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Abstract: Geoparser is a fundamental component of a Geographic Information Retrieval (GIR) 
geoparser, which performs toponym recognition, disambiguation, and geographic coordinate 
resolution from unstructured text domain. However, geoparsing of news articles which report 
several events across many place-mentions in the document are not yet adequately handled by 
regular geoparser, where the scope of resolution is either toponym-level or document-level. The 
capacity to detect multiple events and geolocate their true coordinates along with their numerical 
arguments is still missing from modern geoparsers, much less in Indonesian news corpora domain. 
We propose an event geoparser model with three stages of processing, which tightly integrates 
event extraction model into geoparsing and provides precise event-level resolution scope. The 
model casts the geotagging and event extraction as sequence labeling and uses LSTM-CRF 
inferencer equipped with features derived using Aggregated Topic Model from a large corpus to 
increase the generalizability. Throughout the proposed workflow and features, the geoparser is able 
to significantly improve the identification of pseudo-location entities, resulting in a 23.43% increase 
for weighted F1 score compared to baseline gazetteer and POS Tag features. As a side effect of event 
extraction, various numerical arguments are also extracted, and the output is easily projected to a 
rich choropleth map from a single news document. 

Keywords: geoparser; geographic information retrieval; event extraction; argument extraction; 
information extraction; named entity recognition; conditional random function; lstm; semantic 
gazetteer; topic model 

 

1. Introduction 

The exponential rate of information shared through the world wide web provides ample 
opportunities to automate the understanding and extraction of information from the huge 
unstructured text collection. A lot of this information has embedded geographical references, either 
directly in forms of toponyms (place names entities) or indirectly via its references. One estimate 
stated at least 20 percent of Web pages include recognizable geographic identifiers [1] that are mainly 
present in unstructured form. It thus explains the development of numerous types of Geographical 
Information Retrieval (GIR) models, method, and prototypes with the aim of extracting, retrieving, 
and exploiting location and geospatial information within these unstructured textual data, such as 
online news articles [2], tweets [3], social media posts, or even blogs. These systems allow 
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improvement to useful types of applications ranging from analytics [4], health [5], retrieval [6], 
categorization, and many others by leveraging the geospatial data that is prevalent in the internet. 

Unlike Geographical Information Systems, which process geospatial data from an already 
structured forms or records inside databases, GIR systems typically have to extract and infer 
geographic location or coordinates from many types of noisy information and ambiguities that are 
prevalent in the unstructured natural language form. Thus, a GIR system workflow typically starts 
with the geoparser component to extract geographic information from text, which is then followed 
by some indexing and retrieval mechanisms further down the pipeline. The regular geoparsing 
process within geoparser is composed of two subtasks [7]: (1) geotagging, i.e., detecting geographical 
references or toponyms from text, and (2) geocoding, which aims to resolve these into precise 
coordinates via some disambiguation method. The result will be further processed by GIR application 
to infer associations between varied information that is described in the document with the 
geographical coordinate of the resolved toponyms, which will be served or ranked across documents 
according to the geo-query input typically in some forms of thematic map. 

A lot of efforts and iterations have been made in the field of geoparsing, from Woodruff, who 
introduced the first geoparsing prototype within GIPSY in 1994 [8], to Gritta’s geoparser in 2019 [9]. 
However, the task of geoparsing is still an open problem to this date, due to the complex interaction 
between spatial, temporal, and thematic sub-space within text that needs to be addressed depending 
on the problem domain [10]. Indeed, geoparsers have been able to (1) infer geographic location from 
toponym mentions (which we called toponym-level resolution scope) or (2) infer single geographic 
focus of document (document-level resolution scope). Unfortunately, most of these geoparsers are 
still lacking the model and method to resolve coordinates at event-level resolution scope. This means 
that such geoparser is able to resolve precise location coordinates of (possibly) multiple events 
described within the document instead of only resolving or disambiguate coordinate of toponyms 
(toponym-level) or geographic focus of the document (document level). In terms of granularity, it sits 
between toponym-level geoparsers (such as [11–15]) and document-level resolution scope geoparsers 
(such as [6,16,17]). 

We argue that the event-level resolution scope geoparser (or event geoparser for short) needs to 
be capable of (1) detecting what types of event(s) presented in the document and (2) infer the precise 
location of the event(s) reported (event geolocation) from the detected toponyms in the document. 
Additionally, (3) event geoparser should be able to discover which event argument(s) (especially 
numerical expressions/NUMEX) are associated with the detected event(s). This would enable richer, 
thematic geographic information retrieval usage such as spatial search, map visualization, and 
geospatial analysis from unstructured text input. In the bigger picture, the use of generated thematic 
map within GIR framework has been the motivation for this work, whose core component is arguably 
a type of event geoparser. 

This paper presents a novel implementation of an event geoparser that is loosely based on ACE 
event model [18], which tightly integrates event extraction, and the toponym resolution, which is 
usually dealt with separately. The model decomposes an event into its trigger (or anchor), related 
entities, resolved (grounded) locations, and its semantic role arguments, especially numerical ones. 
The geoparser model cast the geotagging and event extraction as sequence labeling task; hence it uses 
state-of-art neural LSTM-CRF sequence labeling model as a statistical method employed on 
Indonesian news domain. For training purpose we constructed two set of corpora: (1) 645,679 
editorially tagged news (i.e., with news keywords) documents of 13 years publication of Indonesian 
online news corpus with 107,133.817 words that were described in our earlier work [19] (which we 
will later identify as large corpus) and 83 news articles composed of 927 sentences annotated 
(disambiguated, geolocated, and event extraction tags with numerical arguments) sentences on four 
major geospatial events: flood, earthquake, fire, and accidents. This will be later identified as small 
corpus from which the event geoparser model is mainly trained. The geoparser also uses the smallest 
administrative level feature obtained from the resolved administrative level of the toponyms detected 
using Spatial Minimality Centroid Distance algorithm, which we derive from Leidner’s Spatial 
Minimality algorithm [12]. This feature along with event argument feature proves to be very important 
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for the ability of the geoparser to detect the pseudo-location, which is necessary for geolocating events 
in the document. 

To improve the model generalizability on unseen data, we also propose an exploratory model 
to learn semantic relatedness between topic label and its keywords from multi-labeled large corpus. 
This is called Aggregated Topic Model (ATM), which is trained from partitions of Labeled LDA [20] 
model output. The motivation of this model is to efficiently exploit a large number (in our corpus, 
reaching up to 44,280) of unique news tags as the labels offered by large corpus, which required too 
much RAM to process using Labeled LDA. We use ATM with Word2Vec to get list of keywords 
related to events and entities, which will be referenced as semantic gazetteer, adapted in the approach 
of [4]. The semantic gazetteer contains keywords that will be used to build handcrafted rules for event 
keywords feature or regular expression features to help improve geoparser’s performance. 

2. Related Works 

2.1. Scope of Resolution of Geoparsers: Toponym-Level, Document-Level, and Event-Level 

The majority of geoparsers work on either toponym-level resolution scope or document-level 
resolution scope. Toponym-level resolution scope means that it works with the goal that every 
toponym will have assigned coordinates, typically via some disambiguation and resolution process 
(grounding) from gazetteer references. This has been the most numerous type of geoparser and the 
most basic, in the sense that the output can be used to fetch the other resolution scope mode of 
geoparsers or possibly event coders. Examples of toponym-level geoparser are Edinburgh Geoparser 
[11], CLAVIN [21], and as component inside the GIR prototype of SPIRIT [6]. Leidner’s Spatial 
Minimality algorithm [12] also works with this goal. On the other hand, geoparsers that have 
document-level resolution are set out to find the geographical focus of the document. The document-
level scope resolution will resolve geographic grounding of document using some scoring based on 
the detected toponym, such as simplistic frequency of mention and distance from the beginning of 
document such as CLIFF [16] and Newstand [22]. More complex resolution involves scoring based 
on zone indexing as a function of topology of the toponyms such as part-of or adjacency relationship, 
as in Mahali [23]. These geoparsers offer both scopes of resolution, by doing document-level scope 
resolution after the toponym-level scope resolution. The output comparison of toponym-level 
resolution scope with event-level resolution can be seen in Figure 1. 

