health, and the global economy [7].
Elucidating the trends of vegetation phenology can improve our understanding of the impacts of
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climate change on ecosystem productivity and carbon cycling and the associated feedback to the
climate [8].

In recent decades, warming increasing trends and frequent extreme events due to climate changes
have produced significant impacts on many ecosystems and changed the vegetation phenology [9,10].
Vegetation phenology is very sensitive to climate change, and it is regarded as an important indicator of
climate change [11–15]. Various biotic and abiotic factors influence vegetation phenology, including the
temperature, photoperiod, precipitation/moisture, vegetation composition, and climate changes [16–20].
In a study conducted in 21 European countries, Menzel et al. found that leaf-on conditions arrived
2.5 days earlier and that leaf-off conditions were delayed by 1 day for every 1◦C increase in the
temperature, respectively [21]. In the northern hemisphere, spring temperatures were found to have
the highest correlation with the start of the growing season (SOS) [22–24]. Evidence of the effects of
precipitation, nutrients, and soil physical properties on the spring phenology is scarce, and where
effects have been found, the effects are small relative to the effect of the temperature in England [25].
However, as research develops, the temperature has been found to not be the only limiting factor of
vegetation phenology [26]. Precipitation is also an important factor affecting changes in vegetation
phenology [27]. Precipitation during winter and spring has also been found to affect the spring
phenology in a complex manner in middle and high latitudes in the Northern Hemisphere [28–30].
Solar radiation (the total insolation, peak irradiance, and photoperiod) has also been implicated as a
major cue, affecting the phenology in both seasonal and aseasonal periods [31,32]. In some temperate
tree species, the photoperiod and winter chilling requirements are also known to play a role in the
spring phenology [11]. In addition, studies have suggested that elevated CO2 levels can enhance leaf
longevity and impact the vegetation phenology in autumn [33].

Climate changes may accelerate in the future, so there is an urgent need to understand the
Spatio-temporal phenological driving forces behind these changes [34]. Advances in remote-sensing
technology have greatly expanded the capability of phenology observation [5]. The greenness index
has been widely used in vegetation phenology research around the world, and it is retrieved from
various satellite remote-sensing data, such as the normalized difference vegetation index (NDVI) [35].
Piao et al. used the method of the greatest increase in the NDVI to extract vegetation phenological
parameters in temperate regions of China [36]. The phenological changes in the northern hemisphere
over the past 30 years have been discussed by the maximum ratio method [3]. The method of the
maximum curvature change has been used to estimate the autumn phenology, which is suitable for
the comparison of ground observation data with Moderate-Resolution Imaging Spectroradiometer
(MODIS) NDVI data [37]. However, at present, most phenological studies are focused on plateaus,
watersheds, forests, and other large-scale spaces [38–42]. There are few studies on the response
mechanisms of the vegetation phenology to climate changes under different climatic conditions at
medium and small scales. Furthermore, the phenological sensitivity to climate changes across all
taxa and scales is different, and there is potential ecological asynchrony [43]. Due to differences in
topography and geomorphology, unique regional microclimates are formed, and local models of
vegetation phenology arise [37]. We expect that even in areas with similar geographical locations,
different local topographical conditions would have a significant impact on the vegetation phenology.
The main purpose of this study was to address the following questions:

(1) What is the Spatio-temporal variation pattern of the vegetation phenology?
(2) How do climatic factors, such as temperature, precipitation, and light, affect phenological changes?

