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Abstract: More than half of the world’s populations now live in rapidly expanding urban and its
surrounding areas. The consequences for Land Use/Land Cover (LULC) dynamics and Surface Urban
Heat Island (SUHI) phenomena are poorly understood for many new cities. We explore this issue and
their inter-relationship in the Kathmandu Valley, an area of roughly 694 km2, at decadal intervals using
April (summer) Landsat images of 1988, 1998, 2008, and 2018. LULC assessment was made using the
Support Vector Machine algorithm. In the Kathmandu Valley, most land is either natural vegetation
or agricultural land but in the study period there was a rapid expansion of impervious surfaces in
urban areas. Impervious surfaces (IL) grew by 113.44 km2 (16.34% of total area), natural vegetation
(VL) by 6.07 km2 (0.87% of total area), resulting in the loss of 118.29 km2 area from agricultural land
(17.03% of total area) during 1988–2018. At the same time, the average land surface temperature
(LST) increased by nearly 5–7 ◦C in the city and nearly 3–5 ◦C at the city boundary. For different
LULC classes, the highest mean LST increase during 1988–2018 was 7.11 ◦C for IL with the lowest
being 3.18 ◦C for VL although there were some fluctuations during this time period. While open
land only occupies a small proportion of the landscape, it usually had higher mean LST than all
other LULC classes. There was a negative relationship both between LST and Normal Difference
Vegetation Index (NDVI) and LST and Normal Difference Moisture Index (NDMI), respectively, and a
positive relationship between LST and Normal Difference Built-up Index (NDBI). The result of an
urban–rural gradient analysis showed there was sharp decrease of mean LST from the city center
outwards to about 15 kms because the NDVI also sharply increased, especially in 2008 and 2018,
which clearly shows a surface urban heat island effect. Further from the city center, around 20–25 kms,
mean LST increased due to increased agriculture activity. The population of Kathmandu Valley was
2.88 million in 2016 and if the growth trend continues then it is predicted to reach 3.85 million by
2035. Consequently, to avoid the critical effects of increasing SUHI in Kathmandu it is essential to
improve urban planning including the implementation of green city technologies.

Keywords: Land Use/Land Cover; NDBI; NDVI; NDMI; SUHI; urban–rural gradient; Kathmandu
Valley; Nepal

ISPRS Int. J. Geo-Inf. 2020, 9, 726; doi:10.3390/ijgi9120726 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-7143-4522
https://orcid.org/0000-0001-7480-4165
http://dx.doi.org/10.3390/ijgi9120726
http://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/9/12/726?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2020, 9, 726 2 of 29

1. Introduction

People increasingly prefer to live in urban and surrounding areas since these are perceived to
offer improved opportunities for employment, good healthcare, and higher level of education [1–3].
As a result, the global urban population has increased to 55% by 2018, and is predicted to increase
further to 68% by 2050 [4]. Such growth in the urban population has resulted in increased spread of
built up urban areas which have directly or indirectly altered the dynamics of land use/land cover
(LULC) at large scales [1,5,6]. Globally, land surface air temperature has increased by 1.53 ◦C and
the global mean surface (ocean and land) air temperature by 0.87 ◦C since the pre-industrial period
(1850–1900) [7]. The dramatic rise in urbanization has negative environmental consequences especially
increases in Surface Urban Heat Island (SUHI) effects which severely impact human health, air quality,
and climate change, all of which are major topics of global concern [8,9]. The observed higher land
surface temperatures (LST) over city centers compared to surrounding areas, the so-called SUHI, results
largely from the conversion of natural spaces into built-up areas with largely impervious surfaces [8].

Understand LULC has become increasingly important to help understand aspects of urban
dynamics such as geography, morphology, ecology, and sustainability, with the goals of strengthening
concepts of land use patterns, urban intensity, urban diversity, UHI phenomena, among other factors [9].
LULC of urban improvement and urban expansion have been explored widely in both developed
and developing nations with spatial expansion appearing to be more complicated in developing
nations [10]. Assessment of LULC in some cities has been particularly influential in aiding future
urban planning, transport network development, economic prosperity growth, policy development,
and environmental enhancement [10–12].

The surfaces of city landscapes have properties that lead to a wide variety of behaviors with respect
to phenomena such as electromagnetic radiation absorbance or evaporation, longwave radiation,
and prevailing winds, resulting in increased heat discharge [13]. The physical surface of a city comprises
different materials such as asphalts, gravels, and stones as well as other building material surfaces,
which enhance the sensitivity and lower evapotranspiration in the city with consequent effects on city
climate [14,15]. This leads to higher absorption of sun radiation, higher retention of infrared radiation
in street canyons, higher uptake, and delayed release of heat from buildings, higher proportion of
absorbed sun radiation than latent heat forms, and higher release of latent heat from combustion fuels
for industrial processing, urban transport, and domestic space heating [16]. As a result, core urban
spaces experience warmer weather than their surrounding areas, which leads to the creation of SUHI.
This SUHI phenomenon drastically transforms the local climate with adverse effects on plants as well
as animals including humans [10,17]. SUHI has rapidly increased due to the large-scale increase in
areas of impervious surfaces in the process of urbanization [18,19]. As a result, SUHI is of increasing
concern for urban planners, health authorities, urban investors, policy makers, ecologists, and others
due to its adverse effects on various aspects of the environment such as rainfall, temperature, air quality,
energy balance, and carbon storage [20,21].

To help mitigate the effects of SUHI, the spatial dynamics of city landscapes need to be assessed [13].
Plans for improving cities should include improved design of building structures, including the use
of environmentally friendly materials to minimize thermal energy storage, excessive impermeability,
and solar radiance absorbance. Developing sound mitigation strategies will help ‘green’ cities,
such as improving the energy balance through the use of cool and green roofs, increased urban tree
plantings, and the development of gardens [22]. To aid the development of these strategies there
is a need for spatial quantification of LULC and SUHI dynamics using Remote Sensing since these
tools provide cost-effective and reliable data [23–27]. Elsewhere, assessment of LULC dynamics has
provided land–resource information which has aided sustainable development [28–31]. Recently,
the SUHI phenomena [32,33], the interrelationship between LST vs. Normal Difference Vegetation
Index (NDVI) [34–36], LST vs. Normal Difference Built-up Index (NDBI) [37,38] and LST vs. Normal
Difference Moisture Index (NDMI) [39] have been assessed in several city landscapes using Pearson’s
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correlation coefficients [40,41]. These studies confirm that impervious areas increase SUHI and
increasing vegetation reduces this effect.

Studies of the growing urban history of Kathmandu in Nepal date back to the late 1950s [42,43] and
showed that urban areas have expanded rapidly since this time. While the processes of urbanization
and LULC change in Kathmandu has been previously explored [43–47], the role of LULC in LST
intensification is not understood. Here we address this knowledge gap assessing the spatiotemporal
dynamics of LULC and their influence on LST intensification, creation of SUHI, and the relationship of
NDVI and NDBI with LST using Pearson’s correlation coefficient. We specifically examine these issues
in the geopolitical area of Kathmandu Valley, which includes the districts of Bhaktapur, Kathmandu,
and Lalitpur [42]. We used Landsat datasets (1988–2018) at decadal intervals selecting dry, summer
season (April) data [48]. This study area was selected because of its location in the Himalayas,
its heterogeneous physiographic diversity, and because it is one of the most rapidly expanding cities in
South Asia [43,45]. Considerable LULC change has taken place as urban areas have expanded from
the city center altering the dynamics of land–resource prospects and this analysis is essential for future
sustainable development in the Kathmandu Valley.

