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Abstract: Besides OpenStreetMap (OSM), there are other local sources, such as open government data
(OGD), that have the potential to enrich the modeling process with decision criteria that uniquely
reflect some local patterns. However, both data are affected by uncertainty issues, which limits
their usability. This work addresses the imprecisions on suitability layers generated from such data.
The proposed method is founded on fuzzy logic theories. The model integrates OGD, OSM data
and remote sensing products and generate reliable landfill suitability results. A comparison analysis
demonstrates that the proposed method generates more accurate, representative and reliable suitability
results than traditional methods. Furthermore, the method has facilitated the introduction of open
government data for suitability studies, whose fusion improved estimations of population distribution
and land-use mapping than solely relying on free remotely sensed images. The proposed method is
applicable for preparing decision maps from open datasets that have undergone similar generalization
procedures as the source of their uncertainty. The study provides evidence for the applicability of
OGD and other related open data initiatives (ODIs) for land-use suitability studies, especially in
developing countries.

Keywords: GIS; remote sensing; open data; open government data; uncertainty; fuzzy logic; suitability
analysis; landfill modeling; developing countries

1. Introduction

A major bottleneck of suitability studies is the availability of data suitable to generate representative
and sufficient criteria that satisfy the area’s local characteristics under investigation. Criteria requirements
for a given study problem and data availability for the proposed criteria are two very challenging questions
to be answered in developing countries that fall short of financial resources to acquire commercial data.
Hence, the need for assessing the applicability of various local and global data sources that are freely
available in these regions cannot be overemphasized.

Even though satellite data have been the primary source for mapping and monitoring the earth’s
features [1,2], integration of multiple data sources results in higher completeness concerning geometric,
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spatial, temporal and thematic coverage and quality [3–5]. The urge to explore various open data
sources to capture local characteristics has prompted a more in-depth exploration of two available data
sources—Open Street Map (OSM) and open government data (OGD).

OSM is one of the prominent free Volunteered geographic information (VGI) data sources common
in developing countries. Some recent works in different research domains have shown interest in
using these data [6]. Government Data (GD) is another precious resource whose potential is yet to be
explored for suitability studies, especially in developing countries. OGD, as a form of authoritative
data, is regarded as of higher quality data than VGI [7,8]. Various open government data contain points
of interest (POI), which offer a useful reflection of the spatial distribution, spatial pattern, and categories
of infrastructures, which are an important source of suitability indicators. The uniqueness of POIs is
that a single POI may contain much information compared to common points’ features of an ordinary
map or point data. POIs data offers a variety of choices to be presented by the same points. However,
each of the data sources has its related challenges.

Uncertainty in remotely sensed images is experienced as a mixed pixel problem and intra-class
variability, causing difficulty in image classification [9]. In open spatial data, OSM data features and
OGD POIs information usually undergo some kind of generalization or simplification to represent
actual features on the ground [8,10]. While this is a common practice, OGD data are often more
sensitive and often undergo further preprocessing procedures for privacy reasons. Processes such as
smoothing and aggregation may introduce errors in the data [7]. Any dataset which has undergone
some generalization operations experience either spatial or attributes transformations or both [11].
Therefore, suitability maps derived from these data will possess some degree of uncertainty. Generally,
every type of data has some degree of uncertainty, but open datasets suffer the most as they have
great variations in quality and modeling schemes applied. The integration of these data for land-use
suitability studies requires a reliable approach to work with them. This paper will focus more on
circumventing uncertainty in suitability layers derived from OSM and OGD datasets.

Considering the issues revealed above, this paper relies on fuzzy logic theories to derive
meaningful suggestions for modeling suitability layers from open data sources for application in areas
with insufficient data. Fuzzy set theories are chosen to model fuzzy regions’ imprecision in criteria
maps derived from the open data. According to [10,12–14], fuzzy logic can be useful to model inexact
and data with imprecise boundaries. The model will integrate OGD, OSM with other remote sensing
products. In this paper, we use landfills as a case study research; however, the proposed approach will
also apply to other land-use suitability studies. The accuracy of our case study’s final suitability map
was evaluated by using the Google earth map system, and ground surveys in Dodoma, the capital city
of Tanzania.

2. Materials

2.1. Case Study

This study will use landfill suitability analysis as a case study to analyze and evaluate the proposed
Model. The study location is Dodoma, the capital city of Tanzania. Dodoma city is located at the
center of the country between longitude 35◦28′55” E to 36◦6′55” E and latitude 5◦49′49” S to 6◦28′32” S.
The city is 453 km west of the former capital, Dar es Salaam. It covers an area of about 2669 square
kilometers, with a total population of 410,956 residents, according to the 2012 census [15]. Dodoma
region features a semi-arid type of weather with warm to hot temperatures all year round with a
minimum of 13 ◦C in July [16]. The rainy season is typically between November and April, with an
average rainfall of 570 mm, but the city is usually dry the rest of the time [17].

According to national statistics, more than 100,000 tons of municipal solid waste is generated
countrywide daily [18]. Dodoma Municipal is estimated to produce 305 tons of solid waste daily,
but 67% of waste is improperly dumped, increasing health risks and diseases such as malaria, bacillary,
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dysentery, and cholera [19,20]. An estimation of future landfill area for this city derived from cumulative
waste volume based on population growth of 20 years (2020–2040) is 2.01 km2.