Clarifying these issues would help predict and evaluate the stability of different ecological
communities and provide an important scientific basis for local sustainable development.
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2. Data and Methods

2.1. Study Area

Shaanxi Province (Figure 1) is located at the junction of the eastern humid area and western arid
area in China, and its area is approximately 205,600 km2. The climate differs from north to south, and the
landforms are composed of plateaus, mountains, plains, and basins. According to the landform types,
the province can be divided into six parts: the Mu Us Desert (MUD), Loess Plateau (LP), Guanzhong
Plain (GZP), Qinling Mountains (QLM), Hanjiang Basin (HJB), and Daba Mountains (DBM) [44]. The
only desert landform is a MUD, where the climate is dry and cold, and the vegetation types are mainly
desert vegetation, such as Artemisia and Salix. In recent years, the ecological environment has changed
due to the Grain for Green Program. The LP is the frailest ecological area, where Yellow River is
divided into numerous small tributaries, and the vegetation types are mainly grassland and shrub.
The GZP is the largest plain and grain-producing zone, and its vegetation types are mixed deciduous
forests and crops. The highest-elevation zone is the QLM, which is predominantly forested, with
abundant animal and plant species. The HJB is the source of the HanJiang River, where the vegetation
types are broad-leaved forests and crops. There are many mountain ravines crisscrossing the DBM,
where the district basically consists of evergreen broad-leaved forests and evergreen deciduous forests.
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2.2. Data Source and Preprocessing

2.2.1. NDVI

This paper used MODIS normalized difference vegetation index (NDVI) data as the basic data for
the production of remote-sensing vegetation phenology analyses. The NDVI with a 16-day temporal
resolution and a 250-m spatial resolution (MOD13Q1, collection v006) was obtained from the Level-1
and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC)
website (https://ladsweb.modaps.eosdis.nasa.gov/), and two tiles (h26v05 and h27v05) covered the
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study area. The sixteen-year period between 2001 and 2016 was used. After we obtained the data, we
extracted, mosaicked, reformatted, and reprojected the NDVI and pixel-reliability data layer using the
MODIS projection tool (MRT) provided by the Land Processes Distributed Active Archive Center (LP
DAAC). Subsequently, according to the methods in (SONG Chun-qiao 2011) [45], the pixel-reliability
was used to process the NDVI data to improve reliability. In detail, for the same one-pixel position,
NDVI values with pixel-reliability values of 0 and 1 were weighted with 1 and 0.8, respectively, and
pixels with pixel-reliability data of 2 and 3 were weighted with 0.2. We performed this process in
Matlab and marked the NDVI processed according to the pixel-reliability data as the pNDVI (Figure 2).

2.2.2. Meteorological Data

The meteorological data used in this study included the monthly mean temperature, monthly
precipitation, and monthly sunshine hours. These data were calculated from the daily values, which
were obtained from the Chinese ground meteorological data daily dataset (V3.0) downloaded from the
China Meteorological Data website (http://cdc.cma.gov.cn/). The meteorological data were averaged
monthly or summed after spatial interpolation using the inverse distance-weighted (IDW) method in
ArcGIS, and Spatio-temporal meteorological data at the monthly time scale with a 250-m resolution
were obtained covering 2001 to 2016.

2.2.3. Topographic Data

Because there are many landform types in the study area (Figure 1) and due to the altitudinal
differences between different landform types, the relationship between the altitude and phenology
was analyzed using digital elevation model (DEM) data with a 30-m spatial resolution to explore the
influence of the altitude on phenological parameters. The DEM data were derived from the ASTER
GDEM V2 dataset, which was downloaded from the Geospatial Data Cloud (http://www.gscloud.cn)
of the Computer Network Information Center, Chinese Academy of Sciences. In ArcMap, the DEM
data were obtained in separate tiles, which were subsequently mosaicked, resampled to 250 m, and
then subset to Shaanxi Province (study area).

Land use data with a 30-m spatial resolution from the Resources and Environment Scientific Data
Center, Chinese Academy of Sciences, were used to extract the NDVI in areas with vegetation coverage
in the study area by resampling and masking in ArcMap. Pixels with NDVI<0.05 were eliminated to
ensure that each NDVI pixel had vegetation cover.