We explore the following: (a) the spatiotemporal dynamics of LULC and their influence on
intensification of SUHI for the Kathmandu Valley; (b) for each distinct LULC class we assess the mean
LST along with their influence on the city landscape; (c) the relationship between LST and indicators of
LULC (NDBI, NDVI, and NDMI) to aid assessment of the relative importance of impervious space and
vegetation space with respect to LST in the Kathmandu Valley; and d) LST, NDVI, and NDBI on an
urban–rural gradient from the city center to the urban periphery.

2. Materials and Methods

2.1. Study Area

Kathmandu Valley is situated in central Nepal and comprises 694.27 km2, which includes three
government districts: Bhaktapur, Lalitpur, and Kathmandu [47], and is located between 27◦31′ to
27◦50′ North, and between 85◦11′ to 85◦34′ East in the Himalaya mountains (Figure 1). It had a
population of 1.11 million in 1991 which more than doubled to 2.52 million by 2016 [49]. Elevation
ranges from 837 m to 2723 m, with the central part of the valley ranging from 1200 m to 1500 m.
It has a dry-winter humid subtropical climate (Cwa) [50]. The valley has been created by the Bagmati
River [43] which flows from north-east to south-west. Mean annual temperature and precipitation are
18.1 ◦C and 1407 mm, respectively [47].
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Figure 1. Location of the study area; (a) Nepal; (b) District boundaries of Nepal dated 2018; (c) 
Kathmandu Valley and its three districts of Bhaktapur, Kathmandu, and Lalitpur; (d) elevation of the 
study area (source: Global Digital Elevation Model data of ASTER of 2011. 

2.2. Data 

For our study, LULC data were based on images for individual days in April (early summer) at 
decadal intervals using Landsat TM and Landsat 8 OLI/TIRS at four different time-points (1988, 1998, 
2008, 2018) which were retrieved from the USGS website (https://earthexplorer.usgs.gov) (Table 1). 
These data were also used to create LST based on their thermal bands (Band-6 of Landsat 5-TM, and 
Band-10 of Landsat 8-TIRS) and NDVI, NDBI, and NDMI based on optical and near-infrared bands 
(Band-3, 4, and 5 of Landsat 5-TM, and Band-4, 5, and 6 of Landsat 8-OLI), respectively. For the 
validation of weather conditions, we have explored NASA’s POWER project data on selected sample 
location for our study area and we have found that weather conditions of our selected time points 
are satisfactory (please refer to supplementary excel file). 

Topographical data at the scale of 1:25,000 [51] and Google Earth images of the study area also 
were used. To overcome the atmospheric error in satellite images, they were pre-processed, including 
atmospheric and radiometric correction. Decadal intervals were chosen to determine growth in urban 
expansion and its influence in the transformation of LST, as it has been suggested as an optimal time 
period to measure LULC change, as well as SUHI development [10]. The Global Digital Elevation 
Model (GDEM) of ASTER was used to depict the topography of Kathmandu valley and to help 
understand its physiographic dynamics. We recognize the fact that just selecting single days to 
represent a decadal point in time does not address the problem of variation in LST between days or 
even between years but we consider our data to be a starting point for further analysis that may later 
address such issues.  
  

Figure 1. Location of the study area; (a) Nepal; (b) District boundaries of Nepal dated 2018;
(c) Kathmandu Valley and its three districts of Bhaktapur, Kathmandu, and Lalitpur; (d) elevation of
the study area (source: Global Digital Elevation Model data of ASTER of 2011).

2.2. Data

For our study, LULC data were based on images for individual days in April (early summer) at
decadal intervals using Landsat TM and Landsat 8 OLI/TIRS at four different time-points (1988, 1998,
2008, 2018) which were retrieved from the USGS website (https://earthexplorer.usgs.gov) (Table 1).
These data were also used to create LST based on their thermal bands (Band-6 of Landsat 5-TM,
and Band-10 of Landsat 8-TIRS) and NDVI, NDBI, and NDMI based on optical and near-infrared
bands (Band-3, 4, and 5 of Landsat 5-TM, and Band-4, 5, and 6 of Landsat 8-OLI), respectively. For the
validation of weather conditions, we have explored NASA’s POWER project data on selected sample
location for our study area and we have found that weather conditions of our selected time points are
satisfactory (please refer to supplementary excel file).

Topographical data at the scale of 1:25,000 [51] and Google Earth images of the study area also
were used. To overcome the atmospheric error in satellite images, they were pre-processed, including
atmospheric and radiometric correction. Decadal intervals were chosen to determine growth in urban
expansion and its influence in the transformation of LST, as it has been suggested as an optimal time
period to measure LULC change, as well as SUHI development [10]. The Global Digital Elevation Model
(GDEM) of ASTER was used to depict the topography of Kathmandu valley and to help understand its
physiographic dynamics. We recognize the fact that just selecting single days to represent a decadal
point in time does not address the problem of variation in LST between days or even between years
but we consider our data to be a starting point for further analysis that may later address such issues.

https://earthexplorer.usgs.gov
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Table 1. Description of the Landsat datasets used for the study area, Kathmandu Valley.

Sensor Path/Row Resolution Acquisition
Date

Time
(GMT)

Constants of
Thermal Conversion Source

K1 K2

Landsat-5
TM 141/41

30 m

3 April 1988 04:18:24 607.76
(Band 6)

1260.56
(Band 6)

United States
Geological

Survey (USGS)
web portal

(https:
//earthexplorer.

usgs.gov/)

15 April 1998 04:25:19 607.76
(Band 6)

1260.56
(Band 6)

26 April 2008 04:37:22 607.76
(Band 6)

1260.56
(Band 6)

Landsat-8
OLI/TIRS 22 April 2018 04:47:35 774.8853

(Band 10)
1321.0789
(Band 10)

ASTER - 17 October 2011 - - -

2.3. Retrieval of LULC

We used freely available terrain corrected Landsat (Level 1T) datasets with best cloud-free data
(less than 10% cloud cover) of UTM zone 45N. Our area of interest (AOI) had zero numbers of spiked
digital numbers (DN) due to the availability of cloud free imageries and hence, we did not need
to do masking and exclusion for correction of co-registration, cloud, cloud shadow, and gap-filling.
Radiometric and geometric corrections are part of the pre-processing function of satellite images.
In this study, we used ENVI software to carry out the atmospheric image correction process. Following
this the DN values of images were converted into radiance values. All images were further verified for
their accuracy and the root mean square (RMS) of the geometric rectification of less than 15 m (0.5)
pixels was accepted. The Flash Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH)
model was used for atmospheric correction and LULC data were extracted using ENVI software [12,46].