2.2. Data Preprocessing

Evaluation criteria for waste disposal site suitability were derived by considering hydro-geological,
topographical and social-economical information. Data issuing authorities, names, and web links are
as listed in Table 1.

Table 1. Source of data.

No. Criteria Map Source

1 Surface water bodies United States Geological Survey (USGS) Earth Explorer, Landsat 8
Operational Land Imager (OLI)

2 Soil type Government data
3 Roads OpenStreetMap (OSM)
4 Railways OpenStreetMap (OSM)

5 Elevation Digital Elevation Model (DEM) with 30 m pixel size downloaded
from Earth data NASA website

6 Land use land cover (LULC) United States Geological Survey (USGS) Earth Explorer, Landsat 8
Operational Land Imager (OLI)

7 Slope Digital Elevation Model (DEM) converted to slope map using GIS

8 Water points Ministry of Water: Open Government Data
(http://wpm.maji.go.tz/, http://opendata.go.tz/)

9 Schools Ministry of Education: Open Government Data
(http://opendata.go.tz/)

10 Health facilities Ministry of Health: Open Government Data
(http://opendata.go.tz/)

11 Lineament density USGS Earth Explorer, Landsat 8 Operational Land Imager (OLI.)

12 Drainage density Digital Elevation Model (DEM) with 30 m pixel size downloaded
from Earth data NASA website

2.2.1. Digital Elevation Model (DEM)

ASTER global digital elevation model with 30 m resolution from Earth data NASA website was
used to extract information on the study area’s terrain surface and drainage network. DEM is a
useful tool for terrain analysis. We derived terrain attributes such as elevation, slope with the help of
GIS software.

Drainage density or stream density is calculated as the total length of all the streams divided by
the total area [21]. To map streams correctly, we applied some necessary preprocessing procedures
to remove errors, such as filling artificial sinks in the digital elevation models. A stream network
was extracted from a digital elevation model (DEM) by using ArcGIS tools such as fill, flow direction,
and flow accumulation. Our model takes the stream network raster file as the input parameter in the
focal statistics spatial analyst tool to produce a drainage density distribution map in a suitable format
ready for further analysis.

2.2.2. Landsat 8 OLI Imagery

Lineament density map is prepared from band-8 of Landsat imagery using different GIS and remote
sensing techniques. This band was chosen because it has a higher spatial resolution (15 m). The main
steps involved in lineament analysis include lineament extraction, correction, and classification by
density. We initially used a computer-aided method to automatically extract lineaments by a LINE
module algorithm of PCI Geomatica. After that correction of the lines, a lineament density map was
constructed using a line density tool in ArcGIS. A standard method to calculate lineament density is
based on the number of lineaments per unit area (number/km2) [22]. The line density tool calculates a
magnitude per unit area from polyline features that fall within each cell’s radius. The higher intensity of
the lineament feature increases the probability of contaminant movement to the groundwater area [23].

http://wpm.maji.go.tz/
http://opendata.go.tz/
http://opendata.go.tz/
http://opendata.go.tz/
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LULC map was another product of Landsat 8 image analysis, which resulted from the classification
results of four classes, namely built-up, waterbody, thick vegetation, and bare land or light vegetation.
As each band file is provided unlayered in GeoTIFF output format, the band 2, 3, and 4 layers stacked
in ERDAS Imagine, then clipped to contain the study area. The classification was performed using
a combination of ERDAS Imagine and Google Earth system using a maximum-likelihood method.
Moreover, we obtained acceptable results with accuracy overall accuracy of 0.83 for land use and land
cover classification, with a 0. 77 kappa value.

2.2.3. OpenStreetMap (OSM) Data

Current literature on evaluating temporal accuracy, up-to-datedness, and lineage quality
parameters of OSM data suggests that Tanzania OSM datasets are of higher quality in cities than in
peripheral areas [24]. Furthermore, [25] concluded the completeness and positional accuracy of OSM
road network datasets of Tanzania.

OpenStreetMap (OSM) was found to be the most mature and reliable crowdsource data in the
region for this kind of data [24]. Hence, it was proposed to be the source of roads and railway network
data. The datasets are a simplified representation of highways and railways as polylines. The data
were downloaded via the QuickOSM tool in QGIS. Our road network layer, in this work, is a result
of a merging of four OSM roads of several categories, which include highway trunk layer, highway
secondary layer, highway tertiary layer, and highway turning circle layer of Dodoma city. The resulted
layers were exported into a shapefile for further suitability analysis with other criteria in ArcGIS
software to produce the final output map.

2.2.4. Open Government Data (OGD)

The majority of open government data (OGD) in developing countries remains mostly untouched
in geospatial applications. This study acquires open government data from Tanzania’s official websites,
as shown in Table 1. In this resource, we are interested in spatial information that can help us filter
sensitive areas that should be excluded from landfill siting. Therefore, we will consider open data
issued by the Ministry of Water, the Ministry of Health, and the education sector.

OGD data are coming from trusted sources, unlike VGI. An official data source is a repository of
valid or trusted data originated and is maintained by an appropriate governing body [26]. However,
it is necessary to understand the reliability of these data sources for different stakeholders’ intended use.
Based on the literature, these data often undergo some preprocessing, such as smoothing and
aggregation, for privacy reasons [7]. We would like to know if this phenomenon exists in our
proposed datasets.