2.3. Remote-Sensing Vegetation Phenology Extraction

2.3.1. Reconstruction of the Vegetation Index Time Series Curve

The time series curve of the vegetation index (Figure 2) reflects the growth of vegetation and
is the basis for extracting the parameters necessary to assess the vegetation phenology via remote
sensing. The NDVI values from the same year were layer-stacked in ArcGIS to obtain multi-band
images of 23 periods in that year, with each band representing the NDVI for a certain period, and then
the multi-band images were read as a multi-dimensional matrix in Matlab, pixel by pixel. Subsequently,
the multi-dimensional matrix was converted into a 1-dimensional sequence to obtain the NDVI time
series of the pixel, as shown in Figure 2 NDVI. However, the original NDVI time series curve (Figure 2,
NDVI) is uneven and abrupt due to interference from poor atmospheric conditions, clouds, and other
unfavorable factors [46], and it is not suitable for use in the direct extraction of vegetation phenological
parameters. Therefore, the Savitzky–Golay (S-G) filtering method was used to reconstruct the time
series curve before extracting the vegetation phenological parameters.

The S-G filtering method was proposed by Savitzky and Golay in 1964 and is a weighted fitting
algorithm for moving windows. The weight coefficients are derived by the least-squares fitting of
a given high-order polynomial within the moving window [47]. Therefore, during the process of
smoothing and denoising the NDVI time-series data with the S-G filter, the establishment of two

http://cdc.cma.gov.cn/
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parameters is crucial. The first parameter is m, which is the half-width of the smoothing window and
is set to range from 3 to 7 [47]. Usually, a large m value produces a smooth result at the expense of
flattening sharp peaks. The second parameter is an integer (d) that specifies the degree of smoothing of
the polynomial, which is typically set to range from 2 to 4 [47]. A small d value will produce a smooth
result but may introduce bias, while a high d value will reduce the filter bias but may “overfit” the
data and yield a noisy result. Therefore, after comparing the results of different (m, d) combinations of
parameters, the moving window (m) value was set to 5, the polynomial order (d) was set to 2, and the
S-G filter was employed to reconstruct the NDVI time series (Figure 2, sgNDVI).
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2.3.2. Extraction of Phenological Parameters

The extraction of vegetation phenology assumes that there is only one growing season in a year
(for areas with two or more growing seasons in a year, this paper extracted the growing season with the
largest NDVI value during the vegetation growing seasons in the area). Three commonly used metrics
for the assessment of vegetation growth, namely, the SOS, end of the growing season (EOS), and length
of the growing season (LOS), were extracted. The SOS refers to the date of onset of photosynthetic
activity, and the EOS refers to the date at which the photosynthetic activity and green leaf area begin to
rapidly decrease [48]. The LOS is calculated as the difference between the EOS and SOS.

Field-based ecological studies have demonstrated that after leaf emergence, a plant will grow
rapidly for a period of time until it reaches a growth peak at a relatively stable stage and will then enter a
similar but opposite pattern, namely, the rapid decline [48]. When this pattern is reflected in the growth
curve of plants, the growth state of plants can be determined by observing the shape of the curve.
There are many methods for extracting vegetation phenology based on remote-sensing vegetation
index time series. The commonly used methods are the threshold method, the maximum slope
method, the maximum ratio method, and the cumulative frequency method [36,49–51]. Considering
the computational efficiency and operability characteristics of the methods, the maximum ratio method
was used to extract the vegetation phenology in the study area. The maximum ratio describes the
maximum change rate of the vegetation index, which is calculated as [3]:

NDVIratio(i) =
NDVIi+1 −NDVIi

NDVIi
(1)
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where i is the time sequence number. We determined the i value with the maximum NDVIratio and then
used the corresponding Julian day as the SOS. Likewise, we determined the i value with the minimum
NDVIratio and used the corresponding Julian day at i + 1 as the EOS. We extracted the phenological
parameters of the vegetation in the study area pixel by pixel and saved the results as a TIF-format
image in Matlab. Finally, we made a thematic map in ArcGIS, as shown in Figure 3.