 
Figure 1. A comparison of toponym-level and event-level scope of resolution. Unlike toponym-level 
geoparser, the event geoparser is not only detecting toponym and resolving the coordinate but also 
detecting what event(s) happened and infering which toponym is the real location (LOC) or only 
pseudo-location (PLOC) with regard to that event. 
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The last type—and the most recent development—is what we refer to as event-level resolution 
scope geoparser. It will try to detect event(s) within the document and to resolve the location or 
geographic scope of those events. There are only very few geoparsers which has this capability, and 
they are still very limited. Most geoparsers are only coupled or stacked with event coder (which 
sometimes targeting the output to certain event ontology codes such as CAMEO) to reach this 
capability. Typically, the approach is to start with toponym recognition (geotagging) using NER, 
following with event detection (or often referred as event coding) step; and ending with toponym 
resolution step using geoparser component, often as different independent module. This is the 
approach of the first prototype of event geoparser LocNZ [24] that is integrated within (as part of) 
InfoXtract architecture [25], TABARI parser [26] + Leetaru’s geocoder [27] in GDELT project, and 
PETRARCH + CLIFF [28]. ICEWS dataset was also prominent big dataset in similar area; however, 
its geoparsing description is rather not described adequately in [29]. Because of this independency of 
the geoparser module, the integration of event coding and geoparser is typically done in an opaque, 
black box approach: The geoparser does not know anything about the event structure or semantics; 
and the event coding system simply attaches the coordinate of the detected, resolved toponym to the 
location of the event. For example, CLIFF is document-level event geoparsing, and both Leetaru’s 
and LocNZ are toponym-level geoparsers. Hence, there is a gap between event and its location 
leading to inaccuracies of the toponym assigned, in other word, the toponym returned is not the real 
location (or irrelevant) of the event. 

Mordecai [30] and Profile [31] are both of event geoparser which are capable of recognizing and 
resolve event location, so they have event-level resolution scope. Both operate within political event 
domain corpus. Profile uses an SVM-based classifier to differentiate between focus location entities 
with non-focus one. However, it works with a rather strong assumption that within document there 
is only one main event, hence, there is also only one geographic focus location of that event. This 
limitation makes Profile unable to handle a document which has more than one event or an event 
which has several locations, both of which are common within our corpus, and another dataset 
confirmed that such case is a common observation [28]. Mordecai is perhaps the only geoparser which 
explicitly defines event notion and performs linking of the (possibly several) event(s) with its 
locations. Mordecai models n token sentence as 𝑋 = ൛𝑤ଵ,𝑤ଶ, … 𝑤௡,ൟ. An event is symbolized as 𝑒௞ and 
marked with anchor verb 𝑣௞ (similar concept as trigger in ACE model) for the location of the event 𝐺௞ = ൛𝑔ଵ,𝑔ଶ, … 𝑔௝ൟ. Each token has their event binary label 𝑦௜(௞), either 1 or 0 depending whether 𝑤௜ 
is the location toponym of that event k. The implication for this definition is quite significant. With 
this event paradigm, a document can be composed of more than one event, and each can have more 
than one location. However, even though Mordecai has the model of event (represented with its event 
anchor mentions) and the method to geolocate event, it does not model semantic role and its 
argument. Hence, the ability to detect event depends only on the features that the model uses, namely 
part-of-speech (POS) tags, pretrained GloVe [32], dependency label, and signed distance of word from 
the anchor [33]. Even though it is effective on the narrow, political dataset that Mordecai is trained 
upon, it may not be enough for broader domain. This motivated us to extend this model further to 
incorporate event arguments (and its semantic role labels) with ACE model as with notation described 
in joint event extraction model in [34]. It should also be noted that Mordecai does not use toponym 
resolution algorithm, leaving it vulnerable to toponym ambiguities. 

These types and examples of geoparsers with respect of its resolution scope is listed in Table 1. 
In the next section, we will use and extend the Mordecai definition to include event arguments and 
resolved geographical scope. 

Table 1. Types of resolution scope of geoparsers. 

Type of Resolution 
Scope 

Output Model Formulation and Illustration 
t = toponym, D = set of words in the document, 𝔼 = 𝐬𝐞𝐭 𝐨𝐟 𝐞𝐯𝐞𝐧𝐭𝐬 𝐢𝐧 𝐭𝐡𝐞 𝐃𝐨𝐜𝐮𝐦𝐞𝐧𝐭, 𝔾 = set of resolved 

coordinate/footprint 

Example 
Geoparser/GIR 
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Toponym-level 
(geocoded 
toponym) 

Output is geographical 
coordinate for each 

toponym in the 
document based on 

recognized toponyms 
entities within the 

document. 
 

SPIRIT [6] 
Edinburgh 

Geoparser [11] 
Spatial Minimality 

[12] 
CLAVIN [21] 

Camcoder [15] 

Document-Level 
(geographical scope 

of document) 

Output is single 
geographic coordinate or 

scope of the document 
based on some scoring 
function of recognized 
toponyms within the 

document. 

Web-a-Where[13] 
NewsStand [22] 

GeoTxt [14] 
Mahali [23] 
CLIFF [16] 

 

Event-Level 
(geolocated event) 

 
Output is geographical 

coordinate for each 
locations of recognized 

event(s) within the 
document. 

 

Mordecai [30] 
Profile [31] 

GDELT 1 (TABARI 
+ Leetaru [26]) 

Petrarch + 
Mordecai [30] 

Petrarch + CLIFF 
[28] 

InfoXtract [25] + 
LocNZ [24] 

2.2. Mainstream Approaches in Geotagging: Gazetteer and Data-Driven NER Approach 

The typical first task of a geoparser is to determine which tokens inside the text refer to names 
of a places. This process is commonly referred as geotagging or toponym recognition. Geotagging 
requires methods for discriminating location entities of place names (toponyms) from other entities. 
The dominant geotagging method used in most geoparsers is to incorporate gazetteer lookup, which 
is a lookup process from an external resource of place names and basic geographic information for 
simple string matching. Generally, the matching toponym string (which may consist of several 
tokens) inside the gazetteer indicates strong probability of such token being place names, with some 
exceptions needed to exclude highly ambiguous place names such as (city of) Reading, England. A 
gazetteer is a dictionary of place names or geographical thesaurus, often equipped with geospatial 
information (latitude and longitude or polygons) or extra information such as population size, 
administrative level, and alternative names. Gazetteers vary in their coverage of names, associated 
geographical information, and hierarchical structure. Common choice for gazetteer includes 
GeoNames, GNIS/GNS, WordNet, OpenStreetMap and GADM. A gazetteer can be classified 
regarding whether it has toponym hierarchy or not. Gazetteer which has toponym hierarchy is called 
ontological gazetteer [35]. We call an ontological gazetteer that maintains correct hierarchy for all its 
entries a strict gazetteer. GADM, for example, can be considered a strict gazetteer with four levels of 
administration from a total of 368,735 administrative areas. Geonames [36] is an ontological gazetteer 
with a much larger coverage, (totaling around 11.8000,000 features) although it does not have a strict 
geo-ontology. For example, there are many entries of a village (administrative level 4) that has been 
placed directly under a province level entry (level 1) whereas it should be under sub-district (level 
3). The better the coverage, the better geoparser detect toponyms (related to recall performance). 
However, it must be noted that referential ambiguity (which is part of geo/geo ambiguities where 

Documentt1 Lat/Long
t2 Lat/Long
t3 Lat/Long

Document
t1 Lat/Long 
t2 Lat/Long 
t3 Lat/Long 

e 2
t2 Lat/Long 
t3 Lat/Long 

Document 
e1 t1 Lat/Long
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two or more toponyms share same name) is still a problem to be resolved, and the strict hierarchical 
information in gazetteer will also be useful for disambiguation strategy (the containment heuristic), 
which will be further discussed. 

