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Abstract: Urban systems involve a multitude of closely intertwined components, which are more
measurable than before due to new sensors, data collection, and spatio-temporal analysis methods.
Turning these data into knowledge to facilitate planning efforts in addressing current challenges
of urban complex systems requires advanced interdisciplinary analysis methods, such as urban
informatics or urban data science. Yet, by applying a purely data-driven approach, it is too easy to
get lost in the ‘forest’ of data, and to miss the ‘trees’ of successful, livable cities that are the ultimate
aim of urban planning. This paper assesses how geospatial data, and urban analysis, using a mixed
methods approach, can help to better understand urban dynamics and human behavior, and how
it can assist planning efforts to improve livability. Based on reviewing state-of-the-art research the
paper goes one step further and also addresses the potential as well as limitations of new data sources
in urban analytics to get a better overview of the whole ‘forest’ of these new data sources and analysis
methods. The main discussion revolves around the reliability of using big data from social media
platforms or sensors, and how information can be extracted from massive amounts of data through
novel analysis methods, such as machine learning, for better-informed decision making aiming at
urban livability improvement.

Keywords: spatial data science; livability; urban planning; big data; urban assessment;
spatio-temporal analysis

1. Introduction

International landmark agreements such as the Sustainable Development Goals (SDG) or the
New Urban Agenda (NUA) have focused attention on the improvement of the quality of urban life
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in the past few years [1,2]. These agreements are addressing several natural and social challenges
in cities incaluding phenomena such as resilience to natural disasters, climate change, air pollution,
access to clean water, public health, or equity in the access of public spaces. By tackling these
issues, the overall goal is to provide better and safer circumstances for the growing urban population
worldwide. Nowadays, also thanks to these international agreements, the existence and severity of
these problems is getting more obvious and acknowledged, along with the importance of raising
awareness amongst citizens and decision-makers. However—especially from the urban planners’
point of view, by whom the majority of the local actions should be initiated—the NUA and SDG
targets represent only the starting point of the long and challenging endeavor of actually solving
the mentioned problems [3–6]. Although researchers and decision-makers are aware of what goals
should be achieved and why, the actions should be adapted to the specific local circumstances and
shorter timeframes, which is highly challenging mainly due to the complex nature of cities. In this
paper, we intend to illustrate the opportunities and limitations of Geographic Information Systems
(GIS)-based urban analysis techniques and novel data sources such as social media or sensor data
to address these challenges of urban livability improvement, which includes big data analysis and
machine learning approaches, among others.

The last decade has seen an increasing integration of GIS in everyday life and an almost ubiquitous
production of big data across various contexts. These coupled technological and societal developments
have resulted in the emergence of new fields, such as urban data science, and urban informatics [7–9].
These new intellectual domains enrich the study of urban systems and the practice of urban and
regional planning or policy by making use of new datasets and novel methodological approaches [10,11].
Various disciplines are involved in shaping these interdisciplinary fields, including computer science,
geography, geographic information science (GIScience), as well as urban studies. Such a revolutionary
take on the investigation of cities brings along several advantages and can also benefit practical
domains like urban planning.

However, understanding cities and their processes thoroughly, which is a key to improve urban
livability, requires exploration beyond the merely technical and data-driven approaches to analysis
techniques offered traditionally by methodological disciplines. This is what urban informatics and
urban data science aim to achieve as a field “at the intersection of people, place and technology with a
focus on cities” [7] (p. 1). Doing so will result in a better understanding of the theoretical foundations
underlying human behavior in urban environments. This, in turn, is necessary to conceptualize and
assess livability and to provide information for urban planners about the processes at different spatial
(and often temporal) scales.

Although machine learning, urban data science and in general the use of big data in urban
analytics have already received attention in the literature [10,12–14], the goal of this paper is to discuss
some synergies and challenges of the interdisciplinary approach on GIS-based urban analysis in
improving the livability of cities, by reviewing the key findings and open questions emerging from the
state-of-the-art literature. The current work addresses three interrelated research questions concerning
new data sources and novel analysis techniques in the context of cities and urban planning.

• RQ1: How can we assure the reliability of results based on social media data and Volunteered
Geographic Information (VGI) for urban livability analysis and planning?

• RQ2: How can geospatial analysis aid urban livability assessment and planning that relies on
machine learning methods?

• RQ3: How can relevant information be identified in urban big data to facilitate urban
livability improvement?

Before investigating these questions in detail, Section 2 reviews urban theories related to cities and
livability, as well as highlights use cases to demonstrate the potential of spatio-temporal analysis for
urban planning using Twitter data. Section 3 provides a summary of methodological and data-related
aspects of RQ1 and RQ2, whereas Section 4 describes a potential approach to extract information
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(‘signal’) from the ‘noise’ of vast amounts of data focusing on the usage patterns and livability of cities
instead of purely data-driven solutions, which is closely related to RQ3. Finally, Section 5 summarizes
relevant findings concerning the potential and pitfalls of urban analysis and presents open questions
for future research. We hope that this work will put forward the dialogue between methodological and
academic research and benefits urban planning practitioners as well. Also, we hope to trigger a more
intense debate about the values and challenges implied by making more extensive use of data in urban
planning along with livability assessment and improvement.