2.4. Trend and Correlation Analysis

In the investigation of the temporal and spatial changes in phenology over the study area, we
performed a linear regression of the phenological parameters against the SOS, EOS, and LOS and
used the resulting regression coefficients to analyze the spatial-temporal trends of the phenology. The
mathematical formula can be expressed as follows:

trend =
n×

∑n
t=1 t× yt −

∑n
t=1 t

∑n
t=1 yt

n×
∑n

t=1 t2 −
(∑n

t=1 t
)2 (2)

where n is the years during the monitoring period, t is a certain year, and yt is the vegetation
phenological parameter value for year t. trend > 0 indicates a delayed trend, while trend < 0 indicates
an advancement trend.

In order to explore the response of the phenology to the temperature, precipitation, and sunshine
hours, we used Pearson’s correlation analysis. Specifically, (1) the correlations of SOS with the
temperature and precipitation from February to April were evaluated; (2) the correlations between the
EOS and the temperature and precipitation from September to November and the correlation between
the EOS and the sunshine hours from May to July were evaluated; and (3) the correlations between the
LOS and the temperature and precipitation from April to September and the correlation between the
LOS and the monthly sunshine hours from May to July were evaluated. The R-value was calculated as
follows:

r =

∑n
t=1(xt − x)

(
yt − y

)
√∑n

t=1(xt − x)2
√∑n

t=1

(
yt − y

)2
(3)

where xt is the meteorological data for year t. yt is the phenological parameter value for year t. We
performed Pearson’s correlation analysis and saved the results as a TIF-format image in Matlab, which
were used to make a thematic map in ArcGIS.

3. Results

3.1. Spatial Distribution Patterns of the Multi-Annual Average Vegetation Phenology

Figure 3 shows the spatial distributions of the SOS, EOS, and LOS in different geomorphic regions
of the study area during 2001–2016. As shown in the figure, the vegetation phenology throughout the
study area varied with the latitude from north to south, but due to the differences in topography and
climate in each geomorphic zone, the vegetation phenology exhibited spatial heterogeneity. Compared
with the southern area, the northern area had a later SOS and EOS and a shorter LOS. The difference in
SOS between the north and south was the most obvious, with the SOS occurring early in the south and
late in the north.

Table 1 presents a statistical analysis of the spatial distribution of the vegetation phenology
illustrated in Figure 3. In Shaanxi, the annual average SOS was 120 d, the annual average EOS was
280 d, and the annual average LOS was 160 d. In the northern LP, the annual average SOS was 134 d,
which was greater than that in other geomorphic regions. The SOS first appeared in the HJB, where
the climate is humid all year, and the altitude is relatively low, with an annual average of 88 d. The
EOS was the latest in the MUD, with an annual average of 291 d, and the earliest in the DBM, at 267
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d. The HJB had the longest LOS of 183 d. In the other geomorphic regions, the LOS exhibited little
difference, ranging from 155 d to 173 d.
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SOS EOS LOS

mean std mean std mean std

Shaanxi 120.68 28.36 280.04 18.47 160.36 29.33
Mu Us Desert 132.58 36.80 291.07 12.59 158.49 46.64
Loess Plateau 134.16 27.72 289.65 11.97 155.50 28.21
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Qinling Mountain 113.43 16.87 270.24 16.27 156.81 25.48

Hanjiang Basin 88.10 15.21 271.81 15.29 183.72 23.14
Daba Mountain 109.51 17.96 267.08 17.13 157.57 25.42

SOS: start of the growing season; EOS: end of the growing season; LOS: length of the growing season.

There was a close relationship between the vegetation phenology and altitude in Shaanxi. Pearson’s
correlation analysis indicated that the relationship was significant. The characteristics of the changes
in vegetation phenology with altitude are shown in Figure 3. The SOS was significantly delayed with
increasing altitudes, and the extent of the delay was approximately 1.4 d/100 m (r = 0.92, P < 0.01). The
LOS was significantly shortened at a rate of approximately 2 d/100 m (r = −0.97, P < 0.01). The EOS
was both postponed and advanced with increasing altitudes, but it showed a significant advancing
trend overall, with the rate of advancement of approximately 0.6 d/100 m (r = −0.80, P < 0.01).