Toponym recognition can also be considered as a specialized form of Named Entity Recognition 
(NER) but with the focus on recognizing named geographical entities [12]. In the landscape of 
geoparsing, data driven NER approach is dominantly used along with gazetteer lookup, even though 
there are few rule-based geotagging approaches. For example, by detecting preposition such as “in” 
or “to” followed by toponym candidate such as Owen’s Kivrin [37]. Data driven approach requires 
an annotated corpus (often annotated using BIO scheme) which is typically trained to distinguish 
different entity types such as Person (PER), Location (LOC), or Organization (ORG). NER framework 
could use string matching of toponym from the gazetteer as one of its binary features, along with 
other feature such as POS tags [38], word forms, or capitalization. It means that not all matches will 
be considered as a toponym, depending on the classifier result. Using NER will generally be able to 
differentiate geo/non-geo ambiguities, and a lot of geoparsers are using external, specialized Named 
Entity Recognizer component for geotagging purpose to filter non-geographical names, such as 
MITIE (used in [30]), LingPipe (used in [23,39]), GATE ANNIE ([4,14]), Spacy [14], Stanford CoreNLP 
(used in [16,21]), NCRF++ (used in [9]), and others. Most of these NER in turn use statistical, data-
driven sequence labeling model under the hood, such as Conditional Random Field (CRF) (CoreNLP 
and LingPipe), Maximum Entropy (Edinburgh Geoparser), or Hidden Markov Models [17]. 

Generally, both gazetteer and NER approaches have been successfully used by geoparsers to tag 
and extract the toponyms the text in the geotagging step. However, the main challenge here is that 
the extracted toponyms do not necessarily indicate the location of events mentioned in the news 
document. Furthermore, even though a toponym is indicating location (locative), it may not be 
precise enough to be stated as a location of a particular event. The reason for the problem and the 
taxonomy of toponyms with regard to event will be discussed in more detail in the next section. 

2.3. Geotagging True (Locative and Precise) Location Toponyms Relative to an Event 

The ongoing source problem of geotagging apparently stems from the inherent lexical 
ambiguities of toponyms and also syntax ambiguities of natural language. Therefore, it is important 
to analyze the taxonomy of toponyms. Gritta [7] divides taxonomy into literal and associative types. 
Literal toponym carries the notion of physical location. On the other hand, associative toponym is 
used in a context associated with the physical location (e.g., Mayor of Paris). While literal toponyms 
seems to be a major use case; it only comprises 53.5% in his evaluation on GeoWebNews corpus [7], 
with the rest of the uses being associative ones (46.5%). The similar structure dichotomy of toponyms 
is actually shared much earlier but from the toponym ambiguity standpoint. Amitay et.al. noted the 
ambiguities of toponyms present in the forms of geo/non-geo and geo/geo dichotomy [13]. The notion 
of geo/non-geo ambiguity refers to a toponym that has non-geographic disambiguation candidate(s) 
of the same name (such as Paris, France [GPE] vs. Paris Hilton [PER]). Similarly, geo/geo ambiguity 
appears when a toponym has more than one (literal) geographic referent of the same name (such as 
Paris, France [GPE] or Paris, New York [GPE]). This dichotomy has been followed and used in works 
of others such as [25,27,28] and [40,41]. However, for a geoparser to serve the event-level resolution 
scope discussed earlier, we argue that it still needs to discriminate further geographic, literal toponym 
mentions (geo/geo box in the Figure 2) with deeper dichotomy with regard to a particular event. This 
can be done using two criteria that needs to be satisfied: (1) event-locative (indicating location of 
event) and (2) precise (the location inference process prefers smaller areas than bigger ones). Thus, 
we will extend the dichotomy to focus on whether the toponym should be tagged as pseudo-location 
entities (PLOC) or real location (LOC) with respect to the detected event(s) in the document. In other 
words, even though geoparsers have been able and remove non-geographical toponyms (with 
regards to the first dichotomy), they still must identify which toponyms are locative and precise to 
which event (real location entities) and which toponyms are not (pseudo-location entities). As we 
soon discuss, this distinction is very important and has not yet been handled well by existing 
geoparsers. 
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Figure 2. Taxonomy of toponym ambiguity. Even though regular geoparsers are already capable of 
filtering geo/non-geo ambiguities and assigning disambiguated coordinates to geo/geo referential 
ambiguities, they cannot yet handle event geolocation properly, i.e., recognize and resolve toponyms 
that are both locative and precise of particular events by discarding all ”pseudo-location” entities which 
are irrelevant to that event. Note that pseudo-location entities may appear either as literal or 
associative toponyms as well. 

The pseudo-location entities often occur in news corpora in the following associative, non-literal 
use cases of toponym: (1) as geopolitical entity modifier context, (2) metonymy [42], (3) as part of 
organization name. For example, in the sentence “U.S. President and North Korean leader hold a 
meeting in Singapore”, the United States and North Korea are both pseudo-location associative 
toponyms with regard to meeting event, because it appears in the geopolitical (GPE) context as a 
leader, not pointing to the location of the event (Singapore). Demonyms, the name of residents 
associated with such toponym, can be considered in this category as well. The second use case, 
associative metonymy, in this context is meant as a figurative, non-literal use of toponyms as a symbol 
of country or other entity. As an example, in this sentence, “Washington worked with Saddam before 
invasion of Kuwait”, where Washington represents United States as subject of the sentence, and 
hence, it is considered as a pseudo-location entity as well. Evidonym is where a toponym appears as 
a component in a multi-token toponym, often found as a part of organization name associated with 
some place [8,12]. Such as, “I studied at Massachusetts Institute of Technology”. 

The pseudo-location entities may also appear in type of literal toponym usage, especially with 
(1) imprecise type mentions and (2) non-locative semantic role. Imprecise mentions are larger area 
toponym(s) which contain a more precise toponym. For example, in this sentence, “As result of the 
flooding, there were 128 residents in Balekambang, East Jakarta”. In Indonesia, East Jakarta is a city-
level administrative area which contains Kelurahan (urban village) Balekambang as one of its indirect 
constituents. Recognizing a non-locative toponym (or for that matter, the inverse: a locative toponym) 
is not as straightforward as recognizing literal (non-associative) toponyms. Simply tagging toponyms 
based on lexical resources (e.g., gazetteer) is not enough (as in [6]) as toponym mentions in a single 
document do not always refer to where the event happened. These toponyms may appear in various 
sentence contexts in various syntactical patterns that present noises, which hinders the geoparser’s 



ISPRS Int. J. Geo-Inf. 2020, 9, 712 8 of 39 

 

performance. For example, toponym can be indicating literal but non-locative [7] with regard to an 
event: “The accident happened in Lengkong, Bandung, involving truck from Jakarta with two local 
cars”. The sentence illustrates an event (accident) that happen in Bandung, while the mention of 
Jakarta is obviously (to human reader) non-locative to that event (it is locative to the origin of the 
vehicle but not locative to accident event). We can say that literal toponym is not semantically 
equivalent to locative toponym. Locative toponym is always literal toponym, but the reverse is not 
always true. Thus, locative toponym set is a subset of literal toponym, which depends of a particular 
event type, which carries particular event semantics of a sentence. 

Some may argue that discriminating literal from associative toponym using NER framework is 
sufficient for geoparsing, for example, the recent Gritta’s work on metonymy resolution [7]. However, 
it is clear in that sentence that all toponyms are literal. Lengkong, Bandung, and Jakarta are all literal 
toponyms. Hence, there is obviously a substantial need for discriminating the locative toponym. 
Moreover, it must be noted that NER methods do not offer coordinate-level accuracy or map-based 
disambiguation framework, which will be important for geotagging. Moreover, regular geoparsers 
or NER are not equipped with event semantics to differentiate locative vs. literal toponyms, as it is a 
necessary condition for the recognition. 