2. Urban Theories and Assessment in the Light of Livability and BIG Data

In the 1930s, Lewis Mumford posed a simple question, “What is a City?” [15]. The simple answer,
of course, is that cities are surprisingly complex. We argue that it is this complexity that has confounded
legions of architects, planners, engineers, data scientists, and city managers who seek to impose a
spatial (and social) order to make cities more ‘manageable’. Historically, social scientists have proposed
theoretical frameworks that help to explain and predict the morphological structure of cities beginning
in the early part of the 20th century such as Park and Burgess [16] to contemporary theorists like
David Harvey [17] and Sassen [18]. For these social scientists, the city’s complexity is shaped by
demographic, social, political, social, and technological changes. Collectively, these scientists take
a process-oriented approach to city transformations. Yet, for the past 200 years or so, modern city
development has also been shaped by positive visions of the future; many of which were products
of individual imaginations [19,20] specifically intended to address the challenges of urban living.
All these historic visions have addressed the challenges of density (some visions have advocated for
more density than less) and spatial scale (large megalopolises versus small and intimate), alongside
considerations of efficiency, access, and mobility. It is important to note that these are the same concerns
that drive the conversations about ‘smart cities’ and the use of technology and data in urban planning.

The intention to assess cities and their livability has a long history, and the ubiquity of digital
technology and big data opened up new horizons also in this regard [21]. The emergence of new
aspects and methodologies such as big data [22], VGI [23,24], or citizen-generated data, coupled with
social media analysis [25,26], and even remote sensing or earth observation [27] might offer relevant
alternatives to traditional methodologies and concepts mentioned above. These approaches provide
ways to extract useful information from data, also at finer spatial and/or temporal scales than national
statistics, and if needed, even for individuals or various social groups. To a certain extent, it is now at
least technologically possible to analyze how people interact with the urban environment. However,
quite often this analysis focuses on only quantitative approaches [26,28–32] and neglects the subjective
needs and perception of the residents. Therefore, it is the socio-spatial theories of urban planning that
offer the most promise when trying to utilize advantages provided by big data to explain, predict,
and manage future cities.

2.1. Urban Morphology Assessment

Urban planners, particularly scholar-practitioners have long championed bottom-up theory
development, in other words, the development of explanatory frameworks about urban living through
inductive reasoning. For instance, Kevin Lynch [33] proposed that urban environments that have
clearly “imageable” (memorable) characteristics are more likely to be recognized, i.e., legible. Lynch put
forward the notion that when cities or urban environments are memorable, that they create feelings
of safety and security, and that they encourage movement and participation in the life of the city.
Lynch proposed that humans created environmental images of their built environment by creating
mental maps. These maps were easier to create for some cities/urban environments than others.
Lynch also proposed a vocabulary to understand and describe urban environments—paths, edges,
nodes, landmarks, and districts. Lynch used observational and survey data from everyday participants
in three cities—Boston, Jersey City, and Los Angeles—to arrive at his seminal conclusions. The power
of urban analytics nowadays provides the opportunity to better understand how individuals create
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and store their mental maps and how these maps are deployed under different circumstances—for
example, in times when they are under time constraints, or in other stressful situations. In addition,
it facilitates to understand how people move spatially and temporally through urban environments,
Lynch’s theoretical frameworks can help identify and replicate successful urban morphologies—some
street patterns work well and hold up to the test of time, others do not. Big data approaches help rapid
prototyping and design of new environments in ways previously not feasible [34].

2.2. Urban Livability Assessment

In an environment of rapid transformation and locational competition on a global scale, research
on the livability of cities has gained much attention during the last years. Research investigating
the quality of life in cities has already started very early to deal with the spatial relationships of and
within cities due to the complexity and diversity of livability standards, taking into account the global
aspect of such standards and indices [35–37]. One declared important objective of such research
is the objectification of economic, social, and structural-spatial factors of influence. In this context,
Onnom et al. [38] discuss several indices that allow for measuring the quality, the development and
the livability of cities. Others investigate the relationship between the livability of an urban area and
its (sustainable) development [37,39].

Based on the research of Kovacs-Györi et al. [40] we argue that livability can serve as a useful
conceptual and analytical framework to assess and improve the quality of urban life, also considering
the personal aspects of the residents by focusing on the personal-environment relationship instead
of merely statistical indices with no spatial relevance. Figure 1 shows the key elements and their
relationship in livability to clarify what is meant conceptually when using this term throughout the
article [40]. The lower part represents the urban environment (i.e., actual state), which consists, on the
one hand of the built and natural environment along with the infrastructure, described as urban form.
It also includes what this environment can provide for the citizens as urban functions, reflecting how
the people use the urban space in the light of the functionality. This component of livability is more
tangible, and spatial data for further analysis are available or acquirable, respectively. The upper
part of the figure corresponds to the individual preferences (i.e., expectations) in livability and the
person–environment relationship, consisting of human needs that the urban functions (or even urban
form) need to satisfy and the personal values that define and influence the person’s preferences.
Due to the high level of subjectivity, individual preferences bring an inherent limitation to livability
assessment, as means or data to extract these preferences are often not available in an intersubjective
way. Based on this framework, urban livability describes how well the environment can satisfy citizen
needs and expectations, i.e., to what degree the actual state matches the goal state.

However, as mentioned above, in the context of urban planning analysis, the difficulty exists in
two main circumstances.