Summation of location deviation assessment between open and reference data returns a nonzero
value proving that some shift exists in the open datasets. Points in polygon assessment is another
approach for measuring uncertainty in vector data [27]. It shows a 75% chance of open data points to
fall within the convex polygons of the reference data set. The majority of the points along boundaries
are most likely to fall slightly outside of the polygons. The assessment shows a higher possibility that
some smoothing procedures have taken place and introduced some uncertainties in the open dataset.
However, both datasets (open and reference data) present a similar distribution pattern. Furthermore,
there is no evidence of an aggregation procedure taking place in the open dataset; this helps preserve
the public dataset’s quality to some extent. Hence, these datasets will be useful for screening sensitive
areas, and this paper proposes a reliable approach to work with them.

Waterpoints datasets contain POIs with many attributes, but for this study, we are interested in
latitude, longitude, source type (wells, borehole, etc.), and water extraction methods. Due to variation
of information, suitability requirements for water points should be determined based on more than one
factor, such as coverage of the population served and source type information. These factors should be
compared to assess constraint values for this layer. These aspects demonstrate the diverse nature of
POIs data.
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In the education sector, we extracted information about primary and secondary schools only.
Therefore, the school dataset is a joint set of primary and secondary school data. Another resource is
health facilities with fields like facility name, location, facility type (clinic, dispensary, health center,
or a hospital) and their operational status. All healthy facility categories were treated the same.

The proposed datasets were downloaded and prepared accordingly. General steps for data
preprocessing include filtering, merging, changing the coordinate system, and validate if data falls
within the required region. Export them from.csv file to shapefile format for further analysis.

2.2.5. Other Government Data Sources

The last criteria added include soil media classes, which were defined and rated accordingly to
their ability to transfer pollutants into the vadose zone. A review of the literature suggested that a
landfill be placed in an area with a sufficient supply of heavy soil clay and fine-grained soils due to
their low permeability [28–30]. Thus, this work assigns higher rates of clay related soils. Clay soil types
were given higher rates due to their low permeability characteristics, as described in the literature.
This fact accords with findings supporting the use of clay soil as a natural material landfill liner and as
a cover material in most countries [31,32]. Hence, placing a landfill in an area with a good supply of
such soil will minimize the facility’s operational cost and protect underground water.

3. Methods

We develop a fuzzy logic model in three stages, standardization of fuzzy maps, aggregation,
and defuzzification.

3.1. A Fuzzy Logic Approach for Criteria Standardization

3.1.1. Transition Boundaries

Determining appropriate transitions and boundaries values for membership functions can be
done either with experts’ knowledge (semantic import approach) or from cluster analysis with fuzzy
k-means [33]. The semantic import (SI) approach is often utilized when the analyst has a good, general
sense of where to put the boundaries between classes but has difficulty with the precision associated
with these boundaries [34], as is the case in our study. Several research experts and international
organizations have suggested landfill constraint requirements. Therefore, instead of relying on a
single source of information, we review a collection of reference materials and define common class
boundaries for landfill siting criteria. Reviewed references include journal articles, books, international
guidelines, and reports, which were added in Mendeley software to simplify searching of information
within the text. Appendix A1 contains a summary of the search results.

A common observation is that majority of the restrictions are expressed in vague linguistic terms of
assessment, such as about x km far from, at least x km, close to x, etc. These are loosely defined boundaries.

3.1.2. Selection of Fuzzy Membership Functions (MFs)

First, we develop metrics for measuring fuzzy regions. Other layers will be evaluated based on
distance, except for layers with continuous values like elevation, drainage density, and slope. Therefore,
we first calculate Euclidean distance grids for POIs for schools, water points, and OSM roads and
railways. A raster-based GIS is used for data representation and as a modeling platform.

Among possible choices, linear membership functions such as triangular or trapezoidal shapes
are simple to implement and fast for computation [35,36]; hence, we consider them as a first choice
whenever found fit to represent a scenario. Moreover, a trapezoidal fuzzy number can capture the
vagueness of those linguistic assessments (Figure 1). For example, a far linguistic variable for proximity
or distance will be represented by a left-side trapezoidal (LST) fuzzy number for school, waterpoints
suitability maps. Therefore, we propose:
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• a left-side trapezoidal (LST) fuzzy set if the fuzzy area is located in the left part of the support
• a right-side trapezoidal (RST) fuzzy set if the fuzzy area is located in the right part of the support;
• a full trapezoidal (T) fuzzy set if the fuzzy regions rise towards a certain range around a middle

maximum value;
• a discrete fuzzy function (D) for discrete fuzzy sets.
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If the universe is discrete (D), a membership function can be defined by a finite set as follows [37]:

A =
∑

µi/xi (1)

where the symbol/separates the membership degrees from the elements of the universe xi ∈ X.
The linear membership function has four parameters that determine the shape of the function.

By choosing proper values for a, b, c, and d in Table 2, we can create LST, RST, and T
membership functions.

µA(x) =



0 x < a
x−a
b−a a ≤ x ≤ b
1 b < x < c
d−x
d−c c ≤ x ≤ d
0 x > d

(2)

3.1.3. Modification of Open Data Membership Functions

Since OGD POIs and OSM data have undergone some generalization procedures such as
smoothing and simplification, we expect some spatial transformation of these features. To account
for the uncertainty in feature boundaries, we propose the addition of modifiers such as “very” and

“somewhat” to arrive at a more accurate representation of the scenarios. In the landfill modeling process,
the boundary which matters most is that of a narrower protection zone because it is the minimum limit
that must be observed.