There are multiple image classification algorithms, such as support vector machine (SVM),
maximum likelihood classifier (MLC), and decision tree (DT) [52]. In this study we chose to use SVM
for the classification of images as it is flexible, uses a non-parametric approach and is widely used for
the extraction of LULC data bases [53]. Further, according to some authors, SVM has a higher level
of accuracy than MLC [54]. Similarly, others have shown SVM performed better in the assessment
of land cover changes and urban development than MLC and DT [55]. SVM can be grouped into
four kernels function, such as linear, polynomial, radial function, and sigmoid [56]. The Radial Basic
Function kernel was used at the time of extraction of different LULC classes as it usually provides
better results than other machine learning [57]. Detailed field visits were conducted to ground-proof
our analyses and five main LULC classes were identified based on the Anderson Classification Scheme
at Level-I [58]: Impervious land (IL), Agriculture land (AL), Vegetation Land (VL), Open Land (BL),
and Water Body (WB) (Table 1).

Accuracy assessment is essential for land cover data developed from remote sensing
technology [59,60]. Overall accuracy (OA), User’s accuracy (UA), and producer’s accuracy (PA)
assessment were assessed based on the field reference information. A topographical map of the study
area for the scale of 1:25000 was used as developed by the Survey Department of Nepal in 1995 [51].
Similarly, Google Earth images for multiple dates were used in the assessment. OA represents what
proportion of references sites were mapped correctly whereas UA is defined as the accuracy from
the knowledge of a map user, not the map maker. PA is defined as the accuracy of a map from the
knowledge of the map maker (the producer) [60].

Accuracy assessment reports were generated for each class of LULC using 200 stratified random
samples points (total 1000 random points) and an error matrix for each time point was created to allow
accuracy assessments [61]. UA, PA, OA, and Kappa coefficients were calculated based on the error
matrix for each time point (1988–2018).UA, PA, OA, and Kappa coefficients were calculated based on

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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error matrix of respective time points (1988–2018). To optimize classification accuracy: User, Producer,
Overall accuracy, and Kappa coefficients were estimated using Equations (1)–(4) [10,61].

User Accuracy =

{ ∑
∈∑

ϑ(ω)
× 100

}
(1)

Producer Accuracy =

{ ∑
∈∑

ϑ(ϕ)
× 100

}
(2)

Overall Accuracy =

{ ∑
β∑
γ
× 100

}
(3)

Kappa Coe f f icients =
N

∑r
i=1 Xii −

∑r
i=1(Xi+ ×X+i)

N2 −
∑r

i=1(Xi+ ×X+i)
(4)

where, ∈ defines corrected classified pixels (CCP) (category); ϑ(ω) defines classified pixels (CP) in
that category (row total (RT)); ϑ(ϕ) defines CP in that category (column total (CT)); β defines CCP
(diagonal); γ defines classified reference pixels in that category; N defines total samples; r defines
number of rows error matrix (EM); Xii defines total corrected samples in ith row and column:; X+i
defines RT: Xi+ defines CT.

2.4. Land Surface Temperature (LST) Retrieval

2.4.1. Land Surface Emissivity

Land surface emissivity (LSE) is an important parameter to calculate LST [62,63]. NDVI threshold
(NDVITHR) method was used to calculate LSE because it can differentiate pixels of vegetation, water,
and soil significantly [64]. It was calculated using Equation (5).

εsv = εvPV + εs(1− PV) + C (5)

where, εsv is emissivity of soil and vegetation; εv is emissivity of vegetation; εs is emissivity of soil; PV

is proportion of vegetation (using Equation (6)); C is defining constant for surface characteristics (using
Equation (7)).

PV=
[ NDVI −NDVIs

NDVIv −NDVIs

]2
(6)

where, NDVI is estimated using Equation (19) in Section 2.5; NDVIs is NDVI of pure soil; NDVIv is
NDVI of pure vegetation.

C = (1− εs)εvF(1− PV) (7)

where, F is geometric factor (it depends on surface geometry, commonly considered as 0.55 [64,65]).
Skokovic et al. [66], Sorbino et al. [64], Sekertekin and Bonafoni [65] calculated LSE using NDVITHR

values considering three distinct cases shown in Equation (8). The first case had NDVI values < 0.2,
for bare soils; the second case had NDVI values, 0.2 ≤ NDVI ≥ 0.5 for mixed bare soils and vegetation;
and the third case had NDVI values > 0.5 for fully vegetated areas.

ε =


aiρR + bi

εv + εs(1− PV) + C
εv + C

(8)

where, ε is LSE; ρR is the reflectance value of the red band, ai and bi are calculated using the empirical
relationship for reflectance of red band and Moderate Resolution Imaging Spectroradiometer (MODIS)
emissivity library [66].
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We used the defined constant values of ε from Sekertekin and Bonafoni [65] for Landsat 5 (TM)
and Landsat 8 (OLI/TIRS) in given Equation (9) and Equation (10), respectively.

ε =


0.979 + 0.035ρR → NDVI < 0.2

0.004PV + 0.986ρR → 0.2 ≤ NDVI ≥ 0.5
0.99 → NDVI > 0.5

(9)

ε =


0.979 + 0.046ρR → NDVI < 0.2

0.989PV + 0.977ρR → 0.2 ≤ NDVI ≥ 0.5
0.987 + C → NDVI > 0.5

(10)

2.4.2. LST

To estimate LST, we used the Radiative Transfer Equation (RTE) method [65] as follows:

Bi(Ti) =
Lmax − Lmin

QCALmax −QCALmin
× (QCAL−QCALmin) − Lmin (11)

where, Bi(Ti) is the spectral radiance of the top of atmosphere (TOA) (watts/(m2
× sr × µm)), QCAL is

DN, QCALmin and QCALmax defines the minimum and maximum DN values of the images, respectively;
Lmin and Lmax are spectral radiance of TIR band at QCALmin and QCALmax respectively: these rescaling
factor values can be found in the metadata of Landsat images. Equation (11) was used for Landsat 5
(TM) for Band-6.

Bi(Ti) = ML ×Qcal + AL (12)

where, ML is a multiplicative rescaling factor in the specific band from the metadata, Qcal is the
quantized and calibrated DN values of standard product, and AL is additive rescaling factor in the
specific band from the metadata. Equation (12) was used for Landsat 8 (OLI/TIRS) for Band-10.

We incorporated the RTE method for estimating LST as in Equation (13).

Bi(Ti) =
[
εBλ(Ts) + (1− ε)L↓d

]
τ+ L↑u (13)

where, Bi(Ti) is the spectral radiance of the top of atmosphere (TOA) (watts/(m2
× sr× µm)) for band i in

which have Ti i.e., at-satellite brightness temperature; τ is atmospheric transmittance; L↓d is downwelling

radiance; L↑u is upwelling radiance; Ts is LST; ε is emissivity of band i. We obtained atmospheric values
such as τ L↓d,and L↑u using an online calculator tool, called, ‘Atmospheric Correction Parameter Calculator
(ACPC)’ based on the given radiative transfer code of MODTRAN (http://atmcorr.gsfc.nasa.gov). Bλ is
Blackbody radiance at a temperature of Ts as calculated in Equation (14) using the inversion of
Equation (13).

Bλ(Ts) =
Bi(Ti) − L↑u − τ(1− ε)L

↓

d
τε

(14)

Ts in Kelvin was calculated using Equation (15):

Ts =
K2

ln

 K1

Bi(Ti)−L↑u−τ(1−ε)L
↓

d
τε

+ 1


(15)

where, K1 and K2 were obtained from metadata file of respective time point images mentioned in Table 1.

http://atmcorr.gsfc.nasa.gov
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2.4.3. LST Calculation (before Year 2000)

Because of the limitation of Atmospheric parameters values before the year 2000 in ACPC, we used
a conventional method to extract LST values for Landsat 5 (TM) before the year 2000 only. Brightness
temperature at sensor value was estimated using Equation (16) [10,13,32,41,67]:

BiTb =

 K2

ln
( K1

BiTi
+ 1

)  (16)

where, BiTb is brightness temperature (At sensor) in Kelvin; K1 and K2 are the thermal conversion
constants from the metadata (Landsat 5 TM (Band 6), and Landsat 8 OLI (Band 10)) (Table 1).