First, it is often challenging to derive recommendations for actions to urban planners, because they
are often limited in the actions they can take. In private space, planners can only be active in supervision
or demand for specifications in a restricted framework. In public space, they have more freedom of
action, yet they are bound by various guidelines and social necessities and must take into account the
private space. The translation of identified indicators and parameters into planning-relevant actions
must therefore take place in such a way that it facilitates the identification of space for maneuver. Such
methodologies target the simplification of the identification of the effects of measures and facilitate
scenario formation when there are alternative courses of action.
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Furthermore, the mere accessibility depicted by minutes or meters cannot reflect the purpose or
the quality of the satisfaction of needs at the target destination nor the actual quality on the way itself;
the crucial question why a way or a means of transport has not been chosen; as such, this question
cannot be directly mapped or only indirectly depicted. In times of resource scarcity and decreasing
urban budgets, providing answers to such questions is essential for efficient urban planning. In this
way, and as highlighted in Figure 1, mobility has a special role within livability assessment both in
terms of conceptual and practical aspects. Collecting data on mobility is quite well-established and
also various analysis techniques are available depending on the purpose of the analysis. Besides direct
information about the paths or routes of residents, different approaches exist to provide information
about mobility and its qualitative aspects. Pigliautile et al. [41] present wearable sensing techniques
and automatized data-processing for urban microclimate mapping. Such mapping could provide
information about the comfort of pedestrians and for other outside traffic participants that move within
the urban area. A single trajectory can tell a lot in terms of subjective preferences and the satisfaction
of needs that are both cornerstones of livability assessment as described above. This is because the
destination usually reveals the need to be satisfied whereas the transportation mode and the route
taken can provide insights into personal characteristics or routing preferences. Overall, we think that
mobility analysis where livability aspects are considered (even only at a conceptual level) can combine
the strong theoretical knowledge from urban planning with the new technological advancement from
GIS and big data resulting in new approaches to improve urban quality of life.

2.3. Illustrations of GIS-Based Social Media Data Analysis to Support Urban Planning

In this section, we provide practical examples from previous research, to illustrate the potential of
geospatial analysis for urban planning purposes using social media data. These examples provide
only an insight into how geospatial analysis of Twitter data can facilitate urban planning but we do not
provide an extensive review of the state-of-the art approaches in this field. However, Section 3 reviews
more in depth the potential of VGI in general for these purposes.

In Sections 2.3.1 and 2.3.2, it is demonstrated how the analysis of Twitter data can support
urban planners by providing new insights about urban phenomena and challenges. Concept-wise,
morphology (2.1) and livability (2.2) assessments are good examples of methodological solutions from
the GIS domain to provide new insights for urban theories that have a long history. This often happens
by applying mixed methods to grasp the complexity of urban phenomena. Mixed methods research
originated in the social sciences and it is a third category of approaching an analysis, by combining
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the first two categories, namely qualitative and quantitative. The main idea of this methodology of
research is that such complex integration permits developing better synergies in using the data than
by following separated collection and analysis [42]. More than two decades ago, urban researchers
discussed the possible integration of mixed methods strategies in planning, with examples from New
York City [43]. However, with the growth of data and technologies, the in-depth mixed methods got
into development about a decade ago. Although these approaches are often difficult to evaluate, due to
the data-rich environment they can still be informative, as it is illustrated throughout this section.

2.3.1. Towards Citizen-Contributed Urban Planning Using Twitter Data—Case Study for Planned
Large Events

In a 2018 study, Kovacs-Györi et al. [44] investigated how social media data can be utilized to
investigate planned large events in cities, using the Olympic Games in London, 2012. Similar studies
have been performed also for the Rio Olympics [45], transportation during planned (and unplanned)
events [46], or to detect events based on Twitter data [47–49].

Using over 12 million tweets, the authors in [44] identified potential residents and visitors of
the Olympic Games in 2012 and analyzed their tweeting behavior in terms of spatial and temporal
patterns, as well as the sentiments of their tweets. The analysis of the spatio-temporal and sentiment
patterns revealed that it was possible to identify (spatial) hotspots for both groups during the Olympic
Games, and these patterns were significantly different. The real potential of this result is to provide
information for planners and decision-makers even during an event with a quite high spatial and
especially temporal resolution, which is often a limitation with traditional surveys or other existing
authoritative methods. However, it is important to emphasize that the usefulness of social media
data (or VGI in general) highly depends on the purpose of the analysis. As different social media
and VGI platforms are not used by each demographic groups equally, researchers must consider how
this inherent selection bias might influence their results. In the case of a planned event or disasters
the high spatial and temporal resolution of the data and their near-real time availability bring clearly
more advantage and information even if it is not fully representative, compared to other scenarios,
where representativeness might be essential such as the availability of specific urban services. Section 3
describes further considerations and analysis techniques regarding the reliability of different VGI
data sources.

Another method demonstrated in the paper [44] was topic modeling to extract topics from the
tweets of the previously identified groups of visitors and residents. This method can also be interesting
for urban planners and other stakeholders to get indirect feedback regarding different aspects (e.g.,
transportation) from the two groups during an event. In a near-real-time scenario, it can be informative,
especially in bigger amounts. The paper includes further assessment potentials both on micro and
macro scale, usually by suggesting the combination of different data sources to dig even deeper into
urban phenomena.

