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Abstract: This article aims to implement a prototype screening system to identify flooding-related 
photos from social media. These photos, associated with their geographic locations, can provide 
free, timely, and reliable visual information about flood events to the decision-makers. This 
screening system, designed for application to social media images, includes several key modules: 
tweet/image downloading, flooding photo detection, and a WebGIS application for human 
verification. In this study, a training dataset of 4800 flooding photos was built based on an iterative 
method using a convolutional neural network (CNN) developed and trained to detect flooding 
photos. The system was designed in a way that the CNN can be re-trained by a larger training 
dataset when more analyst-verified flooding photos are being added to the training set in an 
iterative manner. The total accuracy of flooding photo detection was 93% in a balanced test set, and 
the precision ranges from 46–63% in the highly imbalanced real-time tweets. The system is plug-in 
enabled, permitting flexible changes to the classification module. Therefore, the system architecture 
and key components may be utilized in other types of disaster events, such as wildfires, earthquakes 
for the damage/impact assessment. 
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1. Introduction 

Flooding poses a considerable threat to human occupation of the landscape and results in the 
most significant property damage of natural disasters. It dysfunctions human settlements, damages 
infrastructure, and causes countless losses in local economy and residential properties. Flooding is a 
common type of natural disaster in the United States [1]. While the heavy rainfall pattern may be 
changing from global warming, floods are becoming more frequent in the United States [2]. In recent 
years, the United States suffered from several severe floods, such as the Louisiana Flood in 2016, 
Houston Flood in 2017, and Hurricane Florence Flood in 2018. Damages from floods in the United 
States was up to $60 billion in 2017 [3].  

Situational awareness and inundation mapping requires an early notice of where a flood is 
occurring and how severe (commonly referred in the disaster community as “how big and how bad”). 
Inundation maps serve the purpose of defining the flooding extent and severity, flood forecasting, 
and floodplain mapping [4,5]. The U.S. Geological Survey (USGS) usually sends out a team after a 
major flood event to collect the high watermarks in the field. These maps are often officially published 
months after the flood event [6], and while useful for mitigation and modeling, there are no timely 
for a present flood event.  

Volunteer geographic information (VGI) is a potential solution for rapid flood mapping [7]. 
Known as the “human sensors” in the context of VGI, social media (e.g., Twitter, Facebook) users 
collect and broadcast information about their physical and social environment [8–10]. Recent studies 
demonstrated that real-time, free, and geotagged social media posts could be exploited in rapid flood 
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situation awareness and mapping [6,11–14]. Most of these studies have viewed the uploaded photos 
in flood relevant posts as the critical in situ visual information for enhancing flood situational 
awareness. For instance, a photo posted by a resident showing a flooded yard is useful for assessing 
the water height and working conditions for nearby flood controls.  

However, efficiently and accurately extracting useful flooding-related photos from the massive 
amounts of unstructured social media data poses considerable challenges. For example, in November 
2018 approximately 5000 tweets were posted, on average, each second [15]. Those tweets cover 
various topics and flood-related topics represent very small proportions. Among those pioneering 
studies, keyword-based manual filtering of the flood relevant posts is the dominant method [6,11] 
but with obvious limitations. First, the posts that contain flooding photos might be overlooked if 
there is no flood-related keyword in the text. Second, manually examining the massive social media 
posts is inefficient, leading to the impracticality of real-time analysis.  

There are substantial challenges to automatically identifying relevant and extracting appropriate 
flooding-related information from social media-posted images. The uploaded images may include 
screenshots of text, posters, illustrations, cartoons, advertisements, modified photos. For a flood event, 
the on-topic images only represent small portions of the entire dataset, and this is especially true for 
tweets with geographic information. For instance, the global geotagged tweets with “flood” represent 
only 0.034% of the geotagged tweets from the Twitter Streaming Application Program Interface (API). 
The tweeted photos were captured from various devices, angles, and environments, serving a wide 
variety of purposes. The arbitrariness of an attached photo exacerbates the uncertainty of the 
detection results. Thus, a fully automatic flooding photo detection method is difficult to implement, 
and a manual final verification stage is needed before the labeled flooding photos can be used. In 
addition, the location information is critical for disaster situational awareness and response, so that 
verifying the locations of those flooding photos is required. Currently, there is no feasible method to 
conduct location verification except manual work. Therefore, a practical approach is to build a system 
that can automatically filter out irrelevant photos and provide a relatively small amount of flooding 
photos for manual verification.  

Deep learning, or multi-layer artificial neural network approaches, has gained rapid 
development since 2012 [16]. It is widely used to identify objects, recognize speech, or match items 
[16]. As a non-manual and efficient filtering method, deep learning is a promising approach to 
extracting flood-relevant posts from massive social media data [17]. For example, recent studies [18–
20] analyzed both the text and image of a post to determine whether the post is flood relevant or not. 
More importantly, the deep learning method can process the massive social media data in real-time, 
providing timely information for first response of the local disaster management team. 

In view of these challenges and the advancement of deep learning, this paper explores a full 
workflow to extract and verify flooding photos for social media. First, training examples were 
collected by inspecting tens of thousands of flooding photos. Then, detailed criteria for flooding 
photo identification were established for the system. Finally, a database-centralized and plug-in 
enabled architecture was designed and implemented based on deep learning technique, enabling the 
system to screen the flood photos in real-time. The plug-in architecture enables the system to conduct 
other real-time image analyzing tasks such as screening wildfire photos by adding new plug-ins.  

 

2. Related Work  

2.1. Image Classification Based on Deep Learning 

The goal of image classification (also called image categorization or labeling) is to assign an 
image to a class according to its content. For example, given a photo of a cat, the algorithm returns 
the probabilities of a set of candidate labels, such as cat, dog, or tiger. A qualified algorithm should 
assign a much higher probability to the cat label than other labels. Before the deep learning paradigm, 
the bag-of-words (BoW) algorithm was the most popular and successful approach to such image 
labeling [21]. The features of the image are extracted by descriptors, such as SIFT (scale invariant 
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feature transform [22]) and SURF (speeded up robust features [23]), that form the vocabulary. BoW 
methods treat features like words and then cluster images based on their features in the vocabulary. 
A BoW method could not exploit the spatial context of features when extracting objects in the images. 
The SVM (support vector machine) and its hierarchical models are other popular approaches for 
image labeling.  