For example, let us consider the school’s layer with a minimum protection boundary of 300 m.
Because of a little shift (or some uncertainty) in data, we are not very sure if, at 300 m distance,
the school will actually have a 300 m protection zone on the ground, or maybe it will be so at 305 m or
310 m. Therefore, we discourage areas towards a narrower boundary through weakening modifiers.

A modifier “somewhat” reinforces, while “very” is a fuzzy hedge that reduces an area’s suitability
membership value (Figure 2a,b). Raising a fuzzy set to the second power is an operation called
CONCENTRATION, which is taken to be equivalent to linguistically changing it through the modifier
very (Figure 2a,b). Likewise, taking a square root of a fuzzy set is a procedure called DILATION,
which is useful for representing a somewhat analytical modifier [38–40]. Such modifiers are also referred
to as hedges [12].
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Table 2. Suggested membership function for landfill decision criteria.

Criteria
Boundary Parameters 1

Type of
Fuzzy Seta b c d

La
nd

fil
lS

it
in

g
Su

it
ab

il
it

y

So
ci

o
Ec

on
om

ic
al Schools 0.3 km 3 km n/a n/a LST

Health facilities 0.3 km 3 km n/a n/a LST
Water points 0.2 km 2 km n/a n/a LST

Roads 0.05 km 1 km 4000 m Avg distance 4 T
Railways 0.3 km 1.5 km n/a n/a LST

Urban centers 0.15 km 5 km n/a n/a LST

G
eo

-H
yd

ro
lo

gi
ca

l

Surface water 0.305 km 2 km n/a n/a LST

Lineament density (m/m2) n/a n/a 0.3 0.49 RST

To
po

gr
ap

hi
ca

l

Elevation (m.a.s.l.) 936 1070 1478 1964 T

Slope (degree) n/a n/a 10 15 RST

Drainage density (m/m2) n/a n/a 50 76 RST

La
nd

C
ov

er

Soil type {0.2, 0.4, 1} 2 D

LULC {0, 0, 0.6, 1} 3 D

1 boundary parameters are based on narrower and wider protection boundaries in Appendix A1). 2 listed in the
order: more porous soil, low clay soil, higher clay related soil type. 3 listed in the order: built-up, waterbody,
thick vegetation, low vegetation/bare land. 4 Average distance from the city center.
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Dilation:
µdil(A)(x) = µA

2(x) (3)

Concentration:
µcon(A)(x) =

√
µA(x) (4)

In our model, we initially proposed a “far” linguistic variable for schools, health facilities,
water points POIs, and railways, which is represented by a half trapezoidal membership function (LST).
Then, through a fine-tuned procedure with a concentration modifier, the fuzzy number function
changes from far to very far. On the other hand, roads were modeled by a combination of “far” and
“close to” membership functions to obtain a fuzzy trapezoidal function (T). Now, after modification,
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we arrive at expressions such as “very far” to increase the fuzziness of a region and make the proposed
landfill area far from the road, and “somewhat close to” to make the site not very far from a given
distance from the roads in order to reduce the cost of developing new routes for longer distances.

3.2. Aggregation Approach

3.2.1. Aggregation Rules

While there are a growing number of aggregation operations available, the choice depends on the
model’s objectives and its usefulness for analyzing decisions. This model’s main goal is to combine
decision criteria in a way that facilitates the ranking of the solution based on the risk of exposure for
sensitive areas. For this purpose, we propose an ordered weighted averaging (OWA) operation.

Consider a set attribute maps n, OWA operators associate a set of order weight v and criterion
weight w of an object in ith location. Where order weight for criterion v j ∈ [0, 1], j = 1, 2, . . . , n,
and
∑n

j=1 v j = 1; criterion weight w j ∈ [0, 1] and
∑n

j=1 w j = 1. Moreover, in this work, we apply the

AHP model to determine criteria weights. Now, for a set of attribute values xi1, xi2, . . . , xin at the ith

location, the OWA operation is given by [41,42]:

OWA =
n∑

j=1

v jzi j (5)

where zi1 ≥ zi2 . . . ≥ zin is the set of reordered attribute values in descending order [43]. There are several
methods suggested in the literature for determining the order weights v j’s, however, in this paper,
we focus on the maximum entropy approach [44]. This method makes use of MAXness or ORness (α)
and dispersion (ω) to determine optimal order weights for a given set of criteria [43,44]. Moreover,
the set of optimal order weights is obtained by solving the following nonlinear programming equations:

Maximizeω:

ω = −
n∑

j=1

v j ln v j

ln n
(6)

Subject to:
∑n

j=1
n− j
n−1 v j = α,

∑n
j=1 v j = 1, 0 ≤ v j ≤ 1, f or j = 1, 2, . . . , n. These two measures:

ORness (α) and dispersion (ω), allow one to determine the position of an OWA operation on
the continuum between the extreme cases from AND and OR operators, as shown in Figure 3.
Again, [43] suggests that the range of ORness values can measure a decision-maker’s attitude.
Optimistic decision strategies take place from 0.5 to 1, and pessimistic plans are for values less than 0.5.
In contrast, if the decision committee is neutral towards risk, they set ORness/Maxness value to 0.5.
Therefore, OWA provides us with the capability to implement a wide range of different operations by
choosing appropriate order weights.
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3.2.2. Criteria Weights

We propose using the analytic hierarchy process (AHP) method to determine the weights of the
criteria. According to a literature review, AHP has proved to be a useful technique for generating
criteria weights [46–48]. We estimate the criteria in the pairwise matrix based on an evaluation scale
of importance from 1 to 9. AHP incorporates a useful technique for checking the consistency of the
decision maker’s evaluations [49]. The inconsistency of judgment throughout the matrix A can be
captured using the maximum eigenvalue, λmax [50]. The closer λmax is to n the more consistent is the
result. Saaty [51], proposed the Consistency Index (CI).