2.3.2. Classifying Parks and Their Visitors in London Based on Twitter Data Analysis

In another study, Kovacs-Györi et al. [50] investigated how social media data analysis can help the
planners monitoring urban park visits and the perception of the visitors. Twitter data is often used for
this purpose [51], for example to investigate seasonal variation in physical activities [52], or determine
the emotional responses of people to urban green spaces [53]. Similar to the above-presented case
study for the Olympic Games and other large events, the high spatial and temporal resolution of the
tweets can provide new insights compared to other methods, such as in-situ assessments (surveys,
counting, etc.). The study included the analysis of the distance between park tweets and the activity
center of the user (geometric average of the coordinates where the given user tweeted from), followed
by a sentiment analysis and emotion extraction of the tweets. By performing spatio-temporal analysis
and clustering it was possible to identify different types of parks based on the time of the visit (during
the day, week, and year) and also to identify parks where people tended to tweet more positively or
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experiencing specific emotions. The research demonstrated, also in this case, the potential of using
social media and GIS analysis for urban planning in this regard, as well as pointed out some of the
limitations (most of all the lack of representativeness of the dataset). Overall, this method can serve
as an input for more in-depth analysis performed by planners or other stakeholders, by revealing
new insights or providing information about parks in greater amount and for a longer time than it is
possible with traditional techniques, such as questionnaires.

3. Valuable Data Source Types and Methodologies for Analyzing Complex Urban Systems and
Their Quality

Urban informatics can tap into a rapidly growing number of data sources providing a large
variety of data sets of different spatial and temporal scales, completeness, and reliability in different
combinations [54]. For example, metro card user data or social media check-ins allows analyzing and
modeling people’s individual movement, property appraisal data allow for an estimation of parcel
values and determining factors using hedonic models, whereas traffic cameras or inductive loops
provide information about traffic congestion at certain road segments. On the temporal scale, weather
station data from fixed sensors provide both hourly information but can also be used for analyzing long
term trends in climate change. Similarly, floating car data provide continuous information about speed,
however at varying locations depending on the cars’ locations. Other geo-data, such as household
traffic surveys or on-board transit surveys, are collected less frequent at a smaller sample size which
limits suitability for local analysis tasks. The different channels provide a large pool of data, which
renders machine learning algorithms and artificial intelligence potentially useful for the identification
of spatio-temporal activity patterns of various phenomena in urban environments at all spatial and
temporal levels. Artificial intelligence, including machine learning and natural language processing
as methods for urban data science, have, for example, been used for the early detection of disease
outbreaks, such as COVID-19, Zika, or H1N1 Influenza, based on big data from health-wearable
devices [55], or for urban flood risk mapping in urban environments [56].

3.1. User-Generated Data Sources

Quantitative urban research has traditionally relied on data from censuses, surveys, and specialized
sensor systems. Low response rates of surveys and the high cost associated with surveys and replacing
sensor systems, have, however, led to increasing interest in alternative ways of supplementing the
urban data infrastructure [28]. The emergence of Web 2.0 has led to a plethora of VGI and social media
data as part of big data that has been used for a wide range of urban analyses also addressing societal
questions. This includes exploring urban dynamics from open and user-generated content posted
on location-based social networks Foursquare, Google Places, Twitter, and Airbnb [57], assessing
the effect of natural disasters on urban mobility patterns using tweets [58], or for monitoring the
development of the COVID-19 epidemic through WeChat keyword analysis [59]. User-generated
data sources provide different types of geo-data, including points of interest, event patterns,
travel trajectories, traffic information, sentiments, or social activities. Such data form the building blocks
for geo-applications and analysis tools in the context of urban planning. Consequently, knowledge
about the quality of crowdsourced data is important to determine their fitness for purpose [60].
Whereas the abundance and multi-dimensionality of crowd-sourced big data lend itself to machine
learning techniques in the spatial and temporal domain, machine learning has also been used to assess
and improve the data quality of VGI, such as OpenStreetMap [61], and to remove automated bots in
social media data, such as tweets [62].

The International Organization for Standardization Technical Committee (ISO/TC) 211 developed
a set of international standards that define the measures of geographic information quality and
provide a structure for describing digital geographic data. The ISO metadata standard 19,115 [63]
defines the schema required for describing geographic information and services by means of metadata.
It distinguishes between five quantitative measures (completeness, consistency, positional accuracy,
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temporal accuracy, and thematic accuracy) and three qualitative quality indicators (purpose, usage,
and lineage). At the emergence of crowdsourced data comparison to authoritative data (called extrinsic
methods) was a common approach to determine data quality [64,65]. With the absence of available
comparison data, additional qualitative indicators as a proxy for traditional ISO-defined data quality
indicators [66] were developed, partially mitigating the need for reference data but rather relying on
contribution history. Hence, data quality assessment began to utilize intrinsic methods recently as
well [67]. These methods rely exclusively on the analyzed data source itself. Examples include the
analysis of historical metadata as a means of inferring the inherent quality of the data [68], or the
measurement of text metrics (e.g., number of words, structure, spelling) to determine the quality of
crowd-sourced text content [69].