Using Equation (17), the derived LST (in Kelvin (K)) through correction of emissivity was assessed
from the brightness temperature [10,32,41]:

Ts =
[

BiTb/1 + w
(

BiTb
p

)
ln(ε)

]
(17)

where, Ts is temperature (At sensor) in Kelvin; w is wavelength of emitted radiance (10.8 µm for Band
10 in Landsat 8 OLI and 11.5 µm for Band 6 in Landsat 5 TM); p = h × c/s

(
1.438× 10−2mK

)
, h is

Plank’s constant (6.626× 10−34Js), s is the Boltzmann Constant (1.38× 10−23J/K), and c is the velocity
of light (2.988× 108m/s); ε is LSE.

Finally, we converted the Ts (LST (Kelvin)) value into Celsius (◦C) using Equation (18) [10,13,32]:

LST(◦C) = Ts − 273.15 (18)

2.5. NDVI

An important indicator of urban climate is the Normal Difference Vegetation Index (NDVI) [10,68].
It varies between −1 and +1, where large negative (and adjacent to negative) values, positive values,
and low positive values indicate water bodies, vegetation, built-up areas, or bare soils, respectively [10].
It describes information about the amount of vegetation, and its phenology and health [38]. NDVI was
estimated using Equation (19) using data from the red and near infrared (NIR) bands [19,20]:

NDVI =
[

NIRBand −RedBand
NIRBand + RedBand

]
(19)

where, in Landsat 5 TM: NIR band denotes Band 4 (0.76–0.90 µm (wavelength)) and Red band denotes
Band 3 (0.63–0.69 µm (wavelength)); while in Landsat 8 OLI: NIR band denotes Band 5 (0.85–0.88 µm
(wavelength)) and Red band denotes Band 4 (0.64–0.67 µm (wavelength)).

2.6. NDBI

Another important urban climate indicator is the Normal Difference Built-up Index (NDBI) [10,68].
It varies from −1 to +1, where negative values specify water bodies and vegetation, positive value
indicates the built-up area, and low positive value specifies types of bare soils [48]. It represents
information about the imperviousness of the landscape [38] and was estimated using Equation (20)
with NIR band and mid infrared (MIR) [19,20]:

NDBI =
[

MIRBand −NIRBand
MIRBand + NIRBand

]
(20)

where, in Landsat 5 TM: MIR band denotes Band 5 (1.55–1.75 µm (wavelength)) and NIR band denotes
Band 4 (0.76–0.90 µm (wavelength)); while in Landsat 8 OLI: MIR band denotes Band 6 (1.57–1.65 µm
(wavelength)) and NIR band denotes Band 5 (0.85–0.88 µm (wavelength)).
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2.7. NDMI

Another significant urban climate indicator is the Normal Difference Moisture Index (NDMI) [39].
It also varies from −1 to +1, where a positive value specifies water bodies and vegetation and a
negative value indicates built-up areas and bare soils. It signifies information about the moisture in the
landscape and was estimated using Equation (21) with NIR band and mid infrared (MIR) [39]:

NDMI =
[

NIRBand −MIRBand
NIRBand + MIRBand

]
(21)

where, in Landsat 5 TM: MIR band denotes Band 5 (1.55–1.75 µm (wavelength)) and NIR band denotes
Band 4 (0.76–0.90 µm (wavelength)); while in Landsat 8 OLI: MIR band denotes Band 6 (1.57–1.65 µm
(wavelength)) and NIR band denotes Band 5 (0.85–0.88 µm (wavelength)).

2.8. Analysis of Urban–Rural Gradient

The gradient approach is frequently used to evaluate spatiotemporal differences in the
environment [10,48]. Here we used it to assess the spatial dynamics of mean LST, NDBI, and NDVI
at 1 km intervals from the center of the city to the periphery/suburban/rural area of the city up to a
maximum of 26 km (see Figure 1d for the transect of 1 km of buffers up to 26 km) [10].

2.9. Statistical Analysis (Pearson’s Correlation Coefficient)

To visualize the effects of the environmental variables (NDVI/NDBI/NDMI) on LST intensification,
scatter plots were made for all time-points, (1988, 1998, 2008, and 2018) using linear regression. LST,
NDBI, NDVI, and NDMI pixels were transformed into point data [10,68]. Pearson’s correlation
coefficient (‘r’) was used to measure the relationship among LST v/s NDVI, LST v/s NDBI, and LST
v/s NDMI, where LST was the dependent variable, and NDVI/NDBI/NDMI were the independent
variables. Pearson’s ‘r’ was calculated through Equation (22):

r =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2

√∑n
i=1(yi − y)2

(22)

where, r is Pearson’s correlation coefficients, x represents NDVI/NDBI/NDMI measuring value of xi, y
represents LST measuring value of yi. xi and yi are single sample indexed with i. x and y defining the
single samples indexed of xi and yi, respectively.

3. Results

3.1. Accuracy Assessment of LULC Classification

LULC classification has been performed by SVM method. Accuracy assessments has been done
by random sampling method by 200 sample points for each LULC classes and then error matrix has
been made for each time points (i.e., 1998, 1998, 2008, and 2018). User and producer accuracy were
greater than 80%, an overall accuracy was greater than 90%. Kappa coefficients were 0.90 in 1988, 0.92
in 1998, 0.94 in 2008, and 0.96 in 2018 (Appendix A Table A1).

3.2. LULC Analysis

Spatiotemporal analyses of LULC of Kathmandu Valley (Figures 2 and 3) showed that AL, VL,
and IL were the major land use classes between 1988 and 2018, and that there was large increase in IL
almost entirely at the expense of AL. Over this period, IL expanded by 113.44 km2 (16.34% of total
area) whereas AL reduced by 118.29 km2 (17.03% of total area). Small changes in land were observed
for OL and WB. Summaries of changes in LULC for each class are provided in Table A2, and gains and
losses for each class in Table A3 and Figure A1). A small increase was observed for VL class during
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1988–2018, increasing from 230.69 km2 in 1988 to 236.76 km2 in 2018 with a total conversion of 6.07 km2

(0.87% of total area) from other LULC classes.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 10 of 29 
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3.3. LST Analysis

Mean LST (Table 2) increased from 23.08 ◦C in 1988 to 28.36 ◦C in 2008 and remained at that level
in 2018. The spatial dynamics of changes over time in LST for the Kathmandu Valley are shown in
Figure 4. The greatest transformation in LST between 1988 and 2018 was in the central, southern,
and top north-eastern parts of the valley due to the massive intensification in LST of AL and IL, whereas
the lowest LST was observed at the top of the northern, south-western (most bottom), and western
margins of the valley because of the vast VL presence (see Figure 2). In 1988, LST values for the
suburban/rural areas in Kathmandu Valley such as Katunje, Bhaktapur city, Gapali, Liwali (eastern
side of the valley), Chandragiri (western side of the valley) (Figures 2 and 4), and Godavari (southern
side of the valley) were in the range of 15–25 ◦C, whereas in the center of the valley, Kathmandu City,
LST was 20–28 ◦C (Figure 4), giving a difference of 3–13 ◦C between suburban/rural areas and urban
areas (Figure 4). In 1998, a difference of 5–15 ◦C LST was experienced across the city area, with urban
areas experiencing LST values of 23–33 ◦C, some 18–23 ◦C higher than that of suburban/rural areas.
In 2008, a difference of approximately 7–10 ◦C LST was experienced with LST in the range of 25–40 ◦C
for urban areas, indicating a difference of 18–30 ◦C (Figure 4). In 2018, the city center observed a
range of 25–39 ◦C, some 7–9 ◦C higher than that of the suburban/rural area (range of 18–30 ◦C), largely
because Bhaktapur and Chandragiri had developed into dense urban areas (Figure 2).