CI(A) =
λmax− n

n− 1
(7)

The consistency ratio (CR), is the rescaled version of CI. Given a matrix of order n, CR can be
obtained by dividing CI by a real number Random Index (RIn), which is nothing else, but an estimation
of the average CI obtained from a large enough set of randomly generated matrices of size n. Estimated
values for RIn are reported in Table 3. RI value was used for this study 1.56 for the 13 criteria (including
OGD criteria).

CR(A) =
CI(A)

RIn
(8)

Table 3. Values of RIn [52,53].

n 1 2 3 4 5 6 7 8 9 10 11 12 13

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56

3.3. Defuzzification of the Output

Results generated in a fuzzy form cannot be applied in an environment where a decision must be
taken on crisp values. Several defuzzification methods are known, including lambda-cut, weighted
average, maxima, and centroid methods [48,54,55]. This study applies the lambda-cut defuzzification
method for given threshold values. Precise thresholds should be determined by the user’s requirements
concerning output reliability after defuzzification.

Setting an initial suitability threshold µ0 is a common practice and one of the simple decision rules
for defuzzification, where µ0 is the minimum grade for suitability classes. A defuzzification threshold
of 0.5 < µ0 ≤ 1.0 is sensible [55,56]. The closer the threshold for µ0 is set to 1.0, the more certain and the
less fuzzy the derived suitability classes can be regarded. Suitability vector

→
µ = (µBR,µ2nd, . . . ,µnth)

sorted in descending order of suitability, where µBR representing the best suitable class range with
the highest membership degree, µ2nd holds the membership degree of the second-best suitable class,
and so on until the nth class. Avoiding the classification of areas less than 0.5 prevents defining areas
with maximum fuzziness (uncertainty) as suitable.

4. Results

4.1. Decision Criteria Layers

Figure 4 consists of 13 criteria maps derived from four main sources, as described in Table 1.
We can observe a relative variation in a given map’s uncertainty increases with decreasing membership
values. Therefore, areas with lower membership values are more uncertain (fuzzier) and vice versa.
Membership grade values represent suitability values whose range is from 0 to 1.
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Results show that high elevation areas, high drainage concentration, and steeper slope have lower
membership grades; this helps to avoid the risk of accelerating the runoff of pollutants to surrounding
areas. In addition, it avoids the difficulty of waste transportation to the site [57]. Areas with very
low elevations were also excluded to prevent flood risk. Zones with a higher risk of contaminating
surface and underground water have low to zero membership values, including surface water bodies,
water points, and higher lineament densities (Figure 4).

Furthermore, fuzziness decreases away from locations with a higher possibility or existence of
human settlement or activities. This aspect satisfies the condition that landfills cannot be placed near a
human settlement area to protect the general public from potential health hazards [58]. Criteria maps
representing this phenomenon include built-up, urban centers, schools, hospitals (health facilities),
water distribution points, roads, and railways (Figure 4).

4.2. Aggregation Results

The consistency ratio, CR, was 0.028 for 13 criteria; and the value is within the consistency range
(i.e., less than 0.1). AHP pairwise comparison matrix values and weights are as shown in Table 4.
OWA offers us a wide range of evaluation for decision criteria. Theoretically, we can obtain an infinite
number of aggregation results by continuous adjustment of parameter α. In this study, seven α
parameter values were selected 0,0.1, 0.3,0.5,0.7,0.9,1. The derived optimal order weights from these
values are shown in Table 5 and their respective suitability maps in Figure 5.

We interpret the suitability of a given location based on its membership value. According, to our
proposed defuzzification procedure, areas that can be considered for further suitability analysis are
those whose membership grade is greater than 0.5. The more the value is closer to 1, the more suitable
it is. It can be observed in Figure 5a–f how the size of a suitable area decreases from (a) to (f) by
increasing the value of parameter α. Among the alternative solutions, we choose a low-risk with
minimum tradeoff probabilities. In addition, suggested suitability threshold values to include 0.998 for
the best results (most suitable), 0.9 for the second-best results (suitable), 0.8 for the 3rd best results
(moderately suitable), and so forth.

Table 4. A Pairwise comparison matrix.