ISPRS Int. J. Geo-Inf. 2020, 9, 111 8 of 17

3.2. Spatial Distribution Patterns of Interannual Phenological Changes

As shown as Figure 4, throughout the study area, over 66.39% of the pixels showed that the SOS
had an advancing trend (0.89 d/years), and the trends of 6.89% of the pixels were significant. In the LP,
the percentage of pixels with advancing trends in this area was 78.39%, and the trends were significant
in 11.47% of the pixels, with a rate of advancement of 1.51 d/year. However, in the northern MUD,
delayed-SOS pixels accounted for the majority, covering 71.97% of the pixels. In some geomorphic
regions, the advancement of the SOS gradually weakened from north to south—for example, in the
LP, the trend in the north was larger than that in the south. There were no significant differences in
the EOS in terms of advancements and delays, and 53.81% of the pixels exhibited delays, while 2.48%
of the pixels exhibited significant delays, with the average rate of delay of 0.18 d/year. These pixels
were mainly distributed in the QLM, HJB, and LP. The highest rate of delay of 64.54% occurred in the
QLM, with a rate of delay of 0.83 d/year. The areas with advancements were mainly distributed in the
MUD, DBM, and GZP, with a rate of advancement of 0.34 d/year. The LOS showed an overall trend of
extension, covering 65.05% of the pixels, of which 5.57% showed significant extension, with the rate
of extension of 1.07 d/year, which was greater than the changes in SOS and EOS. The prolongation
trends of the area were mostly in the LP and QLM, where 73.03% and 72.32% of the pixels exhibited
delays. In the LP, 7.32% of the pixels exhibited significant prolongation, and the rate of prolongation in
the QLM was significantly higher than the average, reaching 1.88 d/year. The shortening of the LOS
was mainly concentrated in the MUD, where the shortening ratio reached 72.03% and significantly
decreased to 9.76%, and the shortening time was 2.52 d/year.
ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 8 of 18 

 

 
Figure 4. Spatial distribution of the inter-annual variation of the vegetation phenology in Shaanxi 
from 2001 to 2016 (d/a: day per year). 

As shown as Figure 4, throughout the study area, over 66.39% of the pixels showed that the 
SOS had an advancing trend (0.89 d/years), and the trends of 6.89% of the pixels were significant. In 
the LP, the percentage of pixels with advancing trends in this area was 78.39%, and the trends were 
significant in 11.47% of the pixels, with a rate of advancement of 1.51 d/year. However, in the 
northern MUD, delayed-SOS pixels accounted for the majority, covering 71.97% of the pixels. In 
some geomorphic regions, the advancement of the SOS gradually weakened from north to south—
for example, in the LP, the trend in the north was larger than that in the south. There were no 
significant differences in the EOS in terms of advancements and delays, and 53.81% of the pixels 
exhibited delays, while 2.48% of the pixels exhibited significant delays, with the average rate of 
delay of 0.18 d/year. These pixels were mainly distributed in the QLM, HJB, and LP. The highest 
rate of delay of 64.54% occurred in the QLM, with a rate of delay of 0.83 d/year. The areas with 
advancements were mainly distributed in the MUD, DBM, and GZP, with a rate of advancement of 
0.34 d/year. The LOS showed an overall trend of extension, covering 65.05% of the pixels, of which 
5.57% showed significant extension, with the rate of extension of 1.07 d/year, which was greater 
than the changes in SOS and EOS. The prolongation trends of the area were mostly in the LP and 
QLM, where 73.03% and 72.32% of the pixels exhibited delays. In the LP, 7.32% of the pixels 
exhibited significant prolongation, and the rate of prolongation in the QLM was significantly higher 
than the average, reaching 1.88 d/year. The shortening of the LOS was mainly concentrated in the 
MUD, where the shortening ratio reached 72.03% and significantly decreased to 9.76%, and the 
shortening time was 2.52 d/year. 