The need of event semantics (such as matching event ontology, arguments, or type of events that 
may be inferred by a classifier as a particular label). Regular geoparsers (such as CLIFF-CLAVIN, 
Edinburgh Geoparser) are able to detect (tag) those toponyms without any issues. However, even 
though those toponyms are all literal toponyms (Jakarta, Bandung, and Lengkong), when it comes to 
the locative toponym question, “where do the accident event really take place?”, then, ideally, it will 
need to infer what event(s) has happened, the semantic role(s) and values that are associated with 
the event and, later on, correctly infer the real location entities where the event was located (i.e., 
finding locative and precise toponym) and its correct coordinates by geocoding technique. 

Note that the precision of the reported event location within news articles may have various 
degrees depending on the event: It is quite common to pinpoint the location of an traffic accident to 
be very precise within a particular street, road segment, or coordinate, while an earthquake event 
may easily span across a province or even a country. This event-locative toponym is not solvable by 
NER only or geotagger as it may not have event-related semantics often produced by event extraction 
techniques. This event-related semantic can be provided by the event label and event arguments 
inferred by event and argument classification process, which will be explained in the next section. 

2.4. Integrating Event Extraction Model into Geoparsing 

Event extraction is a branch within information extraction field which has been initiated from 
1980s and becomes more popular as big data and NLP technique matures [43]. Generally, the 
objective of event extraction is to have structured event information out from unstructured text. Some 
models of event emphasize on the temporal aspects and ordering structure of the events such as 
TimeML [44]. The TimeML model defines event anchor (event A happened at time T), event order 
(event A after event B), and event embedding (event A nested within event B). TimeML heavily 
models the temporal aspects of an event and less thespatial and grouping aspects of an event 
participant. Other event model like the 5W1H dated very early and is still being used to annotate the 
news corpus, such as the work of [45] and [46]. However, both models are not suitable to group 
various roles (especially the numerical arguments role which will be explained later) into the event 
structure. 

Following Linguistic Data Consortium’s Automated Content Extraction (ACE) model definition 
[18] and [34], an event is defined as something that happens that relate to one or more arguments 
(participants, place, time, etc.) In this work, we are interested more in custom ontology assumptions 
to model the events. Therefore, we chose to base on the ACE model loosely, which is very flexible 
and has been used extensively in many domains. We do not have to follow the event types and 
subtypes definition, but it can be customized according to the domain needs and its ontology. The 
similar geographic information retrieval that uses ontology for extraction is the hazard related 
extraction [4]. The hazard ontology is used with a list of keywords called semantic gazetteer to 
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geolocate events. Unlike the machine learning approach here, it uses rule-based JAPE language 
(GATE) and does not extract various event argument slots except fixed spatial, temporal, and 
semantic keyword entities. 

The majority of the geoparsers are using Named Entity Recognition (NER) technique to perform 
toponym recognition and then proceed with the disambiguation or retrieval without emphasizing 
the event semantics and its extraction. One of the implications of event extraction, especially the ACE 
model, is the possibility to extract (often numerical valued) arguments within the document, as in 
[34]. For example, in the sentence, “The explosion killed 7 and injured 20”, not only explosion events 
are recognized but also the quantity related to it (i.e., 7 person and 20 person). Another example is a 
typical accident event which has semantic roles such as location, the number of death victims, and 
the origin of the vehicle (the ontology of such event is presented on Figure 3). Within the context of 
geoparsing, the extracted event types and their arguments may provide additional information 
context to the event geolocation process for better inference, while the extracted arguments may be 
useful to provide a richer data for the generation of the thematic map. As far as we know, the 
integration of event extraction methods within geoparsing (or vice versa) is still very shallow or even 
lacking. Event extraction methods does not discuss coordinate-level accuracy while geoparsers aims 
for such accuracy but without knowing the event context of the toponym mentions. The integration 
of event extraction system and geoparsing is done typically by two separate stages where toponym-
level geoparser works with raw text (without information of any event structure), and the output is 
attached to the event extraction result. 

 
Figure 3. Sample Ontology of Vehicle Accident. Events can be modeled as grouping of various 
semantic roles and their arguments, forming templates for different types of events. For example, the 
Accident event has two semantic roles regarding location entity and one numerical argument. 

Thus, the objectives we believe are still missing in state-of-the-art geoparser field are twofold: 
(1) the deeper integration of an event extraction framework for event geolocation method to resolve 
event-level resolution scope. This is to infer what type of event(s) are described in the document and 
in which precise location such event happened. Event extraction framework will provide event labels 
and event arguments which will provide richer semantic event context (in which the inferred location 
data is associated), which eventually will improve the performance of the geoparser; the numerical 
arguments extracted along with the event will provide a basis for automatic choropleth thematic map 
visualization that was noted in [19]. Another important implication of event-level resolution scope is 
that many of the location entities scattered through the text may not be relevant to the event at all. 
Thus, the second objective is (2) recognize the most relevant, precise toponym to the event. For these 
purposes, this paper introduces a novel geoparser type, which embraces event extraction framework 
with a special classifier to recognize pseudo-location entities to define valid location entities (toponym) 
but nevertheless irrelevant to the event, or such toponym may be relevant but not precise enough to 
the event entities inferred. The main contribution of this work is an event geoparser model which 

is a
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Event Location: 
LOC entity 
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integrates event extraction framework with geoparsing technique to locate event-level resolution 
scope of the document. The proposed model is equipped with pseudo-location identification method 
to further separate pseudo-locations from real locations, which improves the toponym resolution 
process. 

2.5. Geocoding (Toponym Resolution) Process and Strategies 

This section discusses toponym resolution step, which typically starts after toponym 
recognition. Toponym resolution sought to resolve referential ambiguities the literal toponym 
detected in toponym recognition. For example, given the toponyms in a document {Paris, France, 
Eiffel}, which location of Paris is the correct referent? Is it (a) Paris, France; (b) Paris, Maine, United 
States; or one of many other Paris from tens of possible candidates around the world? To answer this 
question, typically the researcher employs a set of toponym resolution heuristics. These heuristics 
generally represent toponym resolution insights that are coded into the system as simple rules or 
simplifying assumptions. For example, the population heuristics prefers higher population referent to 
lower population referent candidates [47]. Thus, if ambiguous places are present, the system will 
resolve it or prefer the most populated place. This is used in the work of [11,13], and many others. 
Other heuristic that is often used is one geographical scope per document. This rule confines so that there 
is only one focal geographical point within the document [16]. Similar to that, there is also the very 
common “one sense per discourse” heuristic, which assigns only one interpretation across several 
instances of the same toponym, used in [13,48]. Another heuristic used in the context of document-
level geoparser is that of frequency heuristic: The geoparser prefers the interpretation whose number 
of occurrences of the toponyms is the highest within the document. The more it appears, the more 
likely a geographic entity candidate becomes a winner for representing the focus of the document 
[16]. These heuristics are often used as a component in a larger data-driven method such as clustering 
approach [49] or classification method [50]. The hierarchical knowledge embedded in gazetteer is 
often used to help the disambiguation [13,17], in which parent toponym appearance would increase 
the likelihood of the child toponym and vice versa. This is referred to as containment heuristic (or local 
context heuristic if it happens within a short window of text) and will be discussed more in the next 
section. 

Lastly, toponym resolution strategies often make use of the map information available to prefer 
lesser place distance or geographic proximity [50] or overlapping areas [8,51]. In these systems, the 
further the place from geographically calculated averaged centroid, the lesser importance it will be 
given. Typically, this will need ontological information within gazetteer. Similar strategies found in 
[52] and [47]. This strategy is introduced in [53] and pseudo coded in [12] as a part of the baseline 
algorithm. This geographic distance strategy is also used in [17] which evaluates the distance between 
all possible toponym candidate pairs. Another similar algorithm that is often used in other works 
called the spatial minimality, based on the premise (called geometric minimality heuristic) that the correct 
place candidates compose the smallest region that is able to contain the whole set of toponyms inside 
a document [12]. 