A B C D E F G H I J K L M W13

A 1 1 2 3 3 3 4 5 6 6 7 7 9 0.192
B 1 1 2 3 3 3 3 5 6 6 7 7 8 0.187
C 1/2 1/2 1 2 2 2 3 4 5 5 6 6 8 0.133
D 1/3 1/3 1/2 1 1 1 2 3 4 4 5 5 7 0.090
E 1/3 1/3 1/2 1 1 1 2 3 4 4 5 5 7 0.090
F 1/3 1/3 1/2 1 1 1 2 3 4 4 5 5 7 0.090
G 1/4 1/3 1/3 1/2 1/2 1/2 1 2 3 3 4 4 5 0.062
H 1/5 1/5 1/4 1/3 1/3 1/3 1/2 1 3 2 3 3 5 0.045
I 1/6 1/6 1/5 1/4 1/4 1/4 1/3 1/3 1 1 3 3 4 0.032
J 1/6 1/6 1/5 1/4 1/4 1/4 1/3 1/2 1 1 2 2 4 0.029
K 1/7 1/7 1/6 1/5 1/5 1/5 1/4 1/3 1/3 1/2 1 1 3 0.020
L 1/7 1/7 1/6 1/5 1/5 1/5 1/4 1/3 1/3 1/2 1 1 2 0.019
M 1/9 1/8 1/8 1/7 1/7 1/7 1/7 1/5 1/5 1/4 1/4 1/3 1 0.012

(A) surface waterbodies; (B) water points; (C) urban center; (D) schools; (E) hospitals; (F) LULC; (G) roads;
(H) elevation; (I) soil type; (J) lineament density; (K) slope; (L) drainage density; (M)-railways; and W13—relative
weights for 13 criteria.



ISPRS Int. J. Geo-Inf. 2020, 9, 737 12 of 21

Table 5. Optimal order weights (v j) for selected values of α parameter for n map layers.

Decision
Strategy

Space

Scenario 1
High

Level of
Risk, No
Tradeoff

Scenario 2
High Level

of Risk,
Some

Tradeoff

Scenario 3
High Level

of Risk,
Some

Tradeoff

Scenario 4
Average

Risk, Full
Tradeoff

Scenario 5
Low Level

of Risk,
Some

Tradeoff

Scenario 6
Low Level

of Risk,
Some

Tradeoff

Scenario 7
Low Level

of Risk,
No

Tradeoff

vj
α 0.0 0.1 0.3 0.5 0.7 0.9 1

v1 0 0.000322 0.019679 0.076923 0.187611 0.453682 1
v2 0 0.000589 0.023747 0.076923 0.155473 0.247934 0
v3 0 0.001078 0.028656 0.076923 0.12884 0.135495 0
v4 0 0.001973 0.03458 0.076923 0.106769 0.074047 0
v5 0 0.003609 0.041728 0.076923 0.088479 0.040466 0
v6 0 0.006605 0.050353 0.076923 0.073322 0.022115 0
v7 0 0.012085 0.060762 0.076923 0.060762 0.012085 0
v8 0 0.022115 0.073322 0.076923 0.050353 0.006605 0
v9 0 0.040466 0.088479 0.076923 0.041728 0.003609 0
v10 0 0.074047 0.106769 0.076923 0.03458 0.001973 0
v11 0 0.135495 0.12884 0.076923 0.028656 0.001078 0
v12 0 0.247934 0.155473 0.076923 0.023747 0.000589 0
v13 1 0.453682 0.187611 0.076923 0.019679 0.000322 0

Dispersion
(ω) 0 0.59083 0.91613 1.00000 0.91613 0.59083 0
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Figure 5. Alternative decision strategies for suitability of landfill sites (a) scenario 1, (b) scenario 3,
(c) scenario 4, (d) scenario 5, (e) scenario 6, (f) scenario 7.

After this, we selected a few potential landfill sites that fall under the most suitable regions.
The results were evaluated via Google earth map service system and ground survey method and found
to be reliable. All 12 potential site locations (in Figure 6) were found to be far away from the restricted
environments for landfill use. Furthermore, during the validation process, we also found out that the
most recent landfill site in the city (Chidaya landfill) also falls under the most suitable area class for
landfill sites in our final suitability map (Figure 6). Therefore, other areas marked as potential sites
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should be reserved for future landfill use as the city is expected to become one of the fastest-growing
cities because of the relocation of government seats and its activities to this place.
ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 12 of 21 

 

 

Figure 6. Final landfill suitability map for scenario 6 where α = 0.9. 

Table 4. A Pairwise comparison matrix. 

 A B C D E F G H I J K L M 𝑾𝟏𝟑 

A 1 1 2 3 3 3 4 5 6 6 7 7 9 0.192 

B 1 1 2 3 3 3 3 5 6 6 7 7 8 0.187 

C 1/2 1/2 1 2 2 2 3 4 5 5 6 6 8 0.133 

D 1/3 1/3 1/2 1 1 1 2 3 4 4 5 5 7 0.090 

E 1/3 1/3 1/2 1 1 1 2 3 4 4 5 5 7 0.090 

F 1/3 1/3 1/2 1 1 1 2 3 4 4 5 5 7 0.090 

G 1/4 1/3 1/3 1/2 1/2 1/2 1 2 3 3 4 4 5 0.062 

H 1/5 1/5 1/4 1/3 1/3 1/3 1/2 1 3 2 3 3 5 0.045 

I 1/6 1/6 1/5 1/4 1/4 1/4 1/3 1/3 1 1 3 3 4 0.032 

J 1/6 1/6 1/5 1/4 1/4 1/4 1/3 1/2 1 1 2 2 4 0.029 

K 1/7 1/7 1/6 1/5 1/5 1/5 1/4 1/3 1/3 1/2 1 1 3 0.020 

L 1/7 1/7 1/6 1/5 1/5 1/5 1/4 1/3 1/3 1/2 1 1 2 0.019 

M 1/9 1/8 1/8 1/7 1/7 1/7 1/7 1/5 1/5 1/4 1/4 1/3 1 0.012 

(A) surface waterbodies; (B) water points; (C) urban center; (D) schools; (E) hospitals; (F) LULC; (G) roads; (H) 

elevation; (I) soil type; (J) lineament density; (K) slope; (L) drainage density; (M)-railways; and 𝑊13—relative 

weights for 13 criteria. 