3.3. The Response of the Vegetation Phenology to Climatic Factors 

3.3.1. The Response of the SOS to Precipitation and Temperature 

Figure 4. Spatial distribution of the inter-annual variation of the vegetation phenology in Shaanxi from
2001 to 2016 (d/a: day per year).

3.3. The Response of the Vegetation Phenology to Climatic Factors

3.3.1. The Response of the SOS to Precipitation and Temperature

We can see from Figure 5, for the entire study area, the average precipitation from February to
April had a negative correlation with the SOS, with negative correlations occurring in 61.88% of the
pixels, indicating that with the increase of precipitation, the SOS advanced. The greatest influence
of precipitation on the SOS occurred in March when 7.5% of the pixels exhibited significant negative
correlations. The average temperature from February to April also had a negative correlation with the
SOS in 58.14% of the pixels, where the SOS advanced with the increase of the temperature. However,
the greatest influence of the temperature on the SOS occurred in February, with the negative correlation
being significant in only 3.17% of the pixels.
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The influences of the precipitation and temperature on the SOS in different geomorphic regions of
the study area differed from north to south. The MUD and LP in the north were mainly affected by
the temperature. In February, the temperature had the greatest influence in the MUD and LP, where
the proportion of significant pixels reached 14.42% and 11.83%, respectively, which mainly exhibited
positive correlations. Precipitation had a mainly negative correlation with the SOS in the MUD and
LP, but fewer pixels were affected by precipitation than by the temperature. The GZP and QLM in
the central region were affected by temperature and precipitation. Precipitation and temperature
had mainly negative correlations in the QLM. In the GZP, precipitation and temperature had mainly
positive correlations in February and March and negative correlations in April. The HJB and DBM
in the south were strongly affected by precipitation. Precipitation had the greatest influence on the
SOS in March in the DBM, with significant pixels accounting for 12.16% of the area, in which the
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correlations were positive. The delays in these regions might be due to the increase in precipitation,
which might have resulted in a decrease in the temperature and a delay of the SOS. However, the
response to temperature was weak in the DBM, and the largest proportion of significant pixels in
March was only 2.74%, which was far less than those in other areas.

3.3.2. The Response of the EOS to Precipitation, Temperature, and Sunshine Hours

As shown as Figure 6, compared with the SOS, the impacts of the Spatio-temporal variations in
the climate on the EOS were more complex. There were limited positive and negative correlations
between the EOS and precipitation in September and October, and there were few significant pixels.
Precipitation had the greatest influence on the EOS in November. positive correlations covered 64.88%
of the area, and the influence was significant in 10.73% of the pixels, indicating that the EOS was
delayed in most regions with the increase of precipitation. There were limited positive and negative
correlations between the EOS and temperature from September to November. The greatest influence
of the temperature on the EOS occurred in September, and 10.13% of the pixels exhibited significant
positive correlations. The influence of the sunshine hours on the EOS was positive from May to July.
This result indicated that the EOS was delayed as the sunshine hours increased. In May and July, there
were no significant differences in the effects of the sunshine hours on the EOS, and the influences were
significant in 8.75% and 9.63% of the pixels, respectively, compared with 4.58% in June.