Table 2. Maximum, minimum, and mean LST (◦C) values in Kathmandu (1988–2018).

Date Minimum (◦C) Maximum (◦C) Mean (◦C) Standard Deviation

3 April 1988 11.88 35.25 23.08 3.09
15 April 1998 17.93 39.15 25.46 3.20
26 April 2008 17.47 40.30 28.86 3.31
22 April 2018 16.96 39.46 28.35 3.40

The Mean LST difference in different time periods (◦C)

1988–1998 1998–2008 2008–2018 1988–2018

2.38 3.4 −0.51 5.27
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Figure 4. Spatial distribution of LST (◦C) for Kathmandu in (a) 1988; (b) 1998; (c) 2008; (d) 2018. In 4 (a)
the three points indicate rural/suburban areas used for the analysis of Surface Urban Heat Island (SUHI)
(see Figure 2). Square box transect over all LST (◦C) maps (a–d) is to show the effects of agricultural
land on LST dynamics.

3.4. LULC Differences in LST

The greatest changes in LST were observed for IL (Table 3). Mean LST for IL increased from
23.8 ◦C in 1988 to 23.6 ◦C in 1998 and again to 31.0 ◦C in 2008 and to 30.9 ◦C in 2018, indicating a
mean increase of 7.11 ◦C of over the whole time period but noting this increase was not even over the
time period (Table 3 and Figure 5). Similar, but slightly lower results were observed for AL, (23.7 ◦C,
30.4 ◦C, 23.8 ◦C, and 29.7 ◦C for the same time periods showing an overall increase of 6.0 ◦C (Table 3
and Figure 5). Changes for VL over the whole time period of 3.2 ◦C was much less than that for other
classes, as it was 21.8 ◦C in 1988, 22.0 ◦C in 1998, 25.7 ◦C in 2008, 25.0 ◦C in 2018 (Table 3 and Figure 5).
For OL and WB classes the overall change was an increase of 5.5 ◦C and 4.2 ◦C, respectively (details in
Table 3).
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Table 3. Mean LST for different of LULC classes in Kathmandu Valley during 1988–2018.

LULC Class
Mean LST (◦C) The Difference of Mean LST (◦C)

1988 1998 2008 2018 1988–1998 1998–2008 2008–2018 1988–2018

Impervious Land 23.81 23.63 30.97 30.92 −0.18 7.34 −0.05 7.11
Agriculture Land 23.69 23.80 30.38 29.67 0.11 6.58 −0.71 5.98
Vegetation Land 21.80 22.03 25.65 24.98 0.23 3.62 −0.67 3.18

Open Land 24.89 23.89 31.22 30.36 −1 7.33 −0.86 5.47
Water Body 22.62 22.46 27.55 26.81 −0.16 5.09 −0.74 4.19
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Figure 5. Spatial distribution of mean LST (◦C) for different LULC classes at all time-points, (a) mean
LST; (b) difference in mean LST.

Mean LST for IL was greater than that for VL by 2.1–5.9 ◦C and for WB by 1.2–3.4 ◦C at all
time-points (Figure 6 and Table A4). However, mean LST was lower for IL than OL by 0.3–1.1 ◦C
(except in 2018, where IL had a higher mean LST than OL by 0.6 ◦C). IL had a greater LST mean than
AL of 0.1–1.3 ◦C at all consecutive time-points (except in 1998 see Table A4). It is evident that mean
LST for VL is lower than that for all other classes of LULC on all dates. Similarly, it was evident that IL
had higher mean LST than VL and WB because of the presence of the vegetation and water surface,
respectively [13,69].



ISPRS Int. J. Geo-Inf. 2020, 9, 726 14 of 29
ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 14 of 29 

 

 
Figure 6. Differences in mean LST between LULC classes in Kathmandu Valley (1988–2018), (a) 
Impervious Land vs other LULC classes; (b) Vegetation Land vs other LULC classes; (c) Water Body 
(WB) vs other LULC classes. 

3.5. Spatiotemporal NDVI, NDBI, and NDMI Patterns and Their Influence on LST 

NDVI mean was 0.37 in 1988, increasing to 0.38 in 1998, declining to 0.36 in 2008, but increasing 
again to 0.43 in 2018 (Table 4). The raised mean NDVI in 2018 was most likely due to the expansion 
of vegetation (trees and grasses) on the northern side (where Shivpuri Nagarjun National Park is 
located over part of Budhanilakantha, Gokarneshwor, Tokha, and Shankharapur), the western side 
(Nagarjun Forest Reserve), the southern side (Godavari Forest), the north-eastern side (open forest 
which has increased in Shankharapura and Changunarayan), and the south-western side (open 
forested areas increasing over Dakshinkali, Kirtipur, and Chandragiri). Consequently, the highest 
NDVI was observed in the same northern, southern, and western sides of the Valley for each date 
due to the presence of dense vegetation in national parks and forest reserves. However, by 2018 the 
area of vegetation also had increased in the central part of the valley in areas such as Gaucharan, 
Pashupatinath, Bhandarkhal Jungle, Panipokhari, Samakhusi, and Amideva Budha Park. The lowest 
NDVI was in some central and eastern parts of the Valley, perhaps due to the large areas of AL (bare 
land type) and IL, respectively (Figure 7). 

Table 4. Statistics of Land Indices and their correlation with LST. 

Date 
Statistics of NDVI and NDBI Correlation with LST 

 Minimum Maximum Mean 
Standard 
Deviation 

Correlation 
Coefficient 

Significance 
(p) 

3 April 
1988 

NDVI −0.073 0.704 0.365 0.111 −0.6665 p < 0.001 
NDBI −0.549 0.313 −0.017 0.136 0.7780 p < 0.001 
NDMI −0.313 0.549 0.017 0.136 −0.7780 p < 0.001 

15 April 
1998 

NDVI −0.074 0.704 0.367 0.111 −0.6527 p < 0.001 
NDBI −0.671 0.416 −0.095 0.144 0.7783 p < 0.001 
NDMI −0.416 0.671 0.095 0.144 −0.7783 p < 0.001 

26 April 
2008 

NDVI −0.042 0.725 0.356 0.135 −0.7678 p < 0.001 
NDBI −0.549 0.318 −0.058 0.141 0.8414 p < 0.001 
NDMI −0.318 0.549 0.058 0.141 −0.8414 p < 0.001 

22 April 
2018 

NDVI −0.025 0.787 0.430 0.168 −0.8045 p < 0.001 
NDBI −0.519 0.378 −0.106 0.150 0.8264 p < 0.001 
NDMI −0.378 0.519 0.106 0.150 −0.8264 p < 0.001 

Figure 6. Differences in mean LST between LULC classes in Kathmandu Valley (1988–2018),
(a) Impervious Land vs. other LULC classes; (b) Vegetation Land vs. other LULC classes; (c)
Water Body (WB) vs. other LULC classes.