Alternatively, to determine their data quality, crowd-sourced data can also be compared to
other non-authoritative data [70–72], to the surrounding environment [73], or data contributed by
other volunteers [74]. Furthermore, a volunteer’s trustworthiness, credibility, experience, recognition,
or reputation can be used as a proxy for the quality of contributed data [75,76]. Other measures to
determine the quality of user-generated content include its localness [77,78], or its vagueness [79].
Vagueness can, for example, be caused by low-resolution imagery, or by capturing only a snapshot of
a temporal phenomenon. Data quality of crowdsourced datasets vary between world regions [80],
and the spatial distribution of such datasets is uneven [81]. Since urban environments are centers of
human activities (jobs, social life, leisure, high-density housing), urban areas provide a rich source of
geo-data, which are potentially suited for spatial and spatio-temporal analytics in different research
domains including human mobility, health and environment, social interaction, food and nutrition,
gentrification, land-use, and urban functionality. These geo-data are of different lineage and type,
and therefore may be best described with different quality measures or indicators. A detailed overview
of existing methods to assess the quality of map-based VGI (e.g., positional accuracy, completeness),
image-based VGI (e.g., thematic accuracy of tags), and text-based VGI (e.g., credibility) is provided in
the work of Senaratne et al. [82]. Table 1 summarizes commonly used VGI quality assessment methods
(extrinsic vs. intrinsic) together with the type of used reference datasets and quality measures. An x
indicates the primary use of these measures, whereas (x) indicates less common use for a given method.

Table 1. Different methods and measures for VGI quality assessment

Assessment Method Extrinsic Intrinsic

Comparison Reference Dataset Authoritative Non-Authoritative None

Measures

Quantitative measures (completeness, consistency,
positional/temporal/thematic accuracy) x x (x)

Qualitative indicators (purpose, usage, lineage) x

Proxy quality indicators (trustworthiness, credibility,
text content quality, vagueness, local knowledge,

experience, recognition, reputation)
(x) (x) x

3.2. Improving Data Quality and Reliability in Urban Analysis by Combining Data from Several
Crowd-Sourcing Platforms

A user’s credibility has traditionally been derived from contribution patterns to individual
citizen science projects, mapping platforms, or social media apps—such as Ushahidi [76], Flickr [83],
or Twitter [84]—which also led to the development of methods for detecting data vandalism [85].
However, lately, individual users began to become active in multiple crowdsourcing platforms [86],
and to use multiple social media services simultaneously. Therefore, we propose to extend the
assessment of a user’s credibility and trustworthiness through consideration of activities across
multiple platforms. One obvious challenge in that aspect is to identify which users contribute to
multiple platforms. This is not a trivial task and largely unaddressed in the GIScience literature.
An online survey—conducted by Levente Juhász [87]—was performed to test this hypothesis on a small
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sample. Participants were asked about their geospatial application usage and requested to share their
online activity in 10 geospatial applications. Participants were recruited through university mailing
lists, discussion forums and social media channels, and the study mainly focused on Europe and the
United States. Figure 2 illustrates the results where 32 out of 53 responding users indicated that they use
more than one geolocated social media or crowdsourcing platform. Considering the identification of
individuals who are using multiple social media platforms, a common approach is to try to match user
names between different platforms. More computationally complex and resource-intensive methods
could apply concepts of space-time geography on user contribution patterns to identify contributions to
different platforms from the same user [88]. The basic idea behind this would be that space-time prisms,
which show an individual’s reachable positions based on a person’s capability constraints (e.g., travel
speed) or authority constraints (e.g., rules and regulations), determine whether locations extracted
from different data sources could have been visited by the same individual user or not. With millions
of users contributing to different platforms, matching up contributions from different platforms and
identifying them to be from the same user, if so, will require the use of advanced space-time indexing,
data mining approaches, and machine learning techniques [89]. There are also ethical challenges
associated with linking individuals and their activity between multiple online platforms, which stem
from the right to privacy. Therefore, combining data from multiple platforms should also consider
locational privacy. This is best addressed by an approach that combines legal, ethical, technological,
and education aspects of the issue [90,91].ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 10 of 22 

 

 
Figure 2. Social media and crowdsourcing platforms used by a set of 53 users. 

Although the small sample size of the study mentioned above does not allow to draw 
generalized conclusions about the percentage of social media users who use multiple platforms, we 
assume that data from multiple data sources (e.g., Twitter and Instagram) can be combined to provide 
a more complete spatio-temporal representation of an individual’s activities compared to information 
extracted from a single platform (e.g., Twitter). An illustration of this is given in Figure 3, where maps 
a–d show locations and activities extracted from Web 2.0 platforms over the course of a day for one 
user in a region in southern Austria. Figure 3e overlays all geocoded activities of the same individual 
during the same day and therefore provides a more complete spatial representation of the user’s 
activities than one single platform. It also provides information about transportation between the 
cities (i.e., Strava cycling activity). Although this example suggests that the approach leads to 
increased credibility and completeness, this step of data fusion from different sources needs to be 
repeated for a larger, more representative, and diverse user base to be able to draw conclusions about 
its usefulness and applicability for a more general population. Challenges, such as feature matching, 
which are inherent to data fusion from different sources [92], need to be addressed within this 
process. 

Figure 2. Social media and crowdsourcing platforms used by a set of 53 users.