  

A current landfill 

site in Chidaya 
(a) 

(d) 

(c) (b) 

Figure 6. Final landfill suitability map for scenario 6 where α = 0.9.

5. Discussion

5.1. Modeling of Uncertainties

The vagueness of landfill constraint variables offers a possibility for the accommodation of
uncertainties in the decision criteria layers derived from the open data. The initial part of the model
applies fuzzy membership functions that define decision criteria’ suitability based on transition
boundaries. However, to suppress areas with high uncertainty than others, we further degrade
their membership values with weakening modifiers. Therefore, areas with high uncertainty
values (maximum fuzziness) have very low suitability values, hence excluding them from
subsequent considerations.

For example, in Figure 7c,f, we can observe a higher concentration of low membership values
towards lower boundary distribution of cell values resulting from the proposed method. Areas whose
cells have low membership values are areas with high uncertainty, which has resulted from a fuzzy
concentration modifier, which has weakened the fuzziness of regions closer to the narrower protection
zone. A similar case applies to schools, hospitals, railways, and water points. However, both weakening
and strengthening modifiers were used to prepare a road suitability map. That is why, in Figure 4h,
after a given distance, we observe a gradual decrease, not a sharp one, which is caused by somewhat a
hedge modifier or dilation operation. This modifier reinforces an area’s membership closer to the safe
and required range, regions with low or no uncertainties.
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Figure 7. Map standardization models: (a,d) Boolean logic; (b,e) graduated screening model;
(c,f) modified fuzzy membership model.

In comparison with previous standardization procedures, our proposed approach (Figure 7c,f)
outweighs the two classical models, namely Boolean logic (also known as pass/fail screening
method) and graduated screening procedure. Boolean logic is based on a crisp set that allows
only two-values {0,1}; it does not allow ranking. An area can only be considered either suitable or
not suitable [59]. While graduated screening attempts to overcome the ranking problem by introducing
multivalued suitability categories, it does not get away with the shortcomings associated with the
pass/fail screening approach. Graduated screening converts raw values of a given criterion layer into
discrete suitability classes, which replaces one clear-cut boundary (in Boolean logic) into multiple
clear-cut boundaries [34]. Both of these two methods assume clear-cut boundaries for geographical
phenomena, something which cannot be easily distinguished on many occasions, especially when
dealing with imprecision in data.

Fuzzy logic has better capabilities to handle imprecision and uncertainties involved in the suitability
evaluation of spatial phenomena [10,60,61]. It can represent the extent to which a geographical aspect
belongs to a given class with continuous partial membership values, which range from 0 to 1.
Another added advantage of the fuzzy approach is its flexibility, which allows further modification of
membership values. It can be observed in Figure 7f that there is a peak between 0 and 0.2, which is a
result of dilation operation, which weakens (decreases suitability) of an area closer to the uncertain
boundaries. In conclusion, the results suggest that the proposed fuzzy model is more efficient than the
Boolean and graduated screening model in map standardization procedures when modeling data with
ambiguity or vagueness or uncertainty.

To embrace the benefits of characteristics of the derived criterion layers based on our model,
we apply OWA aggregation operations to obtain a combined solution. In contrast, to many multi
criteria decision analysis (MCDA) methods, which offer a single solution [49,62], the OWA aggregation
rule gives a decision-maker control on risk-level and tradeoff among criteria via order weights in a
decision strategy space [34,41,43,48,63]. Hence, it allows us to determine the level of risk, which will
influence our final suitability results. A high-risk suitability map can be described as the one which
is prepared from less strict rules which allow compensation of high uncertainty values in one layer
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by low uncertainty values of another layer. However, a low-risk map is derived with more strict
aggregation strategies, which limits compensation of a fuzzier value in one layer with a better value of
another layer. A low-risk solution ensures that the final suitability map excludes most of the uncertain
areas and therefore avoids the risk of exposure for sensitive areas, which are more likely to be found
in fuzzier regions (areas with high uncertainty). Preventing the sensitive regions’ exposure is very
important, especially for the suitability assessment of undesirable facilities such as a landfill. Different
types of land-use applications may consider the results of higher risk.

5.2. Contribution of Open Government Data (OGD)

The ability to model the uncertainties on suitability layers derived from open datasets, including
the OGD, provides an opportunity to generate new and useful decision criteria from OGD that are not
readily available from other sources, especially in developing countries. In traditional approaches,
built-up areas in remote sensing images have been a well-known approach for population estimation.
However, the efficiency in capturing this phenomenon is dependent on imagery resolution, which is
limited in free satellite images [64]. Population census data are ideal for this task when the data are
spatially disaggregated to a household or individual level; however, in most countries like Tanzania,
these data are not publicly available for protection reasons [65]. The kind of census data that is made
public is aggregated for relatively large administrative units such as regions or districts [15]; we found
such data not helpful for spatial analysis on the micro-level. Selected population sensitive POIs such as
water points, hospitals, and schools, provide a convenient measure to improve mapping of population
distribution (Figure 8a–c).
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Figure 8. Comparison of landfill suitability maps (a) results without including OpenStreetMap (OSM)
and open government data (OGD) data (b) results including OSM (c) results including both OSM and
OGD for scenario 6 where α = 0.9.