Deep neural network approaches have made significant progress in the past decade. For 
example, in the ILSVRC 2012 Challenge, the competitors needed to classify 150,000 testing images 
into 1000 classes by training their classifiers with 1.2 million images. AlexNet won with the accuracy 
significantly ahead of the second place that was based on the non-neural-network methods (16% vs. 
26.2% in error rate). In recent years, the error rate has decreased from the use of more complex CNNs, 
such as VGG [24] and ResNet [25]. Popular open-source deep learning frameworks (e.g., Tensorflow, 
Pytorch) provide these trained CNNs, and the user can easily apply them to classify images or train 
the CNNs with the customized training dataset. The ILSVRC 2017 is the most recent image 
classification challenge in which the error rate for the winning design decreased to 2.251%, much 
better than even human performance of 5% [26]. Based on these results, the organizer of the challenge 
regarded the image classification question as solved and closed the competition—no future 
challenges.  

CNNs also can be designed for specific tasks. Gebru [27] detected and classified cars in Google 
Street View, and acquired a community income prediction with a high correlation to ground 
reference data (r = 0.82). The CNN based on AlexNet recognized 50 million images of 200 largest 
American cities and categorized the cars into 2600 categories. The authors used the detected cars to 
conduct a sociological study correlated with local demographics. The fine-grained car detector, 
trained by 347,811 samples, provides the basic data in this search. Another group of authors [28] 
trained a CNN to recognize plant diseases. They used 4483 images to train AlexNet for classifying 13 
leaf diseases, including apple and peach. The trained AlexNet obtained an average accuracy of 96.3%. 
The image classification based on CNN was also applied in many other application contexts, such as 
medical image analysis [29–31], and animal detection [32]. 

2.2. Flooding Photo Classification  

While text analysis of social media been extensively studied, the visual information, or the 
posted images, has not been investigated as per our best knowledge of current literature. The term 
“image” referred to in this research means all types of images posted on social media, including 
photos, screenshots, and attached other raster files. In this study, a “photo” is the image obtained 
from cameras of natural scenes (i.e., not artificial). Photos record the on-site visual information, while 
other image types may have no relationship with the on-site environment. In this study, we focused 
on the image analysis of social media during flood events. Specially, posted photos showing ongoing 
flooded situations are flooding photos. Retweets and screenshots from public media are difficult to 
be localized, so we considered these posts as secondhand information and non-flooding even if they 
contained flooding content. 

Flooding photo classification has become a new research topic in disaster management. The 
Multimedia Satellite Task at MediaEval [33], a competition of disaster photo detection and satellite 
image classification, aims to promote multimedia access and retrieval algorithms. In 2017 and 2018, 
this task focused on the flooding event. The contestants combined the text and photos from social 
media to determine whether a tweet was flooding related. The top methods in 2017 reached an 
accuracy higher than 95% [34]. The training data came from the YFCC100M [35] image dataset but 
did not have a specific criterion about flooding photos. The researchers used the statement of 
“unexpected high-water levels in the industrial, residential, commercial and agricultural area” as the 
definition of flooding photo. The human annotators rated the photo on a scale of 1–5 according to the 
strength of the flooding evidence. This competition did not emphasize the application and 
employment of these algorithms.  

CNN-based methods to detect flooding tweets are dominant in literature. Paper [20] used an 8-
layer CNN to classify the flooding photos from tweets and then used frequently occurring words in 
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textual posts during a flood event to refine the detection results. The final precision was 87.4% in a 
balanced test set. A visual–textural fused CNN was applied in [19], in which an Inception V3 [36] 
CNN was used for the tweeted image, and a Word2Vec [37] method was employed to convert the 
tweeted text to an array fed into another CNN. Those two CNNs extracted from the tweet generated 
a vector of 1024 dimensions from image and text respectively. Then these two vectors were 
concatenated to train machine learning models, such as SVM, to classify flooding tweets. An accuracy 
of 96.5% was achieved in a balanced test set.  

Feng and Sester [18] used CNN and other methods to classify pluvial flood relevant tweets. Both 
text and photos in the tweets were combined and classified as relevant or irrelevant. The authors 
used three subsets (7600 photos each) collected from Twitter and Instagram to train the model. Subset 
1 contained images from social media. These images were flood irrelevant, selected by human 
annotators. Subset 2 was flooding photos from known events in Paris, London, and Berlin. Subset 3 
consisted of photos of natural (non-flooded) water surfaces such as lakes. Two image classifiers were 
trained to distinguish flooding photos from Subset 1 and Subset 2, respectively. A photo was 
identified as flood relevant if both classifiers considered it as flooded. The highest F1-score [38] is 
reported as 0.9288.  

Although these studies have been conducted on social media-streamed flooding photo 
detection, their objectives for further applications and standards of data collection are not clear. The 
simulated datasets lack real-time, event-specific information. We believe that the detected flooding 
photos provide in situ information about ongoing flood events. Also, most of the pilot studies do not 
systematically consider the overall workflow, such as image acquisition, system generality, and 
extendibility. Alam et al. [39] reported an online social media image processing system to assess the 
damage severity, but they only provided an image classification function. Moreover, a flooding photo 
detection system can be generalized as an image analyzing system to cope with various images 
analyzing tasks, such as image classification and object detection. In this study, we developed a real-
time image analysis for social media (RIASM) to satisfy these multiple purposes. We also reported 
the performance of RIASM when applying it to the highly imbalanced datasets from the production 
environment, which were not reported in the aforementioned literature.  

3. Methodology  

3.1. System Architecture  

This research was to implement a system for screening geotagged flooding photos from the 
massive social media posts for rapid flooding situation awareness. The first task was to collect 
flooding photo samples to build a training dataset for flooding/non-flooding photo classification. 
Based on a small set of manually collected flooding photos, an iterative method was applied to train 
a sample CNN classifier to collect more flooding photos from social media images. In order to screen 
the social media photos in real-time, several independent modules were developed for the following 
sub-tasks: tweets downloading, image downloading, image analysis, and result verification. A 
MySQL database was used to store and exchange the data from these modules. The system is 
designed as a general social media image analysis platform that can perform various scene detection 
and object detection tasks. Error! Reference source not found. demonstrates the architecture of the 
proposed system. 
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Figure 1. The architecture of RIASM. 