Although the small sample size of the study mentioned above does not allow to draw generalized
conclusions about the percentage of social media users who use multiple platforms, we assume that
data from multiple data sources (e.g., Twitter and Instagram) can be combined to provide a more
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complete spatio-temporal representation of an individual’s activities compared to information extracted
from a single platform (e.g., Twitter). An illustration of this is given in Figure 3, where maps a–d show
locations and activities extracted from Web 2.0 platforms over the course of a day for one user in a
region in southern Austria. Figure 3e overlays all geocoded activities of the same individual during the
same day and therefore provides a more complete spatial representation of the user’s activities than
one single platform. It also provides information about transportation between the cities (i.e., Strava
cycling activity). Although this example suggests that the approach leads to increased credibility
and completeness, this step of data fusion from different sources needs to be repeated for a larger,
more representative, and diverse user base to be able to draw conclusions about its usefulness and
applicability for a more general population. Challenges, such as feature matching, which are inherent
to data fusion from different sources [92], need to be addressed within this process.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 11 of 22 
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Exploring the relationship between social media activity spaces of a user on different platforms
and quantifying their similarity is a novel research direction [93]. Understanding the limitations of
using data from only one platform and the potential benefits of combining user data on the individual
level is relevant, since urban analytics already utilizes social media and crowdsourced datasets to
extract valuable spatio-temporal information to understand human mobility and citizen opinions on
certain topics [40,44].

A new trend in contribution patterns of user-generated content is also to cross-reference information
between platforms, i.e., to obtain information from one data source and insert it into another, which
can be referred to as “cross-tagging” [86]. An example is to use the hotel name found on a Mapillary
image, which is then attached to an OSM feature as a name attribute value during the OSM editing
procedure, based on which the Mapillary photo ID is linked to the map feature. Automated systems
can then utilize this link to display an image of the linked map feature. In addition, contributors can
also look up information from various data sources and platforms and use that information in other
platforms, without explicitly documenting this process in the edited data. This process can be referred
to as “cross-viewing” [94]. It is yet an open question if and how cross-tagging and cross-viewing
affect data quality of the connected data sources. On the one side, it can be argued that cross-tagging
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and cross-viewing add more eyes on the data, which should improve data quality, based on Linus’
Law [95]. However, if the original data is not cross-checked, its potentially inferior data quality may
propagate across platforms and negatively affect the data quality of the targeted data source, similar to
how correct (or incorrect) news can propagate within the social media landscape [96] or how errors
propagate in measurement-based GIS into the indirect values of the end product [97]. Joint use of
datasets from different sources can provide better completeness, e.g., in feature change detection over
time, which has been applied in urban environments [98]. However, different demographic groups
do use crowd-sourcing tools, such as bicycle tracking apps [99] or social media apps [100] differently,
which is important to consider in efforts of data fusion from different apps and in conclusions drawn
from this. As far as cross-tagging goes, we propose to add another quality measure of user-generated
content, namely the abundance of cross-linked data sources in the data set of interest.

In conclusion, it can be stated that the evolvement of novel data sources from user-generated
content, and their combination, necessitate a review and adaptation of quality metrics to appropriately
capture and describe their validity and usefulness.

3.3. Potential of Machine Learning Algorithms in Geospatial Urban Analysis and Assessment

In a recent transformational development, the GIScience community has faced a transition
from a data-scarce to a data-rich environment [101]. This advancement also reshapes the scientific
discipline of geoinformatics through the more acknowledged investigation of data-driven approaches.
Therefore, the development of new methods for data acquisition, storage, and analysis become
inevitable, including unsupervised machine learning algorithms or semi-supervised learning systems.
This also applies to the particular idea of assessing walkability, where researchers have used machine
learning algorithms, for instance, on Google Street View imagery to generate three measures on visual
enclosure [102]. The proposed methodology addresses the dimension of urban design that has usually
been analyzed through urban characteristics like street network density or block size. The authors
adopt an approach that uses Artificial Neural Networks (ANN) and Support Vector Machines (SVM) to
identify sky areas for measuring the proportion of visible sky from using Google Street View imagery,
from which a measure for visual enclosure is derived.

Also, Resch et al. [25] developed a methodology that extracts emotion information from social
media for improving urban planning processes. The authors present a semi-supervised machine
learning approach that is based on similarities between social media posts in geographic space, temporal
space, and semantic space. They conclude that social media are a valuable and reliable data source
for urban planning related issues, but that traditional GIS methods are oftentimes not appropriate
for analyzing social media data. These and other recent machine learning-based approaches show
that the dichotomy between purely hypothesis-driven approaches (mostly developed by domain
experts) and data-driven approaches (oftentimes pursued by computer scientists and statisticians)
are currently closing up. In other words, urban planners tend to have a better understanding of the
technical capabilities of cutting-edge technology, while computer science-oriented researchers become
more and more familiar with the concepts developed in the urban planning community. This makes
the field of urban analysis a highly interdisciplinary one by bringing together experts from a variety of
scientific fields.

With respect to the analysis of human-generated data like social media to better understand
urban contexts, the high degree of uncertainty—including textual ambiguities, positional and temporal
inaccuracies, and semantic irregularities—has sparked the development of new machine learning-based
analysis methods [12]. Various machine learning methods have recently been used and developed
for analyzing urban spaces, including self-organizing maps to map recreational beneficiaries [103],
to analyze urban traffic conditions [104], and to mine latent urban activity patterns [105], or methods of
natural language processing (NLP) to extract urban perceptions [106]. These research efforts allow for
generating new, unseen insights into urban processes through analyzing a new set of data sources that
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previously posed severe challenges to scientific research due to their unstructured, unstandardized,
and voluminous nature.