3.5. Spatiotemporal NDVI, NDBI, and NDMI Patterns and Their Influence on LST

NDVI mean was 0.37 in 1988, increasing to 0.38 in 1998, declining to 0.36 in 2008, but increasing
again to 0.43 in 2018 (Table 4). The raised mean NDVI in 2018 was most likely due to the expansion of
vegetation (trees and grasses) on the northern side (where Shivpuri Nagarjun National Park is located
over part of Budhanilakantha, Gokarneshwor, Tokha, and Shankharapur), the western side (Nagarjun
Forest Reserve), the southern side (Godavari Forest), the north-eastern side (open forest which has
increased in Shankharapura and Changunarayan), and the south-western side (open forested areas
increasing over Dakshinkali, Kirtipur, and Chandragiri). Consequently, the highest NDVI was observed
in the same northern, southern, and western sides of the Valley for each date due to the presence of
dense vegetation in national parks and forest reserves. However, by 2018 the area of vegetation also
had increased in the central part of the valley in areas such as Gaucharan, Pashupatinath, Bhandarkhal
Jungle, Panipokhari, Samakhusi, and Amideva Budha Park. The lowest NDVI was in some central and
eastern parts of the Valley, perhaps due to the large areas of AL (bare land type) and IL, respectively
(Figure 7).

Table 4. Statistics of Land Indices and their correlation with LST.

Date
Statistics of NDVI and NDBI Correlation with LST

Minimum Maximum Mean Standard
Deviation

Correlation
Coefficient

Significance
(p)

3 April 1988
NDVI −0.073 0.704 0.365 0.111 −0.6665 p < 0.001
NDBI −0.549 0.313 −0.017 0.136 0.7780 p < 0.001
NDMI −0.313 0.549 0.017 0.136 −0.7780 p < 0.001

15 April 1998
NDVI −0.074 0.704 0.367 0.111 −0.6527 p < 0.001
NDBI −0.671 0.416 −0.095 0.144 0.7783 p < 0.001
NDMI −0.416 0.671 0.095 0.144 −0.7783 p < 0.001

26 April 2008
NDVI −0.042 0.725 0.356 0.135 −0.7678 p < 0.001
NDBI −0.549 0.318 −0.058 0.141 0.8414 p < 0.001
NDMI −0.318 0.549 0.058 0.141 −0.8414 p < 0.001

22 April 2018
NDVI −0.025 0.787 0.430 0.168 −0.8045 p < 0.001
NDBI −0.519 0.378 −0.106 0.150 0.8264 p < 0.001
NDMI −0.378 0.519 0.106 0.150 −0.8264 p < 0.001
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Figure 7. Spatial distribution of Normal Difference Vegetation Index (NDVI) for Kathmandu during,
(a) 1988; (b) 1998; (c) 2008; (d) 2018.

The correlations between LST and NDVI were significantly negative for all time points (p < 0.001),
declining from −0.67 in 1988, to −0.80 in 2018, but increasing in 1998 to −0.65 (Table 4 and Figure A2).
It was very clear that reduction in vegetation cover resulted in higher LST and vice versa (Figure 4).

Mean NDBI also declined from −0.02 in 1988, to 0.11 in 2018 with an increase in 2008 to −0.06
(Table 4). The highest values for NDBI were in the central part in the Valley at each time-point because
of densely built-up areas of Kathmandu City, Latlipur, Bhaktapur, and Madhyapur Thimi, whereas the
lowest NDBI values were in some central and eastern parts of the Valley, such as Shivpuri Nagarjun
National Park, Nagarjun Forest Reserve, Godavari Forest, and Bhandarkhal Jungle because of the high
density VL (Figure 8).
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Figure 8. Spatial distribution of Normal Difference Built-up Index (NDBI) in Kathmandu for, (a) 1988;
(b) 1998; (c) 2008; (d) 2018.

A significantly positive correlation was observed between LST and NDBI (Figure A3), where the
coefficient of determination was greater than 0.60 at each time-point with 0.61, 0.61, 0.71, and 0.68
in 1988, 1998, 2008, and 2018 (all p < 0.001), respectively, indicating that there is strong relationship
between LST and NDBI (Table 4, Figure 4). The significant correlation between LST and NDBI
(Figure A2) varied over time: 0.78, in 1988, 0.78 in 1998, and 0.84 in 2008, and 0.83 (all p < 0.001) in
2018 (Table 4 and Figure A3). The positive correlation coefficients suggested that with increased NDBI
(Figure 8), LST also increased at all time-points (Figure 4). This was particularly so in 2008 when mean
LST was 3.4 ◦C higher than 1998 (Table 3) because the distribution of high NDBI increased due to the
rapid development of IL (Figure 2 and Table A4. It is clear that less built-up areas resulted in lower
LST and vice versa (Figures 2 and 4).

Mean NDMI also increased from 0.062 in 1988 to 0.101 in 2018 but an interesting drop of mean
NDMI value of 0.059 was seen in 2008 (Table 4). Additionally, in 2008, mean LST increased and a
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greater mean NDMI was estimated in 2018 than the mean NDMI of 2008 and this may be the reason
mean LST was lower in 2018 than 2008. The lowest values for NDMI were seen over agricultural land
and impervious land in the Valley at each time-point due to the densely built-up areas of Kathmandu
City, Latlipur, Bhaktapur, and Madhyapur Thimi, whereas the highest NDMI values were found for
vegetated areas and water bodies in areas of the Kathmandu valley such as Nagarjun Forest Reserve,
Shivpuri Nagarjun National Park, Godavari Forest, and Bhandarkhal Jungle, and Bhagmati river,
respectively (Figure 9).
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The correlations between LST and NDMI were also significantly negative for all time points
(p < 0.001), declining from −0.78 in 1988, to −0.83 in 2018, but most decreased in 2008 to −0.84 (Table 4
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and Figure A4). It was very apparent that reduction in moisture content resulted in higher LST and
vice versa (Figure 4).