RIASM adopts a database-centralized and plug-in-based design, containing four major modules 
for each sub-task. Currently, RIASM uses Twitter as a data source. As a database-centralized system, 
its modules communicate with the database only, and they are independent of each other. The failure 
of a module will not directly affect other modules. For example, when the Tweets Downloading module 
is not working, the Image Downloading module can still obtain images by retrieving downloaded 
tweets from the database. If the Image Downloading module fails, the Image Analyzer still retrieves 
unanalyzed images until all downloaded images have been analyzed. More details are provided in 
the following sub-sections. 

3.1.1. Tweet Downloading Module 

Because of the massive volume of data being streamed, we categorized the tweets as hot data 
and cold data [40] to retrieve and update them efficiently. Hot data needs to be accessed right away, 
while the cold data is accessed less frequently. The new downloaded tweets (i.e., the hot data) will 
be temporarily stored in a relational database (MySQL in this study), being retrieved by other 
modules. Once the analysis of the associated image is finished, the tweets are viewed as cold data 
and tagged as processed then loaded into Impala [41], which is an open-source parallel processing 
SQL query engine for data stored in a computer cluster running Apache Hadoop.  

RIASM downloads geotagged real-time tweets from Twitter Streaming API. Tweets posted in 
the area of interest are collected and stored in the database regardless of their written language, 
followed by the filtering of keywords and hashtags. Streaming API pushes tweets in a JSON 
(JavaScript Object Notation) format with dozens of fields, for example, the ID of tweets, and the URLs 
of uploaded images. Before storing tweets into the database, the Tweet Downloading module conducts 
real-time text analysis without deferring the speed of tweets capturing, such as calculating the 
sentiment score for each tweet. A translation plugin is embedded in RIASM so that the tweets written 
by non-target languages can be translated into the target language such as English and stored in the 
database. The emojis, which are heavily used in social media, are also texturized for universal text 
mining. The streaming API sends about 10–20 geo-tagged tweets per second in the United States, and 
about 10% among them have accurate longitude and latitude coordinates. These statistics were 
recorded noted in February 2019, and they may change because of operations from Twitter or user 
behaviors. The collected tweets are stored periodically (e.g., every minute). 

3.1.2. Image Downloading Module 
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Compared with tweet downloading, image downloading is time-consuming and resource-
intensive. About 10% of tweets have images attached. To download the newly posted images in real-
time, a multi-processing approach is applied to speed up the downloading process. In the Images 
Downloading module, each downloading process independently communicates with the database, 
such as obtaining non-processed tweets and tagging them as processed after downloading images. 
The downloaded images are stored as files named by tweet IDs, so image files can be easily connected 
back to original tweets.  

 Downloading images from real-time tweets is relatively simple because the posted images have 
corresponding URL (uniform resource locator) in the tweets JSON. The subsystem can obtain the 
image directly from the URL. 

In some tweets, users share external URLs. About 30% of URLs link to the posts of social media 
websites (e.g., Twitter.com and Instagram.com). These external images are also downloaded. Because 
Twitter shortens the full URL into the short (tiny) URL, such as “https://t.co/Qi8Xs5jopp,” we used a 
browser driver to open the short URL and get the full URL (e.g., 
https://www.instagram.com/p/8WY30zr7F6GkXdywqP7pJJfuLPrrMncIjG2yc0/). If a URL comes 
from a social media website, the program will get its HTML page and download the images 
embedded in the HTML file. Error! Reference source not found. lists five tweets and their short URLs 
as examples. Two web pages of the URLs in the second and fourth tweets are shown in Error! 
Reference source not found..  

The downloading speed is determined by the Internet accessing speed and computer 
performance (e.g., CPU cores and bandwidth). In our test, RIASM can download 4–10 images per 
second.  

Table 1. Samples of shortened uniform resource locators (URLs) in tweets. 

Time Text URLs 

2015/10/2 17:11 If you didn’t know, but I are under a flash flood 
warning??AND today was??????? 

https://t.co/Qi8Xs5jopp 

2015/10/2 17:15 You could not ask for a better cuddle buddy... @ The 
Gentry??????? 

https://t.co/QBT04Dlk6p 

2015/10/2 17:16 
Drinking in the rain. (@ Pearlz Oyster Bar in Columbia; 

SC) https://t.co/ZqNykREp30 

2015/10/2 17:23 
This is what a rainy afterschool Friday afternoon looks 

like around here. Ahhhh....??????? https://t.co/G9nGFGeJb7 

2015/10/2 17:33 At 4:30 PM; Myrtle Beach [Horry Co; SC] DEPT OF 
HIGHWAYS reports FLOOD 

http://t.co/Sr8UHDxWnf 

 
Figure 2. External web pages of shortened URLs from tweets. 

3.1.3. Image Analysis Module 
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This module retrieves newly downloaded images from the database and then feeds those images 
into a trained model to detect flooding photos. The flooding photo detector utilizes GPUs to speed 
up. The results are stored in the database. We implemented this module as plug-in capable, which 
means that the flooding photo detection model can be replaced by other image analyzers, such as the 
tornado detector or wildfire detector. Such analyzers can run in parallel, and they share the same 
database and tweet/image downloading modules. For example, we added a YOLO-v3 [42] object 
detector and a face recognition model using the strategies aforementioned as showcases. Image 
analyzers independently retrieve images and store results with SQL queries to the same database.  

3.1.4. WebGIS-Based Result Verification Module 

The non-flooding photos take up the majority of tweets even in a flooding event (more than 
95%). Therefore, the detector may mistakenly label a noticeable amount of non-flooding photos as 
flooding. Additionally, flooding photos from social media vary greatly. Human knowledge and 
experience are thus needed in a reliable classification. RIASM connects a WebGIS application for 
human operators to screen the auto-classified results and associate the labeled photos with 
geographic location. The interface is based on Google Map, displaying both the image and tweet in 
the system (Error! Reference source not found.). Even modestly trained users can determine whether 
a photo is flooding or not. Other information input by users such as water height can also be recorded 
in the database. 

 
Figure 3. The WebGIS-based results verification module. 