Similar to the SOS, the response of the EOS to the climate also showed differences between the
north and south. However, in contrast to the SOS, the temperature had a mainly positive correlation
in the central and southern areas of the study area to the south of the GZP. The temperature in
September had the greatest influence in the GZP and QLM, at 15.97%, while 12.61% of the pixels
exhibited significant positive correlations. In contrast, in the DBM and HJB, the temperature had the
greatest influence in October, when the proportions of pixels with significant positive correlations
reached 12.97% and 10.82%, respectively. Precipitation mainly affected the MUD and LP in the north
of the study area. The greatest impact from precipitation on the EOS in the MUD and LP occurred
in November, when significant positive correlations occurred in 17.85% and 16.11% of the pixels,
respectively. This finding indicated that the EOS was delayed with the increase of precipitation. In
summer, most of the plants are luxuriant. The sunshine hours affect changes in the EOS and LOS by
affecting photosynthesis [52]. The greatest effects of the sunshine hours on the EOS occurred in the
MUD and LP, and the correlations were mainly positive. This finding indicated that the EOS was
delayed as the sunshine intensified. The highest proportion of significant pixels was 16.61%, which
occurred in the MUD in May, while 13.61% were significant in the LP in July. In other areas, the effects
of the sunshine hours on the EOS were mainly positive, but the number of significant pixels was low.
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3.3.3. The Response of the LOS to the Precipitation, Temperature, and Sunshine

Figure 7 shows the direction of the correlation coefficient between the precipitation and LOS
changed from April to September. Positive correlations covered 70.12% of the area from April to June,
and negative correlations covered 74.18% of the area in July and August. In September, about 57.6% of
the area showed a positive correlation between the LOS and precipitation. The greatest influence of
precipitation on the LOS reached 12.62% in July, which was a significant negative correlation. This
result showed that the LOS in most areas would be shortened with the increase of precipitation in
July. The proportions of positive and negative correlations of the LOS with the temperature from
April to September were 45.03% and 54.97%, respectively. The greatest influence of the temperature
on the LOS reached 72.41% in May when the correlation was negative, whereas 12.03% of the pixels
exhibited positive correlations. The influence of the sunshine hours on the LOS was less significant
than the influences of precipitation and temperature. The effect of the sunshine hours on the LOS was
the most significant in May when the proportion of significant pixels was 6.85%. There were positive
correlations in May and July and negative correlations in June.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 13 of 18 
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In contrast to the SOS and EOS, the influence of the climate on the LOS exhibited Spatio-temporal
heterogeneity and no regularity. Precipitation had the greatest effect on the LOS in most regions in
July, and the correlations were mainly negative. The largest correlation occurred in the HJB, where
17.41% of the pixels showed significant correlations. In the LP, the greatest effects of precipitation on
the LOS occurred in August, when 10.19% of the pixels showed significant correlations. In April, the
temperature had the greatest effect in the DBM, and the significant pixel ratio was 8.55%, with most
being positively correlated. In May, the temperature had the greatest effect in the LP and QLM, and the
proportions of significant pixels were 13.66% and 14.23%, respectively, which mainly exhibited negative
correlations. The GZP was most affected by the temperature in September when the proportion of
significant pixels was 8.98%. The LOS in the MUD was not affected by the temperature, and the
average ratio of significant pixels was only 2.29%, which was much lower than those in other areas.
The influence of the sunshine hours on each geomorphic area was positive, and the greatest effect was
observed in May. The highest proportion of significant pixels was 9.93% in the DBM. The influence of
the sunshine hours in the other regions was not significantly different, and the proportion of significant
pixels was less than 6% from May to July.

4. Discussion

The extent to which climatic factors influence the vegetation phenology is dependent on the
different developmental stages of the phenological events [5]. Moreover, the responses of the vegetation
phenology to environmental changes are non-uniform in different regions [52], in which the climate
and vegetation type can differ greatly. Under normal conditions, the northern arid area experiences
less precipitation and lower temperatures than does the south in autumn, so the EOS should be earlier.
However, interestingly, the EOS in the northern area was found to be significantly later than that in the
southern area in our study. This difference might arise because the vegetation in the north is mostly
Artemisia and herbaceous plants, for which the EOS occurs around the end of October or the middle of
November, which is later than the EOS for corn, wheat, and other crops in the south. This finding
showed that the responses of the EOS to climate changes were more complex than those of the SOS,
and the two trends are asymmetric [3,11].