Concluding, these new algorithms seem to be a promising avenue for several reasons: First,
they reduce or eliminate the need for a priori knowledge with respect to linguistic structures, geospatial
correlations, or semantic meaning. Second, it is possible to incorporate the geospatial dimension into
the analysis process, in many cases in a simple fashion without having to modify the original method.
This step is essential because many machine learning algorithms have originally not been designed for
handling and analyzing geospatial data. Third, machine learning methods have the power to deal
with large amounts of data in that data-driven approaches can be applied to mine latent, unanticipated
patterns in human-generated data [12].

4. Potential Methodological Problems for Urban Planning and Livability

4.1. Finding the Signal in the Noise

For urban planners, the era of large-scale geodata sets, and other forms of big data, is creating
remarkable opportunities, but also raising a number of important problems. One of the most challenging
problems is the sheer volume of the data available, which is often noisy in character. That is, it has
inherent imprecision, ambiguity and inaccuracy, often obscuring both the full dynamics of urban
challenges, and the path to their resolution. Researchers have an opportunity to help find strategies to
clarify the relevant information—the ‘signal’—amongst an increasing deluge of information noise.

To be sure, many specific benefits of urban big data, and its related smart cities movement,
have been described enthusiastically and in detail by proponents [107,108]. Among the benefits touted,
information from sensors can be used to ease traffic jams, optimize energy demand, and give users
real-time updates on transit and other systems. New mapping technologies can identify, and help to
correct, urban problems that were previously much more difficult to identify and manage. Social media
and crowdsourcing can target problems large and small, down to which potholes to fix. In this and
other respects, it is claimed, the new technologies can even make governments more responsive to
citizen needs [109].

There is, of course, a darker view of big data and smart cities. Both are criticized as fads,
as technology marketing schemes, or as tools of covert manipulation and control, threatening to abridge
political and personal rights (notably including the right to privacy). At best, they over-simplify
the complex challenges of the city, with dubious results. For example, Hollands [110] asserts that
with smart cities, researchers and decision-makers know too little about “what the label ideologically
reveals as well as hides”. Söderström, Paasche, and Klauser [111] attack smart cities as “corporate
storytelling” that can “obfuscate more urgent needs” such as “technology-poor affordable housing or
sewage systems (that) are arguably more urgent in many of the world’s cities”. Kitchin [112] argues that
“data-informed urbanism” is being replaced by “data-driven urbanism”, and its efforts too often “fail
to recognize that cities are complex, multifaceted, contingent, relational systems, full of contestation
and wicked problems that are not easily captured or steered, and that urban issues are often best solved
through political/social solutions and citizen-centred deliberative democracy, rather than technocratic
forms of governance”.

However, the vast streams of data are already here, and so are the challenges. The more pointed
question is, therefore, how will planners, decision-makers and other stakeholders manage this already
existing (and growing) technology in order to make progress? In what ways might it be engaged as a
helpful resource to deal with the most pressing human challenges, also addressed by SDG and the
NUA? To avoid “data-driven urbanism” planners and researchers can start by asking, what is it that
they wish the data in a “data-informed urbanism” to reveal to them? They must be clear in the first
instance what they are counting, and why.

The focus of this paper, the goal of livability, points in an important and helpful direction.
If livability is defined as the ability to endure, survive, inhabit, and experience quality of life in an
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environment, from that we can develop objective criteria to measure (for example) access to resources,
economic opportunities, income, health, recreation, and freedom from dangers, threats, obstacles,
pollution, and so on. It is also possible to develop subjective and intersubjective measurements of
satisfaction and well-being, which help to indicate problem sources. From there, researchers and
planners can identify both existing and new datasets that give us a picture of the current situation,
and the specific ways that we might target improvements, most likely through an iterative process of
action, measurement, and refinement.

Here is where another crucial point arises: Is it only the experts (researchers and planners),
working as external agents who can contribute to the achievement of goals also defined by them?
A number of researchers have demonstrated that a city is a partly self-organizing system, emerging
from myriad incremental actions by distributed agents, i.e., the citizens [113,114]. In part, those actions
create adaptations aimed at achieving a more livable environment with a higher quality of life. The data
must therefore inform not only the experts working externally upon the city, but the actors themselves
working within (and as part of) the city.

4.2. Distinguishing Information about the City, and Information within the City

To consider further opportunities and challenges, it might be important to draw a basic distinction
between the information about a city, and the information within a city. The former is the customary
focus of technologists and officials, who make measurements and draw conclusions for their own
externally applied actions. The latter includes citizens, together with the structures of their environments.
This addition is key: the interaction between information with the environment itself, and the people
within it, generates new information and new outcomes, often quite apart from any external data process.
In biology, this self-organizing phenomenon is known as stigmergy [115]. Applied to cities, it creates
the capacity for urban self-organization [116]. This concept is also explored in actor network theory
(ANT), developed in sociology [117]. Edelenbos et al. [118] argue that ANT points to an alternative
working framework to the ‘data determinism’ that tends to dominate smart city discourse, and “accords
specifically well with an understanding of cities as complex, adaptive, self-organizing systems”.