3.2. Dataset and Training 

A training dataset is needed to train CNNs. Since there is no publicly available flooding photo 
dataset, we built a flooding photos training dataset from social media images. The rationale for using 
images from social media is to represent a wide variety of images. Downloading flooding images 
from search engines or other existing datasets is an easier method for building a dataset, but the 
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variance of flooding photos and the non-flooding photo is under-represented. We used the images 
from social media only to preserve the photos captured by amateurish citizens, rather than iconic 
flooding photos produced by journalists or experienced photographers. In our dataset, many 
flooding photos record the inundated indoor scenes, and they are different from the flooding photos 
retrieved from a Google search, which are mostly outdoor scenes. 

The flooding photo only takes up a small portion of the whole tweet repository. For instance, 
the tweets with “flood” consist of 0.034% of our tweet repository of 800 million tweets from 2016 to 
2018 in the United States. Manually labeling the flooding photos in the whole repository is unfeasible. 
This research uses an iterative method to collect flooding photos from the whole repository. A list of 
about 800 tweets was collected and manually verified in a flooding event in 2017. A team checked 
11,000 geotagged tweets and labeled about 800 of them as flood relevant. There are 430 flooding 
images among these 800 tweets. However, a training dataset of 430 positive samples is not large 
enough to train a CNN. Utilizing the image search engines of Google.com and Bing.com, we collected 
1500 additional flooding images to enrich the training dataset. As to the negative samples, 1500 non-
flooding images are selected randomly from ImageNet [43]. Thought these flooding and non-flooding 
photos come from different sources, they can form a preliminary training dataset.  

Building the flooding training dataset is an iterative process. The preliminary dataset was used 
to train a simple 2-layer CNN. The trained CNN extracts flooding photos from the images of the 
tweets with “flood” in our repository of the contiguous U.S in 2016-2017 (excludes the tweets used in 
Section 4.1 Case 1: Houston Flood 2017). In the beginning, the trained CNN receives a low accuracy 
because of the imperfection of the preliminary training dataset. Many images are mislabeled. 
However, the ratio of the flooding photo in the classification results with a “flooding” label is higher 
than the original distribution. A human annotator can efficiently pick up the real flooding photos in 
the “flooding” results. The verified flooding photos are then used as the training dataset to re-train 
the CNN. In every iteration, a human annotator helps to purify the classified flooding photos as the 
new training dataset. After serval iterations, most flooding photos are moved to the training dataset. 
In the training stage, the CNN was trained by a balanced dataset, meaning numbers of non-flooding 
and flooding photos were the same. In the final training dataset, all images from search engines were 
removed, and 3000 flooding photos are left. Both flooding and non-flooding photos were derived 
from social media in this stage.  

3.2.1. The Criteria for Identifying Flooding Photo 

We found no specific definition for flooding photos in the literature, so we established criteria 
to identify flooding photos. In the beginning, we found that some photos showing flood may not 
necessarily be useful for disaster responders, for instance, “Pray for Houston” posters and historical 
flooding photos. These photos were “flood-related,” but are not useful for characterizing a present 
flooding event. We realize that the identified flood photo should reflect on-site information about an 
ongoing flood event for more reliable situational awareness. In addition, features, such as houses, 
cars, or trees, are objects that would not typically appear in water bodies; thus, the presence of these 
features in water bodies is critical in identifying flooding photos. A flooding photo should contain 
those features inundated by water. In contrast, a photo that does not have inundated features cannot 
provide distinguishable visual information about the ongoing flood is a non-flooding photo. 
Therefore, we define a “flooding photo” as an in-situ photo containing inundated features that 
reflects an ongoing flood and provides firsthand visual information. 

With several rounds of refining classification results of the initial classifier, the detailed criteria 
were established gradually. Error! Reference source not found. and Error! Reference source not 
found. show rules to identify flooding and non-flooding photos. Error! Reference source not found. 
and Error! Reference source not found.  show some examples of those rules. To ensure consistency 
when developing the criteria, only one human annotator labeled the flooding photos. When 
necessary, the annotator organized a discussion with other members of the research team to resolve 
ambiguities and revise the criteria. 
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Table 2. Rules for identifying the flooding photos. If an in-situ photo reflects an ongoing flood and 
provides firsthand visual information, it can be identified as a flooding photo. 

No.1 
Description Photos with clear features inundated by water outdoors. 

Reason Inundated features, which are normally not in the water, such as 
houses, cars, and trees, are critical to characterizing a flooding photo. 

No.2 
Description Indoors photos with clear features inundated by water. 

Reason 
Indoor flooding photos also reflect the on-site formation of ongoing 

floods 

No.3 
Description A mosaic image contains ongoing flooding photos. 

Reason 
Mosaic images formed by flooding photos satisfy No.1 and No.2 

contain the same information of their sub-photos. 

No.4 
Description The photo satisfies No.1 – No. 3 and with text from the uploader. 

Reason The flooding photo with text (usually a description or the date for 
photos) reflect the on-site formation of ongoing floods. 

Table 3. Rules for identifying non-flooding photos. A photo that cannot provide distinguishable 
visual information about the ongoing flood is a non-flooding photo. 

No.1 
Description Screenshots from mass media or social network users. 

Reason Cannot be considered as firsthand information. 

No.2 
Description Thin water in urban areas. 

Reason The situation is still under control, not a flood. 

No.3 
Description Water bodies with high water levels but inundate nothing. 

Reason The situation is still under control, not a flood. 

No.4 
Description Advertisements or posters with flooding backgrounds. 

Reason Cannot indicate an ongoing flood. 

No.5 
Description No water in the photo. 

Reason Cannot indicate an ongoing flood. 

No.6 
Description Water bodies without referencing objects. 

Reason Cannot tell whether there is a flood. 

No.7 
Description Modified flooding photos. 

Reason Cannot provide reliable information about the ongoing flood. 

No.8 
Description Historical flooding photos. 

Reason Cannot provide reliable information about the ongoing flood. 

No.9 
Description Fake flooding photos. 

Reason Cannot indicate an ongoing flood. 
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Figure 4. Examples of flooding photos. 

 
Figure 5. Examples of non-flooding photos. 

3.2.2. CNN Training and Selection 

After the training dataset was finalized, we divided the dataset by randomly placing 75% of the 
flooding photos in a training set, and the remaining 25% in a test set. The training set and test set 
share the same distribution as the dataset was randomly divided. Currently, there is no golden rule 
for the size of the training set and test set. The ratio of 75:25 used in our study is similar to the common 
rule of 70:30 mentioned in [44]. The number of flooding photos in the training set was 2250 and in the 
test set was 750.  