Generally, these heuristics depend on the information of the geographic coordinate and 
taxonomy within gazetteer and method to evaluate area or distance between points. In this event 
geoparser work, we are implementing only a sufficient subset of these explained heuristics, namely, 
the one sense per discourse, the geometric minimality, and geographic proximity heuristics, to 
perform toponym resolution that will be used further in event resolution stage. 

2.6. Increasing Model Generalizability with Topic Modeling 

Enumerating all possible events semantic within a large corpus can be done by constructing 
semantic gazetteer, which is a list of keywords that can be used to represent concepts such as in [54]. 
This keyword, if obtained from a large corpus, will be able to increase the performance of the model 
on unseen data. However, the manually constructed keywords process would be time consuming 
and biased; thus, it gives a motivation for some automated method to help this exploration process. 
Machine learning approach to detect event triggers has been done, for example, by [55]. Topic 
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modeling is often used as an automatic statistical method of dimensionality reduction for clustering 
articles into a set of topics [56], which itself is a distribution of related keywords. Thus, topic modeling 
is a good approach to the semantic relatedness concept [57]. The output of topic model is typically a 
set of topic clusters, each of which is essentially probability distribution over words. This would 
provide a cluster of related terms, which resembles the notion of topic relations between words. The 
“top-words” are a collection of most related words that constitutes a particular topic; thus, we can 
use it as a feature for classification for event extraction, for example, by supplying binary features for 
context words, in order to detect the existence of event trigger words. 

Topic modeling models are typically trained in unsupervised learning fashion, with the main 
input being the number of topics that they should produce from the training session. For example, in 
the Latent Dirichlet Allocation (LDA) model, the main parameter is K (number of) topics [58]. This is 
excluding the hyperparameters α and β that can be further fine-tuned. However, most of the corpus 
within the news domain has some categories and tags, and the LDA model does not make use of tags 
within the document as a guide for its clustering of topics. This is a disadvantage because most news 
publications have document “tags” (or “labels”, loosely speaking, not to be confused with dataset 
label) that works as a topic, for example, an article about particular flood can have “flood”, “disaster”, 
and some tags indicating city location as well (such as “Jakarta”). These tags are valuable and can be 
used as additional supervision for the LDA, providing a multi-label learning that is explored by many 
authors [20,59,60]. With the introduction of tags as label, the unsupervised nature of LDA becomes 
supervised in Labeled LDA. 

One of the LDA derived models that use document tags is the Labeled LDA [20], which puts a 
one-to-one correspondence constraint between document tag and latent topic. A topic has a string 
label (caption) taken from a document tag that can be used for further inference. Unlike the 
unsupervised LDA, Labeled LDA (LLDA) incorporates supervision with the above mechanism; 
hence, there is no need to specify K as it is determined by the number of the unique tags in the corpus. 
This solves the problem of specifying K by trials, as is often the case in topic modeling frameworks: 
There is no clear-cut method to specify the number of clusters of the topics [61]. However, LLDA 
consumes a lot of RAM as the number of tags increases, such that typical RAM may not be sufficient 
for extreme labeling (more than 10.000 unique tags). 

The work presented in section 4.3 introduces Aggregate Topic Model (ATM) to help the event 
geoparser learn the semantic relatedness of terms and event structure based on document tags within 
the large corpus. ATM discovers topic words and its tag labels by doing sufficient partitioning and 
training each partition using LLDA. Using the model, the training can be done in smaller chunks of 
dataset; hence, the RAM consumption is much less and is able to handle tens of thousands of tags. 
This aggregated topic model will be used to construct semantic gazetteer along with word2vec 
unsupervised word embedding model [62] to assist the widely used conditional random field (CRF) 
sequence labeler to provide better precision and recall of the event trigger classification. 

3. Geospatial News Event Extraction Corpus 

The objective of this corpus is to be the material of experiment from which we can gain 
improvement by integrating event extraction framework into the geoparsing. To the best of our 
knowledge, there is not yet any news corpus that provides both the correct geographical 
disambiguation as well as event extraction labels and that is suited to training and testing, much less 
one in Bahasa Indonesia. The criteria that we looked for in the news dataset was (1) that it covered 
major geospatial events (2) that it resolved all place names to the correct coordinate and 
administrative entities, and (3) that it had event-semantics in form of annotations which emphasize 
on numerical arguments of certain semantic roles slots within an event. For example, MUC corpus is 
one of the first event extraction corpus. The ACE 2005 corpus has explicit event structure and 
coreference task. However, it has very few numerical (NUMBER or NUMEX) argument slots, and it 
is not toponym disambiguated nor geoparsed/grounded to a coordinate level. TR-CONLL [63], 
Wiktor, and GeoWebNews [64] provided geoparsed corpus, but they did not provide any event 
extraction annotations, let alone numerical arguments. The spatiotemporal and thematic corpus of 
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Wang [4] has event semantic textual information (non-numerical) and geoparsed from 50 CNN news 
report about hazard; unfortunately, it is not an open dataset, and we are not able to access it. In the 
Indonesian context, there is the 5W1H-style news extraction and corpus [46] but without geoparsed 
toponyms and detailed event semantics. These circumstances motivated us to contribute one in 
Bahasa Indonesia. 

We first used the corpus of our earlier work [19], which consisted of 13 years of news articles 
(2005-2018), totaling 645.679 documents with 109.279,585 words and around 150.000 unique tokens 
from Indonesian online news site detik.com. This corpus (which will be referred as 650K documents 
corpus or large corpus) can be seen as a multilabel classification corpus, with document tags treated 
as labels. There are 44.280 unique document tags, with an average of around 2 labels per document. 
All of these articles are in Bahasa Indonesia (Indonesian formal language); however, the toponyms 
mentioned are often international as is (for example when referring to fire in California) or reference 
adaptation of Bahasa Indonesia. This corpus follows Zip’s Law with a slope close to -1, as with many 
other corpora in other languages [65], indicating the similar basic usage distribution pattern of our 
corpus (see Figure 4). 

 
Figure 4. Zipf curves for the Indonesian corpus (650K). 

Secondly, we selected a random subset of the corpus of the four most mentioned geospatial 
events according to Aggregated Topic Model count of topic suggestions: (1) flood (banjir), (2) quake 
(gempa), (3) fire (kebakaran), and (4) accident (kecelakaan). An ontology similar to Figure 3 for each of 
these events is developed to guide the annotation. It is important to note that the model of event 
should permit multiple instances of event at multiple locations within single news story. We use four 
annotators to work with 927 sentences from 83 articles from the subset corpus from detik.com, 
kompas.com, and cnnindonesia.com. The annotations are done for each token following the BIO-
annotation tagging format. The tags are organized into the following tags code (Table 2). This smaller 
set of corpora (which will be referred as small corpus or event geoparsing corpus) contains part-of-
speech tags, entity types annotation, event annotation, geospatial disambiguation annotation, and 
pseudo-location tags, which are obtained from InaNLP tagger. 

In Bahasa Indonesia, the morphological derivation that modifies noun to adjective applicable to 
a toponym is not known. For example, in the sentence, “Saya warga Indonesia yang tinggal di 
Indonesia” (I am Indonesian citizen who lives in Indonesia), the first instance of word Indonesia is 
seen as an adjective that modifies the noun “warga” (citizen), constructing a demonym (noun) or 
adjective people related to a place). Notice that there are no morphological differences between the 
two-word forms (morphemes), unlike in English, which uses the -ian suffix (i.e., Indonesia vs. 
Indonesian). In the annotated corpus however, the POS tag (output from InaNLP) does not yet 
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differentiate between the two and simply labels them as NNP (proper noun). This posed a challenge 
for the pseudo-location identification task as it has to differentiate locative toponyms (which should 
be present as NNP instead of JJ/adjective). 