Another contribution from OGD datasets is based on the richness of POIs attributes information,
which is useful for determining land-use constraints requirements. This kind of information is not
readily available in other data sources. For example, buildings detected from remotely sensed imagery
tell us less about these buildings’ functions or uses. Without this information, it is not possible to
enforce the required constraints. Using OGD POIs data, we can obtain such information and refine our
results by adding required restrictions to the given points based on their functions, such as schools,
hospitals, residential areas, or water source type. For example, water source data shows that about
80% of the water points are built on wells and boreholes. The local POIs data came in handy to enforce
distance restrictions to prevent contamination of underground water. Thus, the proposed datasets
do an excellent job of spatially distributing the suitability ranking indexes across the entire region,
but when we do not use these data, more sensitive areas will be left exposed and classified as suitable
(Figures 8a–c and 9).
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Figure 9. Comparison between landfill suitability maps with and without OGD data.

6. Conclusions

In this big data era, many open data initiatives (ODIs) have taken place and generate many free
data. However, each data source has its challenge that limits its use. Local open data such as OSM
and open government data (OGD) can assist in sustainable development by providing fine-grained
solutions for efficient land-use suitability evaluation. However, these data have some uncertainties
issues caused by smoothing and generalization procedures. We applied fuzzy logic theories to generate
flexible and useful suitability layers from this type of data. The proposed method is applicable for
preparing decision maps from open datasets that have undergone smoothing, generalization, or similar
procedures. The approach is more effective for modeling dataset imprecision than traditional Boolean
and graduated screening models.

Compared with other landfill suitability studies, this paper introduces OGD as a new data
source and has proved to be very useful for landfill suitability analysis. Apart from freely available
data like satellite images and DEMs, most of the remaining sources are not readily available or
have limited accessibility in developing countries. That is why without the incorporation of OGD
datasets, the overall suitability results in this region run a higher risk of leaving more sensitive areas
exposed. We can use OGD to create various useful decision criteria to improve the results of our
suitability analysis.

This study presents a systematic approach for integrating OGD, OSM, and other free remote
sensing products for suitability assessment. This work has used landfill suitability analysis as a case
study, but the approach is also applicable to other land-use suitability studies. We believe that this
work largely contributes to awareness and provides a stepping stone for other researchers to work with
such data. This work has focused more on handling uncertainties in open spatial data; future works
will address different sources of uncertainty for layers generated from remotely sensed images.

The open government data movement in Tanzania began in 2014. During this time, similar efforts
are observed in other developing countries in Africa, including Rwanda, Uganda, Malawi, Ghana,
and Kenya [66]. We hope that this research’s contribution brings awareness and stirs up more
publications in this area and encourages the Government and individuals to engage more in such
initiatives, thus increasing the sustainability of ODIs in these regions. Henceforth, researchers from
different countries are encouraged to adapt and replicate the approach developed in this research work
for similar studies to explore its generalizability.
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Appendix A

Table A1. Landfill constraints’ summary.

Criteria Suggested Applied (min, max) 1

Roads
500 m–1000 m [67]; less than 1 km [29];

50 m [68], 75 m (Chang et al. 2008),
100–500 m [69]

50 m, 1000 m

Railways 1500 m [70]; 300 m [71]; 500 m [66], 300 m, 1500 m

Waterbody 305 m [29]; minimum of 500 m [72]; 500 m to
1250 m [73]; 500 to about 2 km [67] 305 m, 2 km

Elevation Exclude low and high elevations [74,75] Exclude low and
high elevations

Soil type More preference for clay related soil [28,29] High preference for clay soil,
exclude high permeable soil

Slope
Allowed to 0 to 15 & exclude areas 15–50
degree [76]; terrains with an inclination of

over 30% [74]

Exclude high slope
values (15–51)

Drainage density 100 m from high drainage area [29]; far from
high drainage network area [69]

Exclude areas with high
drainage densities

LULC 150 m from residential [29]; exclude built-up,
water bodies, agricultural land [76]

Exclude built-up and water
bodies

Water supply points Explanation of water points (see Section 2.2.4) 200 m, 2 km
Schools about 300 m [77]; 500 m, 150 m [29]; 3000 m [69] 300 m, 3000 m

Hospitals about 300 m [77], 450 m [78]; 3000 m [70] 300 m, 3000 m

Lineament density at least 61 m [29]; 300 m [79]; exclude fault risk
regions [75]

Exclude regions with high
lineament densities

Urban centers At least 150 m [29]; at least 1000 m, up to
4000 m [79]; exclude 0–5 km [76]; 150 m, 5 km

Residential areas
150 m from residential [29]; 500 m to 2 km [67];

500 m from dwellings [72]; 500 m or 1.5 km
from settlements should be excluded [74]

150 m, 2 km

Underground
water resources

300 m [29]; minimum 200 m to more than
1.5 km [74]; 200 m, 1.5 km

1 Min and max refers to the minimum and maximum protection boundaries.
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