3.6. Analysis of Urban–Rural Gradient Pattern

Changes in LST, NDBI, NDVI, and NDMI across the city/rural gradient for at each time-point
(i.e., 1988, 1998, 2008, and 2018) are shown in Figure 10 (see Figure 1d for demarcation of buffer zones).
Gradient patterns are reasonably similar across the years for both NDVI and NDBI with the latter
mirroring the former. However, there was much greater variation in LST between years. In 1988 and
1998 mean NDVI increased gradually with increasing distance from the city center (roughly 23–24 ◦C)
up to around 12 km, remaining at roughly 26–27 ◦C until about 17 km when it gradually declined to
25 ◦C. In 2008 and 2018, mean NDVI was initially higher, rising more rapidly with increasing distance
from 28–29 ◦C to around 32 ◦C at 17 km before declining gradually to 30–31 ◦C at the city periphery.
Mean NDBI mirrored NDVI. In 1988 and 1998 it declined from around 23–24 ◦C to around 21–22 ◦C
between 12 and 17 km then rose to around 23 ◦C at 22 km before declining again. In 2008 and 2018
mean NDBI at the city center was higher at 27–28 ◦C and declined to 25.5 ◦C at around 17 km before
increasing to 26–27 ◦C at 22 km followed by a slight decline. Mean LST in the city center appeared
to increase with each decadal transect. In 1988 it dropped from 25.5 ◦C to around 22.5 ◦C at 17 km
and then showed a sharp increase to 26.3 ◦C at about 22 km before then sharply decreasing at the
city boundary because of greater agricultural activities between 17–24 km (See top square box at
North-Eastern side in Figure 2a–d, Figures 4a–d and 9a–d). In 1998 mean LST at the city center was
higher (around 28.8 ◦C) and declined 24.3 ◦C at 15 km before rising again to 28.8 ◦C at 22 km before
then again sharply declining. In 2008 at the center of city, mean LST was around 31.4 ◦C, declining to
27.8 ◦C at 17 km then rising sharply to 30.2 ◦C at 22 km and again falling to around 28 ◦C at 25 km
due to agriculture activities, and NDMI (<0 means the lowest moisture condition) also showed lowest
moisture there (Figure 9a–d). In 2018 mean LST was highest at around 32 ◦C within 1 km of the city
center rapidly declining to 25 ◦C at 17 km, and as in previous decades, a further spike of 30–31 ◦C at
around 22 km before declining again.

Consequently, it is clear that mean LST mean was dramatically greater from the city center to
15 kms compared to the surrounding area to the city periphery. Mean NDBI value was also higher in
the city center to 15 km compared to the surrounding area (Figure 10), while the mean NDVI trend was
the opposite, as NDVI value is lower in the area of city center up to 15 km than in the surrounding area
for each decadal time-point (Figure 10). It was also very evident that mean NDVI mean was low in the
areas between city center and 10 km and high between 12 km 26 km (Figure 10). Therefore, it seems
clear that the highly developed VL resulted in low LST and highly developed IL resulted in higher LST
and vice versa for both. Interestingly, in the 20–25 kms area, LST was again higher due to increased
agriculture (Figures 2 and 10). These patterns, we believe, reflect the changes in development of built
areas in the innermost parts of the city and the higher levels of vegetation towards the city periphery.
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4. Discussion

We have shown that in the 30 year period between 1988 and 2018 there was a massive change in
land use in the Kathmandu valley with extensive growth of IL at the cost of AL and to a lesser extent
VL due to intense urbanization. At the same time, LST and NDBI have increased considerably while
NDVI has reduced in core urban areas. Here we discuss the implications of our results in the context
of previous studies.

4.1. Urbanization from the Perspective of LULC Transformation and Population Explosion

The capital of Nepal, Kathmandu City, is one of the fastest growing cities in South-East Asia [46,47],
located in a valley with high mountains on all sides. It is only the central part of the valley which is
urbanizing fast [46,47] and this rapid urbanization is due to religious and tourism attractions and the
location of the capital administration. The rapid growth of built up areas in the form of transport
networks, residential, commercial, industrial buildings, and associated parking lots have resulted in
losses of some LULC classes, particularly AL, as we have shown here. This widespread transformation
in LULC has led to elevated LST across a large part of the landscape [10,38,47,70]. The rapid urban
expansion is the result of the three-fold population increase over the last three decades in Kathmandu
City (Figure A5) since it was only 0.35 million in 1988 but has increased to 1.33 million by 2018. Similar
rapid population growth has occurred across the whole of the Kathmandu Valley, including the districts
of Bhaktapur, Kathmandu, and Lalitpur, where the total population was 0.77 million in 1981 but had
increased to 2.88 million by 2016 [49] (Figure A6). Similar levels of rapid population growth and
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associated urban expansion have been observed in many other cities around the world including
Chennai in India [71]; Lucknow in India [3,72]; Agra in India [73]; Xuzhou in China [74]; Baguio in
the Philippines [75]; Kandy City in Sri Lanka [48]; Tokyo in Japan [11]; Tehran in Iran [10]; Istanbul in
Turkey [76]; Sobotka in Poland [77]; Santiago de Chile [78]; Mekelle in Ethiopia [79]; Bucharest city in
Romania, Budapest city in Hungary, Prague city in Czech Republic, Sofia city in Bulgaria, and Warsaw
city in Poland [80]; and São José dos Campos in Brazil [81].

We have shown that IL in the last three decades, especially most recently in 2008 and 2018,
has swiftly extended towards the eastern side (e.g., Madhyapur Thimi, Katunje, Bhaktapur, Liwali,
Gapali, Jhaukhel, and Duwakot), the western side (e.g., Chandragiri, Kirtipur, Sitapalia, Gairi Gaun,
Boharatar, and Ramkot), the northern side (e.g., Kapan, Dharampur, Bhangal, Thapa Gaun, Mahankal,
Gongabu, Paiyatar, and Hiledol), and the southern side (e.g., Patan, Bhaisepati, Kusunti, Mitra Tole,
Sunakothi, Dhapakhel, Thaiba, Thecho, and Bullu) (Figure 2). Such growth is predicted to continue as
the United Nations has projected that Kathmandu City population will grow to 2.2 million by 2035 [4],
roughly doubling the 2018 population (Figure A5), whereas NPCS has predicted the population for the
whole of the Kathmandu Valley to increase to 3.85 million by 2031 (Figure A6).

4.2. Phenomena of SUHI and Sustainable Planning

Our results suggest that the rapid expansion of built-up areas and their influence in increasing
SUHI is occurring at a large scale in Kathmandu Valley. This is largely due to the conversion of AL
and, to a lesser extent, VL into IL in the form of transport networks, industrial, commercial, residential,
parking lots, and other paved surfaces. We found that both VL and WB had lower mean LST than
IL, AL, and OL at all studied sequential time-points. This contrasts with the results of other studies
which indicated that IL had higher LST than others classes of LULC especially VL and WB, in tropical
montane cities, such as, Tehran in Iran [10], Kandy in Sri Lanka [48], and Baguio in Philippines [75].
We noted that LST was higher in 2008 and we recognize the limitation in our study that in selecting
single dates for our Landsat images we cannot account for daily variations in LST that are naturally
likely to occur. However, overall mean LST increased over the whole 40-year time period. However,
there could be other factors (like, elevation) influencing LST intensification which could be examined
in the future.

We found that LST intensified throughout the central city area of the Kathmandu Valley as the
IL rapidly increased. In many western cities, attempts to reduce the effects of SUHI have included
strategies such as introducing more street trees or growing plants on roofs, so-called green roofs, as
well as developing materials that cool roofs and cool pavements, and the use of light materials [82].
Other cooling mechanisms included improving wind flow, by carefully designing the size, shape, and
orientation of buildings [83]. New cities such as Kathmandu which have grown with little planning
need to recognize the value of such greening designs with the opportunity to enhance environmental
sustainability in the city [10,18,41,68].