In each set the number of flooding and non-flooding photos was equal. After the CNN was 
trained using the training set, the accuracy was evaluated with the test set using the metric in 
Equation (1):  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒        (1) 
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This study fine-tuned four pre-trained popular CNN architectures, including VGG [24] ResNet 
[25], DenseNet [45], and Inception V3 [36], to determine which one is the most suitable for flooding 
photo detection. We directly used these four models pre-trained byImageNet [43] from the built-in 
models of PyTorch. Because the training set was relatively small, we used all samples to train models 
without applying k-fold cross-validation. We only changed the number of output neurons in the last 
linear layer to two, representing the two classes of Flooding and Non_flooding, and then trained the 
model 200 epochs on two Nvidia Titan xp GPUs using a learning rate of 0.001. The training process 
took about 10 hours. Similarly, we trained VGG16 and DenseNet201 from scratch. As shown in Table 
1, VGG 16 trained from scratch results in the highest accuracy (93%). These trained models also 
resulted in similar recalls and a precision of about 0.9. Therefore, we use the trained VGG 16 from 
scratch in our RIASM system. Furthermore, Huang et al. [25] used our training data as the biggest 
subset and found the same accuracy (92.94%) using five-fold cross-validation and a more 
sophisticated transfer learning method. This further verifies the validity of our training dataset.  

Transfer learning does not obtain a competitive result perhaps because of the difference of 
contents between flooding photos and ImageNet images. Flooding photos are scene images and 
contain many objects, while images of ImageNet have dominating objects.  

Table 1. Accuracies of the tested CNNs. 

Network Method Total Accuracy 
VGG16 Trained from scratch 93% 
VGG16 Transfer learning 91% 

Inception V3 Transfer learning 91% 
ResNet 152 Transfer learning 91% 

DenseNet201 Trained from scratch 91% 
DenseNet201 Transfer learning 91% 

4. Case Studies of RIASM 

4.1. Case 1: Houston Flood in 2017 

The trained VGG16 was applied to a tweet dataset of the Houston Flood in 2017. This dataset 
contains about 140,000 geotagged tweets in metropolitan Houston which suffered an unprecedented 
flood caused by Hurricane Harvey 2017. The posted time of tweets ranged from August 15, 2017 to 
October 1, 2017. Among the downloaded 39,000 photos, 2237 were labeled as flooding by the trained 
VGG16.  

Accuracy from this highly imbalanced dataset will be distorted by the dominant non-flooding 
images, so we used precision and recall in this study case, see Equation (2) and (3). Error! Reference 
source not found. and  Error! Reference source not found. demonstrates some samples of the 
detection results. In this dataset 1400 of 2237 were verified as real flooding after a manual check based 
on the rule in Error! Reference source not found. and  Error! Reference source not found.. Therefore 
the precision of flooding photo was 63% (1400/2237). Because of the labor-intensity, we manually 
checked 20% of the non-flooding results and found 15 flooding photos, which meant about 75 non-
flooding photos were missed by the trained CNN. The recall of flooding photos was 95% (100% - 
75/1475). This indicates that the classifier has an acceptable performance when applying it to real data 
with a highly imbalanced distribution.   𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒                  (2) 

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒      (3) 
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Figure 6. Photos identified as flooding by the trained VGG16 in the Houston Flood of 2017 dataset. 
These randomly selected 25 photos contain 14 real flooding photos. 

 
Figure 7. Non-flooding photos identified by the trained VGG16 in Houston Flood 2017 dataset. These 
randomly selected 25 photos are all correctly labeled. 

4.2. Case 2: Hurricane Florence Flood in 2018 
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On September 14–17, 2018, Hurricane Florence caused extensive damage in the coastal area of 
North Carolina and South Carolina [46]. It caused heavy rainfall which led to record floods in the 
Carolinas [47]. Over 1.2 million people in the affected area were under mandatory evacuation orders 
[48]. We downloaded 6975 images from 136,000 geotagged tweets posted in Carolinas from 
September 14 to 30, and the trained VGG16 returned 818 flooding photos. Of the identified flooding 
photos 372 out of 818 photos were true positives after a manual verification (Figure 1). The precision 
was 45.5% (373/818), lower than the results in Houston Flood 2017. Because of the heavy workload, 
we did not check the result of the non-flooding photo, so the recall was not calculated.  

 
Figure 1. Samples of the verified flooding photos posted during Hurricane Florence Flood. 

5. Discussions 

Timely approaches are needed for rapid flood situation awareness and mapping. Meanwhile, 
these approaches should be cost-efficient to employ. Obtaining remotely sensed images is an effective 
way to collect the continuous situation of a large flooded area [49,50]. However, severe weather 
condition such as clouds along with heavy rainfall hinders the airborne or satellite sensor from 
obtaining optical images. In best scenarios, commercially operated optical satellites can acquire high-
resolution images several days after an event. This severely limits the reliable use of satellite remote 
sensing for the emergency response phase (i.e., the first 3 days of a disaster). Other limitations of 
remote sensing techniques include the long pre-processing time for image geometric and atmospheric 
correction, low efficiency and high risk of deploying unmanned aerial systems (UAS), and the 
difficulty to estimate water height from 2-dimensional imagery. We do believe aerial or satellite 
remote sensing sources have an important role; however, we believe real-time flooding photos 
extracted from social media augment the situational awareness for emergency responders.  

The flooding photos extracted by RIASM benefits several purposes. Flooding photos can be used 
as independent observations of flood events. The water height estimated from the flooding photos 
can be used to obtain a timely inundation map without field visits, which has been challenging in an 
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ongoing flood event [6]. Also, the time of flood can be extracted from the metadata (posted time or 
the text), hence generating a dynamic inundation map. The traditional field survey of high 
watermarks lacks the temporal dimension because the survey is conducted after the flood event from 
anecdotal information (e.g., debris lines or water lines), whereas the flooding photos extracted from 
social media provide high temporal relevance. Flooding photos can also be used as a supplementary 
data source, to refine the assessments based on remote sensing images. For example, Schnebele and 
Cervone [10] and Huang [12–14] used VGI integrating UAV, EO-1, and Landsat 8 imagery to enhance 
flood response. These researchers treated the flood-related VGI (mostly photos) as reliable 
observation points and applied these points to refine the flooding probability of nearby regions. In 
this sense, RIASM has the potential to be incorporated into traditional flood mapping systems to fill 
knowledge gaps and provide additional verification of a disaster’s extent or magnitude.  