Vegetation phenology was influenced by human activities. Interannual variations in the phenology
indicated that the SOS was undergoing an advancement trend, while the LOS was being prolonged.
However, in the two adjacent climatic regions in the north, the results were the opposite. In the LP, the
SOS underwent the most significant advancement, while the LOS was extended. For the MUD, the SOS
was delayed, and the LOS was shortened. This trend occurred mainly because the main vegetation
comprises shrubs and grassland in the LP, which are more sensitive to temperature changes than the
other types of vegetation. Because trees have been planted to control desertification in the MUD over
the past decade, the ecological environment has improved, and the vegetation coverage has increased
from 9.9% in 2000 to 38.03% in 2018 (http://www.shaanxi.gov.cn). The vegetation type also changed
from Salix and other wind-break plants to crops, such as potatoes and corn (sprouting in May and
harvested in October), which have a later SOS and a shorter LOS than those of forest and grass plants.

Most studies have found temperature to be the main factor that controls the vegetation
phenology [53,54]. In this study, precipitation was shown to play a role as critical as that of the
temperature. For the SOS, most areas of the MUD and LP were mainly affected by the temperature
in the north. The central GZP and QLM were affected by both the temperature and precipitation,
and the precipitation in the HJB and DBM was the key factor in the south. However, for the EOS,
precipitation mainly affected most of the northern region, while the central and southern regions were
mainly affected by the temperature. These results showed that the effects of climate changes on the
vegetation phenology were complex. These impacts differed by region, and the climate factors that
control the vegetation phenology were different in different geomorphic areas. Similarly, we found
that the sunshine hours were positively correlated with the EOS from May to July. This finding was

http://www.shaanxi.gov.cn
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consistent with the results of previous studies [55]. When summer transitions into autumn, the day
gradually shortens (the sunshine hours decrease), which induces bud setting and leaf senescence [56].

Vegetation phenology was affected by different climate factors. In the northern MUD, the SOS
was most significantly affected by the temperature. In contrast, in the southern DBM, precipitation had
the largest influence on the SOS, whereas the temperature had the least influence. This phenomenon
might be due to the lower temperature in spring in the north, and the increase of the temperature was
key to breaking the dormancy of plants. For the warm south, the effect of precipitation was more
important than that of temperature for the growth of plants. Furthermore, in different geomorphic
areas, the response relationships and correlation coefficients were different between the vegetation
phenology and climate changes. In February, the temperatures in the LP and MUD were positively
correlated with the SOS, while in the HJB and DBM, they were negatively correlated. The precipitation
in October was negatively correlated with the EOS in the QLM, HJB, DBM, and GZP, while in the LP
and MUD, they were positively correlated in November. In some northern arid areas, the increase of
the temperature in spring might lead to the decrease of the soil moisture and have a negative impact
on plant growth, while in southern humid areas, the increase of precipitation in autumn would lead to
the decrease of the temperature, and plant growth would stop early.

5. Conclusions

In the context of global warming, quantifying the responses of phenology to climate drivers is
essential for the sustainable development of ecosystems. This study analyzed the spatial differentiation
of the phenology and the spatial-temporal variation of the phenology in six different geomorphological
landscapes in Shaanxi, China, and discussed the responses of the phenology to climate changes. The
main conclusions are as follows:

(1) The phenology varied with latitude. The SOS in the south was earlier, whereas that in the north
was later.

(2) In the whole region, the SOS was gradually being advanced, while the LOS was being prolonged,
but in the MUD, the SOS was being delayed, and the LOS was being shortened. The variation in
the phenology had spatial heterogeneity among different geomorphological areas.

(3) The responses of the phenology to climatic factors were very complex. In the north, the SOS
was mainly affected by the temperature in February, and the EOS was mainly affected by the
precipitation in November. In the south, the SOS was mainly affected by the precipitation in
March, and the EOS was affected by the temperature in October.

Our results showed that the phenology was very sensitive to the climate, and there might be
different types of phenology due to different topography and vegetation types. These findings might
help reveal local phenological patterns related to microclimates and in understanding phenology at
different scales.
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