The entity annotation tags contain labels of event triggers (EVE), event arguments (ARG), 
organization (ORG), and locations (LOC). Typical (NER) Person (PER) label is not used because a lot 
of this information is already represented by the argument entity (e.g., OfficerOfficial-Arg) in our 
corpus. The second annotation is that of Event triggers subtypes. Each of the events is further 
annotated into either four main event tag codes (Fire, Accident, Quake, and Flood) or secondary event 
codes that will not be included in our evaluation (Rain, Jam, Landslide, Meeting, and Evacuate). 

Table 2. Entity tags description. 

Tag Description and Examples 

EVE 

Description:  
Event Triggers: word(s) that indicate an event has occurred. 
Examples: 
1. Flood happened in... 
(Banjir terjadi di...) 
2. ....that the fireworks from the band triggered fast-moving fire flame. 
(... bahwa kembang api dari band, memicu kobaran api yang bergerak cepat.) 

ARG 
 

Description: 
Non-named arguments related to event. May include numerical or non-numerical 
arguments. 
I. Event Arguments for Flood 
1. Height of flood: Height-Arg 
The height of the water reached 2 m... 
(Ketinggian air yang mencapai 2 m...) 
2. Number of Victim (Deaths): DeathVictim-Arg 
At least 41 people killed due to the flood. 
(Sedikitnya 41 orang tewas akibat banjir ini.) 
3. Number of Evacuee: Evacuee-Arg 
Indonesian Field Hospital handled 9 victims and 346 evacuees. 
(Rumah Sakit Indonesia di Nepal Tangani 9 Korban dan Tampung 346 Pengungsi) 
4. Number of Affected houses: AffectedHouse-Arg 
Flooding caused 4991 houses to be submerged... 
(Banjir menyebabkan sekitar 4.991 rumah terendam...) 
II. Event Arguments for Quake: 
1. Magnitude (Richter or MMI unit): Strength-Arg 
A 5.2 Richter earthquake shakes Maluku waters. 
(Gempa 5,2 SR Goyang Perairan Maluku) 
2. Quake Center: Central-Arg 
The coordinates of the earthquake are -3.4 Latitude 128.41 Longitude... 
(Titik koordinat gempa ada di 3.4 Lintang Selatan dan 128,41 Bujur Timur) 
3. Quake Depth: Depth-Arg 
The depth of the earthquake was 10 km. 
(Kedalaman gempa 10 km) 
III. Event Arguments for Fire: 
1. Number of houses burnt: HouseBurnt-Arg 
A house at Mampang Prapatan burned... 
(Sebuah rumah di Mampang Prapatan Terbakar) 
2. How many fire hotspots: Point-Arg 
There are nine fire spots... 
(ada sembilan titik api...) 
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3. Units of fire truck dispatched: DispatchedTrucks-Arg 
...12 firetrucks were dispatched. 
(...12 damkar dikerahkan) 
IV. Event Arguments for Accident: 
1. License plates: Plate-Arg 
... which has B 9667 ZX license plate. 
(...bernopol B 9667 ZX) 
2. Vehicle type involved: Vehicle-Arg 
...hit hard on the back of the truck. 
(menghantam keras bagian belakang truk) 
3. The length of jam: Length-Arg 
The accident caused up to 2 km traffic jam. 
(kecelakaan mengakibatkan kepadataan kendaraan hingga 2 km) 
4. Origin or Destination: FromTo-Arg 
The accident caused up to 2 km traffic jam. 
(kecelakaan mengakibatkan kepadataan kendaraan hingga 2 km) 
V. Others (may appear in more than one events above): 
1. Numerical Monetary loss: MonetaryLoss-Arg  
The loss is estimated around hundreds of millions of rupiahs. (Kerugian diperkirakan 
mencapai ratusan juta rupiah.) 
2. Time or Date of event: Time-Arg 
-...at 15.25 WIB. 
(...pukul 15.25 WIB). 
-… as reported by AFP news agency on Friday (3/25/2011) 
(...dilansir kantor berita AFP, Jumat (25/3/2011)) 
3. Cause of event: Cause-Arg  
Example:...caused by River Kuncir overflow. 
(...disebabkan luapan air Sungai Kuncir) 
4. Affected families: AffectedFamily-Arg 
…which caused 935 families to be affected. 
(...menyebabkan 935 KK terdampak) 
5. Street names: Street-Arg 
There is a fire near Street KS Tubun Raya behind the Bimo Hotel 
(ada kebakaran di dekat Jl KS Tubun Raya belakang hotel Bimo) 

ORG 

Organization (such as military or civilians)  
Rank/Positions within it (pangkat/jabatan) 
Useful for classifying Pseudo LOCs. 
Example: BPBD and TNI... 
(BPBD bersama TNI...) 
Governor of East Java... 
(Gubernur Jawa Timur...) 

LOC 

Location or Toponym in types of GPE (geopolitical entities) administrative unit. 
Ranging from lowest administrative level to highest (Village, Sub District, 
Municipalities/Cities, Province, Country). Pseudo Locaction will be labeled as PLOC. 
Example: The flood again submerged 11 villages in Gandusari Subdistrict, 
Trenggalek Regency. 
(Banjir kembali merendam 11 desa di kecamatan Gandusari Kabupaten Trenggalek.) 

O Other Entities 

The next set of annotations are the argument types for each relevant event. We are following the 
ACE approach by defining subtypes of Events and Arguments tags. This provides the event codes 
and semantic contexts of each argument (see Table 2, ARG row). 
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The next two annotation sets focused on the geographical aspects. We disambiguated (geocode) 
each of the LOC entities manually and also provided the list of disambiguation options along with 
the approximate central coordinate (centroid) of that geographical feature. Most of these LOC tags 
are in the form of Geo-Political Entities (GPE) definition of ACE, so it is desirable to use an 
administrative-based gazetteer to reference them. Moreover, there appears to be a recurring pattern 
of specifying toponyms in a consecutive and hierarchical manner, starting from the lower level to the 
higher level (e.g., from village, up to the province level). 

Among the open data gazetteers that are available for use are Open Street Map (OSM), GADM, 
and Geonames. GADM provides a very close coverage of GPE administrative taxonomies. It divides 
the world into 5 administrative levels: country (Level 0), provincial (Level 1), municipalities (Level 
2), sub-district (Level 3), and village (Level 4). Even though the total entries or coverage are not as 
comprehensive as Geonames, it is more rigorously structured in the sense that every upper 
administrative area is always composed of smaller elements. This is in accordance with the 
containment heuristic that we have discussed earlier and will then be used in smallest administrative 
level feature discussed in Section 4.2. Geonames also has hierarchical information, but there are gaps 
in many entries. For example, a sub-district named Madiun is listed as direct child of East Java 
province, whereas it should be listed under a regency before province. OSM excels on specifying the 
street-level toponyms; however, in the context of the visualization of large-scale geospatial event, we 
felt this advantage is too fine-grained. 

In light of these advantages, we choose to use GADM as the main reference for the location 
coordinates annotations and for the geoparsing later on. However, GADM does not provide a 
centroid for parent nodes, so we calculated them on the basis of the average latitude and longitude 
of all centroids under the node and put it next to the location tagged tokens. We initially used BRAT 
tool to annotate the corpus; later, it was converted to a plain text representation manually. 

The last part of the corpus construction is the discussion of pseudo-location entities (PLOC) 
definition, which is an important label component in the annotation. In the corpus, we assigned 
pseudo-location entities to be precise location entities (toponym) which are inhabited place names 
and a GPE which is locative and precise as explained in the introduction section. For an article 
document offering more fine-grained toponyms for an event (smaller area location), this will be 
normally selected compared to bigger area. This is a sensible heuristic for many events such as Flood, 
Accident, and Fire. Particular exception was made with regard to a huge area-related events such as 
Earthquakes, where it is possible to be affected across large administrative areas such as provinces or 
even countries. 