RIASM can be viewed as a social media image analysis platform in various fields. The plug-in 
mechanism enables RIASM to conduct other images analysis tasks easily by plugging new image 
categorization algorithms and models, such as tornados, wildfires, earthquakes, and general object 
detectors. A YOLO-v3 model was added to detect common objects (e.g., person, car, and cat) and the 
results reveal some interesting phenomena. For instance, in the United States dogs appear more in 
social media photos than other countries. Other visual-based models can also be used, such as 
violence detection [51,52], face recognition [53], gender and age extraction [54], or skin color analysis 
[55].  

As to the scalability, RIASM is able to process all real-time tweets from the free Twitter 
Streaming API (~50 tweets/second) and can handle 200 tweets/second when processing pre-
downloaded tweets running on our 8-core CPU workstation. Image classification or other image 
analysis such as semantic segmentation [56] does not require such substantial GPU computation. 
Since each module of RIASM is designed as an independent process, the capability on data 
downloading and analyzing can be obtained by simply starting more processes. As a result, RIASM 
can scale up with more powerful hardware such as more CPU cores and GPU cards. Regarding 
human verification, the two case studies revealed that the extracted flooding photos only account for 
about 1 percent of the geotagged tweets during flooding events. Considering the maximum 
downloading speed of 50 tweets/second, there would be about 30 flooding photos being extracted 
every minute, which can be handled by one person during the human verification process. 

RIASM has been well-designed to store the tweets in multiple languages, including emojis. 
Other research on tweet text analyses can be embedded into the system, for example, using the text 
and images together to classify the flooding related tweets [20]. The RIASM architecture also has the 
potential to tackle the representative issues of twitter data [57] by automatically extracting the 
demographic information (e.g., gender, age, and race) from the tweet photos, which may benefit 
human mobility studies based on social media [58,59].  

Cross-culture studies based on RIASM are promising although we have only begun initial 
investigations. Images are intuitive and language-free. According to the downloaded geotagged 
tweets, about 40% of tweets are written in over 30 languages other than English, such as Portuguese 
(13%), Spanish (9%), and Japanese (6%). Obviously, the proportion of tweets using a specific language 
will vary by geographic region in the world. Notably, research based on the image content is not 
constrained by language. The image is “language-free.” For text mining, RIASM has been connected 
to the Google Translation API to translate tweets into English or other languages. Other open-sourced 
translation libraries (e.g., Open NMT [60]) can be embedded in a similar approach. There is 
considerable research left to explore the importance of and difference because of language in 
geocoded tweets. 

6. Limitations and Future Research 

About 4,800 flooding photos collected in the research come from social media images posted in 
the U.S. during 2016-2017 with the addition of two flooding events. These photos are beneficial to 
retrain the CNN to detect new flooding photos posted in future flood events. However, these 4800 
flooding photos and the randomly selected non-flooding photos used in this study are still under 
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representative of the social media images which have a large variance and a highly imbalanced class 
distribution. This under-representation leads to a low precision when applying the trained CNN to 
the real-time social media images. Data augmentation, such as flipping and rotation have been tested 
in training, but the results did not provide a substantial improvement. More data augmentation 
methods and training strategies need to be tested. Buda et al. [60] recommend oversampling as the 
first choice for the imbalanced training dataset, which means using the replica of the flooding photos 
to form more positive samples to correspond to the negative samples. However, identifying a 
reasonable number of non-flooding photos to retrain the variety of social media images needs further 
research.  

When applying the trained CNN to the dataset of Houston Flood in 2017, the recall of flooding 
photos was 95%, and the precision was 63%. In the hurricane Florence flood of 2018, the precision 
was 46%. Compared with the balanced test set in the training process (Section 3.2), these results show 
two limitations of the trained CNN. The first limitation is the lower precision in the highly 
imbalanced social media images. In the two study cases, the flooding photos consisted of less than 
5% of the entire image set, which was far less than the test set (50%) of the training dataset. The 
precision of the CNN dropped from more than 90% to about 50%, mislabeling many non-flooding 
photos as flooding. However, the recall of 95% was acceptable in the Houston flood of 2017. Another 
limitation was, in severe flood events, the threatened residents likely would be evacuated prior to the 
flooding, leading to a low number of social media posts. Therefore, the number of detected flooding 
photos may decrease because of fewer social media posts with geotags at the flooding location or the 
resident did not post at all. Therefore, the number of detected flooding photos may decline because 
of fewer social media posts. The study case of hurricane Florence in 2018 clearly showed this decrease.  

This study focused on prototyping a system for real-time flooding photo detection from social 
media, rather than investigating a state-of–the-art flooding photo detector. Further research is needed 
to improve precision and recall in the production environment. Many factors need to be considered 
to train a model with high performance. Popular architectures tested in this study gained similar 
results in this test set, other newly developed architectures may have better performance. The 
practitioners who want to apply CNN to classify images in their domains should build training 
datasets carefully according to their research questions. For example, the flooding photo in our 
research was defined as the on-site photo providing firsthand visual information about ongoing 
floods and must have inundated features. This definition leverages the advantage of object detection 
capabilities of CNNs and also serves the purpose of filtering unwanted water.  

7. Conclusions 

The research designed and prototyped a system named RIASM to collect, store, and analyze the 
images posted on Twitter in real-time. We contribute to the literature and community with a practical 
approach to obtaining flooding insights from the massive social media data based on deep learning. 
The system allows the CNN model to be re-trained by a larger training dataset when more analyst-
verified flooding photos are added to the training set in an iterative manner. The total accuracy of 
flooding photo detection was 93% in a balanced test set, and the precision ranges from 46%–63% in 
the highly imbalanced real-world tweets during two flooding events. The flooding photos extracted 
from social media with RIASM augment the situational awareness for emergency responders by 
providing independent observations of flood events on the ground. The plug-in-based design of 
RIASM makes it extendable for supporting other types of disaster events such as wildfires and 
earthquakes for the damage/impact assessment as well as other studies beyond disaster management.  

Author Contributions: Conceptualization: Huan Ning and Zhenlong Li; methodology, Huan Ning; software, 
Huan Ning; validation, Huan Ning; formal analysis, Cuizhen Wang, Michael Hodgson; resources, Zhenlong Li; 
writing—original draft preparation, Huan Ning; writing—review and editing, Michael Hodgson, Cuizhen 
Wang; supervision, Zhenlong Li; project administration, Zhenlong Li. All authors have read and agreed to the 
published version of the manuscript. 