A question then arises concerning the relation between the information about a city, and the
information within a city, including stigmergic information. These two forms of information do
not exist in isolation, but rather, they occur together and in characteristic interactions. For example,
planners and policymakers create infrastructure and regulatory frameworks, which then go on to
produce stigmergic patterns by users, which can then be studied and acted upon externally, and so on.
As a particular example, planners might create street networks with traffic signals, which then produce
the stigmergic patterns of traffic as it self-organizes, which is then modified according to feedback
from smart city sensors, and so on. A more distributed example is the stigmergic response of users to
smartphone traffic congestion data.

All of these different forms of information and stages of process require clarity of understanding,
lest the tasks of geodata application become commingled and confused. We, therefore, close by
enumerating several critical ones.

First is the distinction between centralized information and distributed information—and
especially, distributed information that is interacted with, acted upon, often created by, distributed
agents who are acting at a range of scales. Particularly important are the distinct and often overlapping
scales of democratic governance, in what the political scientist Elinor Ostrom referred to as “polycentric”
governance [119]. Those who engage geodata in the pursuit of urban goals (including livability)
must surely honor the need of these democratic institutions and individuals to be empowered by this
distributed information, and not merely to be controlled by it.

Second is the distinction between three different kinds of information, which operate in
distinct modes:

• Descriptive information about the city, used to guide actions usually by centralized agents.
Examples of descriptive information include maps, measurement datasets, and user survey data.



ISPRS Int. J. Geo-Inf. 2020, 9, 752 14 of 20

• Prescriptive information in the form of rules that prescribe actions. They generally produce static
configurations, e.g., “all cars stop at the line when a light is red”, and so on. Examples include
zoning codes, traffic laws, and other regulations.

• Generative information. This is information within the city, operating iteratively between
distributed agents and/or their environments (actor-networks). This kind of information is capable
of generating emergent structures through self-organization, and more particularly, through
the dynamic of stigmergy [116]. Examples include built-up environmental patterns (like the
modest pathway changes in Figure 4), pop-up structures, neighborhood-scale cooperative projects,
and other ‘bottom-up’ iterative changes by residents.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 15 of 22 
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It is important to note that descriptive, prescriptive, and generative information can all exist
independently or in combination, and in either centralized or distributed forms—or indeed in
combinations. There are of course cases in which distributed information would operate in tandem
with centralized information, combining descriptive, prescriptive and/or generative kinds—say, in a
Smartphone app. The key conclusion is that a geodata strategy that overlooks distributive and
generative aspects is not necessarily wrong, but it is incomplete—perhaps dangerously so.

To be sure, the new era of geodata applied to urban livability offers exciting prospects. There is
understandable excitement at the usefulness (and yes, the potential economic value) of vast new
streams of information and new kinds of analysis about the city, with undeniably great capability
and promise. However, as this discussion suggests, no less important is to consider how information
moves within the city, within its distributed actors, and within its structures. The new technologies
must surely work with both kinds of information, empowering residents and actors at all scales to
identify their own signals to pursue within the noise, providing appropriate tools and strategies to do
so—some new, and some no doubt yet to be developed.

5. Conclusions

Big data, coupled with machine learning algorithms and geospatial analysis bring without a
doubt new insights into urban planning and livability improvement through the acquisition and
extraction of vast amount of information about different urban systems. There are numerous disciplines
contributing to this effort, therefore understanding the complexity and interrelationship of these urban
systems clearly requires an interdisciplinary approach. In this paper, we highlighted some of the
potential synergies of applying geospatial data sources and methodologies for urban issues based
on reviewing the literature and discussing relevant issues and open questions, especially regarding
the application of VGI and various geospatial analytics techniques for livability assessment and
improvement. We want to acknowledge that this interdisciplinary take can be expected to strengthen
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the collaboration between urban planners, urban scientists, and researchers from the GIS and other
domain rather than substituting traditional urban theories and urban analysis.

Through our research questions, we addressed some key aspects of urban analysis and livability
assessment in the era of big data, such as the reliability of these new data sources, the potential and need
of applying machine learning algorithms for big data related to urban problems, and the extraction
of truly meaningful information from the vast amount of data in the case of cities and planning.
The issue of data ethics and geoprivacy are gaining more and more relevance due to the advanced
usage, especially when different data sources are linked to analyze users [120]. Future research should
address these aspects as well more in depth; however, it was beyond the scope of the current article.

This paper although investigated just a subset of potential approaches or limitations—the field of
studying cities might be as (or probably even more) complex than cities themselves. Our goal was
to demonstrate the strength of these new data types and methodologies in livability assessment and
improvement as key elements in urban planning.

Also, we want to emphasize the importance of collaborative work, and diversity integration.
One example can be the relationship between academics and stakeholders such as policymakers,
governmental bodies, non-profit organizations, urban planning businesses. Framing a research
problem and a possible solution can make the difference between being listened or not by a large
crowd or a group of decision-making experts. Overall, we cannot emphasize enough the relevance
of livability, as an overarching concept in the case of urban analysis. Cities are for and about people,
the ultimate goal of any urban analysis or planning action is (or should be) to enhance the quality of life
in cities. This requires the consideration of qualitative aspects (such as the perception or satisfaction
of the dwellers) as well, beyond the merely data-driven and technology-focused analysis. However,
the fact should not be neglected, that this qualitative approach has inherent limitations, which can
only be partially conquered by having big data or machine learning methods. Further research should
consider and address these qualitative aspects by deepening the cooperation in making cities more
livable between traditional urban research domains and the newer, more technology-based fields such
as urban data science and GIS.
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