The second locative reference criteria meant to discriminate real geographic location attribute 
with associative references. For example, in this sentence: “USGS (United States Geological survey) 
stated that the quake situated in area around 68 km to the west of Namche Bazar, near Mt. Everest”, 
the United States is a valid toponym but only associative. It clearly does not refer to a locational 
attribute of the quake event (pseudo-location). Hence, it would be labeled with PLOC, while Namche 
Bazar would be labeled as LOC. Mt. Everest is not labeled as LOC as we do not consider it as 
administrative region. Instead, uninhabited places or geographical landmarks are typically labeled 
as ARG label with proper semantic roles attached. 

The small corpus is named Event Geoparsing Indonesian News Dataset and has been published 
in IEEE Dataport [66] with the following label statistics of entities, events, and arguments (Table 3) 

Table 3. Label statistics within Event Geoparsing Indonesian News Dataset. For brevity, the B- and I- 
prefix variation for each tag are collapsed into one label category. 

Type Label Count Type Label Count 
Entity LOC 454 Argument Duration-Arg 31 

PLOC 627 AffectedVehicle-Arg 23 
EVE 700 AffectedFacility-Arg 8 
ARG 2016 AffectedField-Arg 10 
ORG 571 AffectedPeople-Arg 15 
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Event ACCIDENT-EVENT 131 AffectedVillage-Arg 35 
FLOOD-EVENT 207 AffectedRT-Arg 4 
QUAKE-EVENT 128 AffectedFacility-Arg 8 

FIRE-EVENT 180 Time-Arg 422 
LANDSLIDE-EVENT 18 Published-Arg 79 

MEETING-EVENT 4 Reporter-Arg 39 
JAM-EVENT 16 Evacuee-Arg 20 

Argument Vehicle-Arg 121 Spot-Arg 9 
Hospital-Arg 50 DeathVictim-Arg 201 

Place-Arg 1070 WoundVictim-Arg 29 
Street-Arg 159 MonetaryLoss-Arg 3 
Cause-Arg 52 OfficerOfficial-Arg 408 

FromTo-Arg 57 Depth-Arg 28 
Plate-Arg 70 Central-Arg 89 

4. Approach 

This section describes the approach, the design, and the implementation of the proposed event 
geoparser prototype. It will be started with the formulation (Section 4.1) and followed by the 
architectural view, which explains the stages of the geoparsing (Section 4.2). These are the key 
concepts and essential for event geoparser model summarized in Figure 5. The next discussion of this 
section is to improve the generalizability of the model by doing semantic exploration to derive the 
semantic gazetteer (purple box on the figure) using a supervised topic model for news corpus that 
has multiple tags for each of the articles (Section 4.3-4.4). This section will be finished with the 
discussion of Spatial Minimality algorithm improvement in order to disambiguate toponyms on 
degenerate polygon cases (Section 4.5). Note that toponym disambiguation is located on Step 2 
(Geocoding/Toponym Resolution on Figure 5). 

4.1. Task Formulation 

As noted in Section 2, we are going to use and extend the definition from Mordecai to further 
include several additional variables in the model. First, we reiterate the model of a sentence, which 
is composed of n tokens, 𝑋 = ൛𝑤ଵ,𝑤ଶ, … 𝑤௡,ൟ . The binary-valued variable 𝑦௜(௞)  which shows the 
location toponym of an event is now supplanted by n-ary label output variables, a, t, r, p, with the 
following definitions, related to word 𝑤௜: 𝑎௜(௞) = ൜𝑞 if 𝑤௜ is the token that has entity type 𝐴௤for event k 0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (1) 

where 𝐴௤  is a q-th element from set of all entities types, 𝐴 = {𝐴ଵ, 𝐴ଶ, . . . 𝐴௡}.  Entities types 
comprised of event trigger entities (“B-EVE” and “I-EVE”), organization entities (“B-ORG” and “I-
ORG”), arguments (“B-ARG”, “I-ARG”), and locations (“B-LOC”,”I-LOC”). Note that we are using 
BIO notation in entity labels so the B/I prefix applied to each type indicates its position at the 
beginning of entities or inside them. Similarly, the event trigger type (t) and semantic role label type 
(r) each is expressed as 𝑡௜(௞) = ൜𝑞 if 𝑤௜ is an event trigger entity that has event trigger type 𝑇௤ for event k 0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (2) 

𝑟௜(௞) = ൜𝑞 if 𝑤௜ is an argument entity that has semantic role type 𝑅௤ for event k 0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (3) 

where T is set of all event trigger labels (also prefixed with BIO codes) such as “B-FLOOD-EVENT”, 
“I-QUAKE-EVENT” and R is set of all semantic role labels like “B-Height-Arg”, “I-DeathVictim-
Arg”, etc. (Please refer to Table 3 for all possible labels for semantic roles and event types). Next, we 
introduce an important variable for identifying the event geolocation. the pseudo-location labels 
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which subcategorize LOC entities into either pseudo-location (PLOC) or real location (LOC) each also 
prefixed BIO scheme: 𝑝௜(௞) = ൜𝑞 if 𝑤௜ is a location entity that pseudo-location type 𝑃௤ for event k 0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (4) 

Note that we do not limit verb word type as anchor word. Instead, it may be single multi-word 
non-verb entities that are deemed relevant [67]. 

Last but not least, is the 𝑔(௞) variable, which denotes the resolved geographic location entities 
(toponym) for an event k. Unlike the variables explained before, it does not represent sequence labels 
in the document. Instead it represents the geographic coordinate of true location(s) of the event; 
hence, the domain is geographic. In many news articles, it is possible that an event has several true 
locations, e.g., quake event can easily span multiple places or cities reported. Thus, the set of true 
location(s) are obtained by the process of resolving toponyms (geocoding) of the remaining location 
entities after discarding the pseudo-location entities associated with the event. 

These sets of variables a, t, r, p, g will then need to be linked with event e using the index k 
denoted as superscript; hence, the event location of e(௞)  is indicated by g(୩) , and its related 
arguments can be seen by examining 𝑟௜(௞) and so forth. In the case where there are more than one 
event instances of the same type found within an instance, it is likely that it needs to be co-referenced 
together. However, the topic of event coreference resolution is not our focus in this work as the 
strategies may vary for different domains, independent of the topic of event geoparsing. 

4.2. Three Stages of Event Geoparsing Workflow 

This section will describe our architectural, systematic approach for integrating geoparsing with 
event extraction to provide event-level resolution scope, which we like to refer as event geoparsing. 
We will first define the regular pipeline of geoparsing and describe the additional pipeline where the 
event extraction process takes place. We extended the regular workflow of GIR and geoparsing 
process following [64] and generalized from our discussion from an earlier section, by combining 
regular geoparsing stage with event extraction stage, and concluded with event-level scope 
resolution stage. 

In total, there are six steps grouped into three stages which are briefly discussed as follows. The 
first stage is the standard toponym-level geoparsing stage, which is comprised of the following steps: 

1. Geotagging, in which named literal geographical entities (toponyms) are recognized from 
other named entities. This is where the Named Entity Recognition is typically invoked to recognize 
location entities. 

2. Geocoding (or toponym resolution step) in which correct toponyms are disambiguated 
from other toponym candidates (potential referents) and then assigned correct geographic 
coordinate. This is obviously a toponym-level scope resolution and calculated using spatial 
minimality based algorithm. 

We are hoping to have a deeper integration of event extraction into geoparsing by extending 
those original two steps, in a more transparent flow of features unlike the typical combination of 
event coder + geoparser such as or TABARI/Leetaru or PETRARCH/CLIFF geoparser [68]. In 
particular, the model runs event extraction stage after the geoparsing stage (geotagging and 
geocoding), followed by event level scope resolution stage, as can be seen in dotted boxes in Figure 
5. This will provide event record data to be stored along with place data. The second stage is the event 
extraction stage, which comprises two steps: 

3. Event trigger classification. This step is to recognize the event triggers and provide event 
code label based on the detected class. 