Funding: This research received no external funding. 



ISPRS Int. J. Geo-Inf. 2020, 9, 104 16 of 18 

 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1.  Union of Concerned Scientists Climate Change, Extreme Precipitation and Flooding: The Latest Science 
(2018) Available online: https://www.ucsusa.org/global-warming/global-warming-impacts/floods 
(accessed on Mar 22, 2019). 

2.  Wuebbles, D.J.; Fahey, D.W.; Hibbard, K.A. Climate science special report: fourth national climate 
assessment, volume I. 2017. 

3.  National Weather Service Summary of Natural Hazard Statistics for 2017 in the United States; 2017. 
4.  U.S. Department of the Interior; U.S. Geological Survey USGS Flood Event Viewer Available online: 

https://water.usgs.gov/floods/FEV/ (accessed on Mar 22, 2019). 
5.  Koenig, T.A.; Bruce, J.L.; O’Connor, J.; McGee, B.D.; Holmes Jr., R.R.; Hollins, R.; Forbes, B.T.; Kohn, M.S.; 

Schellekens, M.; Martin, Z.W.; et al. Identifying and preserving high-water mark data; Techniques and 
Methods; U.S. Geological Survey: Reston, VA, 2016; p. 60;. 

6.  Li, Z.; Wang, C.; Emrich, C.T.; Guo, D. A novel approach to leveraging social media for rapid flood 
mapping: a case study of the 2015 South Carolina floods. Cartogr. Geogr. Inf. Sci. 2018, 45, 97–110. 

7.  Goodchild, M.F.; Glennon, J.A. Crowdsourcing geographic information for disaster response: a research 
frontier. Int. J. Digit. Earth 2010, 3, 231–241. 

8.  Sheth, A. Citizen Sensing, Social Signals, and Enriching Human Experience. IEEE Internet Comput. 2009, 
13, 87–92. 

9.  Nagarajan, M.; Sheth, A.; Velmurugan, S. Citizen Sensor Data Mining, Social Media Analytics and 
Development Centric Web Applications. In Proceedings of the 20th International Conference Companion 
on World Wide Web; ACM: New York, NY, USA, 2011; pp. 289–290. 

10.  Adam, N.R.; Shafiq, B.; Staffin, R. Spatial Computing and Social Media in the Context of Disaster 
Management. IEEE Intell. Syst. 2012, 27, 90–96. 

11.  Fohringer, J.; Dransch, D.; Kreibich, H.; Schröter, K. Social media as an information source for rapid flood 
inundation mapping. Nat. Hazards Earth Syst. Sci. 2015, 15, 2725–2738. 

12.  Wang, C.; Li, Z.; Huang, X. Geospatial assessment of flooding dynamics and risks of the October’15 South 
Carolina Flood. Southeast. Geogr. 2018, 58, 164–180. 

13.  Huang, X.; Wang, C.; Li, Z. Reconstructing Flood Inundation Probability by Enhancing Near Real-Time 
Imagery With Real-Time Gauges and Tweets. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4691–4701. 

14.  Huang, X.; Wang, C.; Li, Z. A near real-time flood-mapping approach by integrating social media and 
post-event satellite imagery. Ann. GIS 2018, 24, 113–123. 

15.  Sayce, D. Number of tweets per day? Available online: https://www.dsayce.com/social-media/tweets-day/ 
(accessed on Mar 23, 2019). 

16.  LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. 
17.  Tkachenko, N.; Zubiaga, A.; Procter, R. WISC at MediaEval 2017: Multimedia Satellite Task.; 2017; p. 4. 
18.  Feng, Y.; Sester, M. Extraction of Pluvial Flood Relevant Volunteered Geographic Information (VGI) by 

Deep Learning from User Generated Texts and Photos. ISPRS Int. J. Geo-Inf. 2018, 7, 39. 
19.  Huang, X.; Li, Z.; Wang, C.; Ning, H. Identifying disaster related social media for rapid response: a visual-

textual fused CNN architecture. Int. J. Digit. Earth 2019, 0, 1–23. 
20.  Huang, X.; Wang, C.; Li, Z.; Ning, H. A visual–textual fused approach to automated tagging of flood-

related tweets during a flood event. Int. J. Digit. Earth 2018, 0, 1–17. 
21.  Druzhkov, P.N.; Kustikova, V.D. A survey of deep learning methods and software tools for image 

classification and object detection. Pattern Recognit. Image Anal. 2016, 26, 9–15. 
22.  Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE 

International Conference on Computer Vision; IEEE: Kerkyra, Greece, 1999; pp. 1150–1157 vol.2. 
23.  Bay, H.; Tuytelaars, T.; Van Gool, L. Surf: Speeded up robust features. In Proceedings of the European 

conference on computer vision; Springer, 2006; pp. 404–417. 
24.  Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. 

ArXiv14091556 Cs 2014. 
25.  He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. ArXiv151203385 Cs 2015. 
26.  Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; 

Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–
252. 

27.  Gebru, T.; Krause, J.; Wang, Y.; Chen, D.; Deng, J.; Fei-Fei, L. Fine-Grained Car Detection for Visual Census 
Estimation. In Proceedings of the AAAI; 2017; Vol. 2, p. 6. 



ISPRS Int. J. Geo-Inf. 2020, 9, 104 17 of 18 

 

28.  Sladojevic, S.; Arsenovic, M.; Anderla, A.; Culibrk, D.; Stefanovic, D. Deep Neural Networks Based 
Recognition of Plant Diseases by Leaf Image Classification Available online: 
https://www.hindawi.com/journals/cin/2016/3289801/ (accessed on Nov 11, 2018). 

29.  Tajbakhsh, N.; Shin, J.Y.; Gurudu, S.R.; Hurst, R.T.; Kendall, C.B.; Gotway, M.B.; Liang, J. Convolutional 
Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? IEEE Trans. Med. Imaging 
2016, 35, 1299–1312. 

30.  Wang, D.; Khosla, A.; Gargeya, R.; Irshad, H.; Beck, A.H. Deep Learning for Identifying Metastatic Breast 
Cancer. ArXiv160605718 Cs Q-Bio 2016. 