We also found that the mean LST was always higher in the city center than its periphery and that
in general LST has risen over the 40-year period. In between 12–18 km from the city center, LST level
increased due to increased NDBI because of greater population pressure resulting in urban expansion.
Kathmandu Valley has also observed an increase in SUHI from the city center towards the city
periphery. The reason behind this intensification was due to dense urban development (especially in
the areas of Kaldhara, Chhetrapati, Sanepa, Kalimati, Siddhitol, Bhimsengola, Sinamangal, Kumaripati,
Ekantakuna, and Narephate) and at the periphery of the city with the loss of green spaces (especially
in the areas of Budhanilkantha, Tarakeswar, Sitapalia, Charghare, Bhatkepati, Suyel Gaun, Dadhikot,
Chhaling, and Taudol).
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4.3. Urban Sustainability Implication

Typically, in the relatively unplanned growth of built-up areas micro- to macro- level features
develop to reflect economic and social needs [10,32,45,84]. Greater employment opportunities and
higher economic development are important reasons why people are drawn to urban areas but at the
same time the resulting reduction in AL and VL leads to intensification of SUHI and consequent harm
to the local environment and the urban population [10,85,86].

With so few open areas available for development in the city center we found that Kathmandu
valley has had higher IL development at the periphery than in the city center between 1988 and 2018.
As a result, from 6–8 kms, IL expanded largely at the cost of AL. This partly explains some of the
observed changes in LULC statistics (Figure 2 and Table A2).

Our results suggest that SUHI has intensified at all-time points resulting from the increase in
IL at the cost of VL and AL which is likely to have severe consequences for the local environment.
Sustainable land management practices can decrease the negative effects of stressors like climate
change [7]. Therefore, to minimize some of the severe effects of SUHI novel greening strategies need to
be developed, as discussed above, as well as reducing runoff and enhancing availability of freshwater
through the creation of ponds/lakes, and use of rain water harvesting. Such structures can enhance the
resilience of local ecosystems [9,10,18]. Increased public awareness regarding the severe effects of SUHI
phenomena may result in pressure at the local and national level on public or private authorities to
reduce the SUHI phenomena through adoption of remedies to minimize its effects as well as improving
future sustainable planning for new urban areas [10].

5. Conclusions

We have shown a significant negative and positive relationship between LST and NDVI, and
LST and NDBI, respectively. We interpret this to show that this indicates that vegetation had a very
significant role in decreasing LST by nearly 0.82–5.94 ◦C compared to other LULC classes over the
last 30 years in the study area. At the same time, we are concerned about the increase in mean LST of
0.12–5.94 ◦C for built-up areas. Our results show that there was a sharp decrease of mean LST with
NDBI from city center to 15 kms with NDVI showing the opposite pattern sharply increasing from
the city center to 15 kms, clearly demonstrating the creation of SUHI. Further, at around 20–25 kms
from the city center, the mean LST again rose due to the intensive agriculture there as we have found
mean NDVI and as well as mean NDMI also declined there, which reveals agriculture activities’ effects
on higher LST distribution. It was very apparent that because of explosive increase in IL there was a
resulting loss in AL and VL. One noteworthy observation is that OL had greater mean LST than all
other classes of LULC at all consecutive time points. We conclude that it is essential to measure thermal
state for cities over time to depict LULC and SUHI creation because it can explain the consequences of
historical changes in the city’s landscape. The patterns of LULC and LST observed in this study we
hope will be useful for future urban planning and policy making in the Kathmandu Valley.

The enormous changes in urbanization resulting from rapidly increasing population growth in the
Kathmandu valley and their consequences for LULC and LST change are of great concern particularly
as population growth is predicted to continue. To avoid severe consequences of SUHI, strong planning
policies and actions need to be taken to protect current urban spaces, reduce vegetation depletion, and
open space reduction. At the same time, efforts are needed to reduce SUHI by improving building
design using green city technologies. At the same time, reduction in runoff and improved rainwater
harvesting will be essential at both local and large scales through the participation of individuals,
private organizations, and local to national government.

Supplementary Materials: The following are available online at http://www.mdpi.com/2220-9964/9/12/726/s1.
NASA’s POWER project weather information over selected sample location (Latitude: 27.7017 and Longitude:
85.319) of selected time points between 1988 and 2018 for this study area, Kathmandu Valley area available in
excel sheet in the given this link.
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during 1981–2031 (Source: NPHC 2011, Central Bureau of Statistics, National Planning Commission
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Table A1. Accuracy assessment report of Land Use/Land Cover classification in Kathmandu (1988–2018).

LULC Class Year

1988 1998 2008 2018

User Accuracy
(%)

IL 88.0 89.0 91.0 96.0
AL 95.5 96.0 96.5 96.0
VL 84.5 90.0 95.5 96.5
OL 93.5 94.0 95.0 96.0
WB 97.5 98.0 96.5 98.5

Producer
Accuracy (%)

IL 92.6 87.3 94.8 93.7
AL 83.8 86.9 91.0 93.7
VL 90.0 95.7 96.4 97.8
OL 99.4 99.5 99.5 100
WB 94.7 97.0 98.0 98.5

Overall Accuracy (%) 95.2 93.4 95.2 96.6
Kappa Coefficient 0.897 0.917 0.940 0.958
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Table A2. The summary Land Use/Land Cover statistics of Kathmandu at 10-years interval from 1988
to 2018.

Year
LULC Classes

IL AL VL OL WB Total

1988
Km2 37.98 418.32 230.69 1.97 5.31 694.27

% 5.47 60.25 33.23 0.28 0.76 100

1998
Km2 58.96 391.46 235.85 3.45 4.55 694.27

% 8.49 56.38 33.97 0.5 0.66 100

2008
Km2 95.45 356.63 235.4 3.34 3.45 694.27

% 13.75 51.37 33.91 0.48 0.5 100

2018
Km2 151.42 300.03 236.76 3.05 3.01 694.27

% 21.81 43.22 34.1 0.44 0.43 100

Table A3. Summary Land Use/Land Cover change statistics for Kathmandu Valley.

Year
LULC Type

IL AL VL OL WB

1988–1998
Km2 20.99 −26.86 5.16 1.48 −0.76

% 3.02 −3.87 0.74 0.22 −0.1

1998–2008
Km2 36.49 −34.83 −0.47 −0.11 −1.1

% 5.26 −5.01 −0.06 −0.02 −0.16

2008–2018
Km2 55.97 −56.6 1.38 −0.3 −0.44

% 8.06 −8.15 0.19 −0.04 −0.07

1988–2018
Km2 113.44 −118.29 6.07 1.07 −2.3

% 16.34 −17.03 0.87 0.16 −0.33

Table A4. Comparisons of mean LST between Land Use/Land Cover classes from 1988 to 2018.

Comparison of
LULC Class

LULC Class (Cross
Cover Comparison)

Mean LST Magnitude (◦C)

1988 1998 2008 2018

IL vs. Other
Class

IL-VL 2.01 1.6 5.32 5.94
IL-WB 1.19 1.17 3.42 4.11
IL-AL 0.12 −0.17 0.59 1.25
IL-OL −1.08 −0.26 −0.25 0.56

VL vs. Other
Class

VL-IL −2.01 −1.6 −5.32 −5.94
VL-AL −1.89 −1.77 −4.73 −4.69
VL-OL −3.09 −1.86 −5.57 −5.38
VL-WB −0.82 −0.43 −1.9 −1.83

WB vs. Other
Class

WB-IL −1.19 −1.17 −3.42 −4.11
WB-AL −1.07 −1.34 −2.83 −2.86
WB-VL 0.82 0.43 1.9 1.83
WB-OL −2.27 −1.43 −3.67 −1.55
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