31.  Bar, Y.; Diamant, I.; Wolf, L.; Greenspan, H. Deep learning with non-medical training used for chest 
pathology identification. In Proceedings of the Medical Imaging 2015: Computer-Aided Diagnosis; 
International Society for Optics and Photonics, 21-26 February 2015; Vol. 9414, p. 94140V. 

32.  Yoon, Y.-C.; Yoon, K.-J. Animal Detection in Huge Air-view Images using CNN-based Sliding Window. 
In Proceedings of the International Workshop on Frontiers of Computer Vision (IWFCV); International 
Workshop on Frontiers of Computer Vision (IWFCV): Hakodate, Japan, 2018. 

33.  Bischke, B.; Helber, P.; Schulze, C.; Srinivasan, V.; Dengel, A.; Borth, D. The Multimedia Satellite Task at 
MediaEval 2017.; Dublin, Ireland, 2017. 

34.  Bischke, B.; Bhardwaj, P.; Gautam, A.; Helber, P.; Borth, D.; Dengel, A. Detection of Flooding Events in 
Social Multimedia and Satellite Imagery using Deep Neural Networks. 3. 

35.  Thomee, B.; Shamma, D.A.; Friedland, G.; Elizalde, B.; Ni, K.; Poland, D.; Borth, D.; Li, L.-J. YFCC100M: 
The New Data in Multimedia Research. Commun ACM 2016, 59, 64–73. 

36.  Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for 
computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 
2016; pp. 2818–2826. 

37.  Kim, Y. Convolutional neural networks for sentence classification. ArXiv Prepr. ArXiv14085882 2014. 
38.  Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F-score, with implication for 

evaluation. In Proceedings of the European Conference on Information Retrieval; Springer, 2005; pp. 345–
359. 

39.  Alam, F.; Imran, M.; Ofli, F. Image4Act: Online Social Media Image Processing for Disaster Response. In 
Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and 
Mining; ACM: New York, NY, USA, 2017; pp. 601–604. 

40.  Levandoski, J.J.; Larson, P.; Stoica, R. Identifying hot and cold data in main-memory databases. In 
Proceedings of the 2013 IEEE 29th International Conference on Data Engineering (ICDE); 2013; pp. 26–37. 

41.  Kornacker, M.; Behm, A.; Bittorf, V.; Bobrovytsky, T.; Ching, C.; Choi, A.; Erickson, J.; Grund, M.; Hecht, 
D.; Jacobs, M. Impala: A Modern, Open-Source SQL Engine for Hadoop. In Proceedings of the Cidr; 2015; 
Vol. 1, p. 9. 

42.  Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. ArXiv180402767 Cs 2018. 
43.  Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural 

Networks. In Advances in Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L., 
Weinberger, K.Q., Eds.; Curran Associates, Inc., 2012; pp. 1097–1105. 

44.  Ng, A. Machine Learning Yearning Available online: https://www.deeplearning.ai/machine-learning-
yearning/. 

45.  Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. 
ArXiv160806993 Cs 2016. 

46.  US Department of Commerce, N. Historical Hurricane Florence, September 12-15, 2018 Available online: 
https://www.weather.gov/mhx/Florence2018 (accessed on Dec 26, 2019). 

47.  Irfan, U. Hurricane Florence’s “1,000-year” rainfall, explained Available online: 
https://www.vox.com/2018/9/20/17883492/hurricane-florence-rain-1000-year (accessed on Mar 25, 2019). 

48.  Langone, Al.; Martinez, G.; Quackenbush, C.; De La Garza, A. Hurricane Florence Makes Landfall and 
Looks to Stick Around Available online: https://time.com/5391394/hurricane-florence-track-path/ 
(accessed on Dec 26, 2019). 

49.  Feng, Q.; Liu, J.; Gong, J. Urban flood mapping based on unmanned aerial vehicle remote sensing and 
random forest classifier—A case of Yuyao, China. Water 2015, 7, 1437–1455. 

50.  Tralli, D.M.; Blom, R.G.; Zlotnicki, V.; Donnellan, A.; Evans, D.L. Satellite remote sensing of earthquake, 
volcano, flood, landslide and coastal inundation hazards. ISPRS J. Photogramm. Remote Sens. 2005, 59, 185–
198. 

51.  Won, D.; Steinert-Threlkeld, Z.C.; Joo, J. Protest Activity Detection and Perceived Violence Estimation 
from Social Media Images. In Proceedings of the 25th ACM International Conference on Multimedia; 
ACM: New York, NY, USA, 2017; pp. 786–794. 



ISPRS Int. J. Geo-Inf. 2020, 9, 104 18 of 18 

 

52.  Kalliatakis, G.; Ehsan, S.; Fasli, M.; Leonardis, A.; Gall, J.; McDonald-Maier, K. Detection of Human Rights 
Violations in Images: Can... - Google Scholar 2017. 

53.  Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A Unified Embedding for Face Recognition and 
Clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Boston, 
USA, 2015; pp. 815–823. 

54.  Jia, S.; Lansdall-Welfare, T.; Cristianini, N. Gender Classification by Deep Learning on Millions of Weakly 
Labelled Images. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining 
Workshops (ICDMW); 2016; pp. 462–467. 

55.  Ryu, H.J.; Adam, H.; Mitchell, M. InclusiveFaceNet: Improving Face Attribute Detection with Race and 
Gender Diversity. ArXiv171200193 Cs 2017. 

56.  Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional 
neural networks. Neural Netw. 2018, 106, 249–259. 

57. Jiang, Y.; Li, Z.; Ye, X. Understanding demographic and socioeconomic biases of geotagged Twitter users 
at the county level. Cartogr. Geogr. Inf. Sci. 2019, 46, 228–242. 

58.  Martín, Y.; Li, Z.; Cutter, S.L. Leveraging Twitter to gauge evacuation compliance: Spatiotemporal analysis 
of Hurricane Matthew. PloS One 2017, 12, e0181701. 

59.  Jiang, Y.; Li, Z.; Cutter, S.L. Social network, activity space, sentiment and evacuation: what can social 
media tell us? Ann. Am. Assoc. Geogr. 2019. 

60.  Klein, G.; Kim, Y.; Deng, Y.; Senellart, J.; Rush, A.M. OpenNMT: Open-Source Toolkit for Neural Machine 
Translation. ArXiv170102810 Cs 2017. 

 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

 

 