4. Argument Extraction. This step is to recognize semantic roles within event and extract 
arguments, including numerical ones. 
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The final stage is to resolve the location of the event (event-level geoparsing). This stage is 
comprised of the following steps: 

5. Pseudo-location Identification. This step is to classify each LOC entities detected in the step 
1 into either PLOC (pseudo-location) or LOC (real location). 

6. Event coreference resolution. This step is to group several events of the same instance in the 
document into a single event structure. 

The entire process can be seen in the diagram on Figure 5, which will be described in more detail 
as follows for each stage. The geoparsing stage starts with geotagging step, which involves cleaning, 
sentence splitting, and tokenization of the small corpus. 

 

Figure 5. Integrated Event Extraction and Geoparsing: accept news document as input, resolving 
toponym and other entities (a), event triggers type (t), arguments (r), and event locations (g) from text. 
It is chaining geotagging with toponym resolution and event extraction. The system uses semantic 
gazetteer for features and regular expression rules learned from large corpus to increase the precision, 
recall, and geoparser accuracy. 

Every token is then looked up and matched to a gazetteer entry which will provide gazetteer 
detection feature, so a positive match inside the gazetteer correlates positively with toponym 
detection although not necessarily deduced to a detected toponym (the inference will be done by the 
CRF inference layer). We are using Global Administrative Areas (GADM) database [69] for the main 
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reference for the gazetteer. The secondary gazetteer is the US cities list obtained from 
Simplemaps.com. It enlists US cities names under every state in US. The US cities data entries do not 
exist in GADM albeit it is very often mentioned in the text. The reason is that GADM in the US context 
only stops at the second level without having cities listed. For example, city of Prescott inside Arizona 
state does not show up in GADM database. The county where Prescott is located is Yavapai County, 
and it is present in the database. The typical pattern in the news, however, does not reference county 
name, so the augmentation of GADM is needed for US areas. 

Similar to the approaches in many geotaggers, each sentence is then consulted to NLP Part-of-
speech (POS) tagger, so there is an obtained POS tags for a better improvement of the tagging process. 

For this purpose, we use InaNLP [70] that uses HMM based tagging for Indonesian language. 
The output of each word token within the sentence is a POS Tag derived from Penn’s Treebank POS 
Tag standard. We then use LSTM-CRF as sequence labeler to perform the entity extraction (which 
simultaneously provide the functionality of geotagging) with the POS Tag and Gazetteer detection 
feature (as baseline features) added with (1) event keywords and (2) regular expression rule features 
that are obtained from semantic gazetteer which will be described shortly. In this setting, the fitting 
and the training is done sentence by sentence where every token in the input sentence (X) shall be 
mapped into the label token (Y). 

The result from geotagging step is the following labels: LOCs (for each detected toponym) along 
with EVEs (event trigger), ARGs (event arguments can be numerical or string), and ORGs (named 
entity of organization). Each of these labels are prefixed with B and I, indicating beginning or inside 
the token, respectively. The output of this step is then carried forward to subsequent step to increase 
the later step performances. 

The second step is the geocoding process. This is done by invoking an algorithm that is based 
on the toponym resolution algorithm Spatial Minimality [12]. Each of the LOC entities detected on 
the first step will be having a resolved geographic coordinate and also administrative level attached. 
From this process, we obtain a binary feature called Spatial Administrative Level. Both of these 
features and the toponym resolution algorithm are discussed in more detail in Section 4.5. 

The event trigger classification step (step 3) is then commenced with entity features that have 
been extracted from an earlier step. The output (target variable) from event trigger classification is 
one of four major geospatial events tag for each EVE entities (ACCIDENT-EVENT, FIRE-EVENT, 
FLOOD-EVENT, and QUAKE-EVENT). This result will be subsequently fetched as an additional 
feature onto the Argument Extraction step (step 4) where each argument type (e.g., DeathVictim-
Arg) is inferred for each ARG entity. 

The next step (step 5) is Pseudo-location Detection, where every LOC entity is classified either 
as true location or pseudo-location one. The pseudo-location tags are also fit and tested using the 
results coming from earlier steps. However, as an important additional feature, we propose the use 
of smallest administrative level (SAL) feature to check whether a location entity is the smallest 
administrative level or not, in combination with other event semantics feature (event arguments and 
event types). This needs a result from the disambiguation (step 2) which uses geographic gazetteer 
and toponym resolution algorithm (SMCD-ADM). Note that all of these steps (with exception of step 
2) involve the use of combination of neural and discriminative model LSTM-CRF architecture (coded 
as green boxes on Figure 5) and would require initial training first by fitting to the training set. The 
performance of the sequential labeling will be discussed in the Result section. The complete list of 
features used within these stages is listed in Table 4. 

Table 4. Features for entity, event, argument, and pseudo-location identification. 

Category Feature 
Code 

Type and Source Features 

Event 
Keywords 

event Semantic Relatedness from 
ATM 

Binary feature Is_Event_Keyword(w): 
whether a word is included in shortlisted 
trigger words or not. Composed of four 
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(geospatial) events word bigrams list: 
flood, quake, fire, and accidents. 

 
Smallest 

Administrati
ve Level 

(SAL) 

sal Geographical Feature Is_SAL(t): whether a mentioned toponym 
has the smallest administrative level in 

the document 

Gazetteer 
Detection 

gaz Geographical Resource: 
GADM database + 

US_Cities 

Is_Toponym(w): a word is listed in 
Hierarchical Gazetteer or not. 

Regex for 
detecting 

arguments 

arg_ 
regex 

Semantic Similarity from 
Word2Vec & Semantic 
Relatedness from ATM 

Regex Rules, composed of the following 
rules to detect patterns of these types: 

1. Is_Time 
2. Is_Plate_Number 

3. Is_Coordinate 
4. Is_Numeric 

5. Is_Road 
6. Is_Geographical 

7. Is_Date 
8. Is_Day 

9. Is_Vehicle 
Regex for 
detecting 

organizationa
l entities 

org_ 
regex 

Semantic Similarity from 
Word2Vec 

Regex Rule, composed of the following 
rules to detect patterns of these types: 

1. Place Types 
2. Public Office Positions 

POS Tag postag Syntactic Resource: 
INANLP 

1. First level POS Tag (e.g., NN) 
2. Full level POS Tag (e.g., NNP) 

3. Word Form: is_Upper 
4. Word Form: is_Digit 

5. Word Form: is_TitleCase 
Entity entity Output labels from entity 

extraction step 
LOC, EVE, ARG, ORG 

Event event Output labels from event 
trigger classification step 

FLOOD-EVENT, FIRE-EVENT, QUAKE-
EVENT, ACCIDENT, EVENT 

Argument arg Output labels from 
argument extraction step 

(see Table 3) 

4.3. Analysis of the Topic and Event Space: Tying Themes to Geospatial Referenced Text 

With more than 44,000 unique document tags and counting almost 650,000 documents, our 
corpus offered a vast topic space [19], and we are mostly interested in the different types of geospatial 
events with their detailed attributes. As in every text document, there can be a lot of topics discussed 
in the news articles, each topic can have a typical characteristic: the semantics of information, the 
syntactic of delivering the information, the typical semantic roles of phrases within the sentences. 
These factors add up the dimensionality of the feature set. One of the popular ways to perform 
dimensionality reduction is the topic modeling model and its (mostly) unsupervised learning 
algorithms. LDA is the prominent and simple topic model which has grown into many derivations 
catering to different needs and characteristics. LDA is an unsupervised topic model and is commonly 
used to estimate topic distribution within corpus. However, since LDA is unsupervised and has no 
explicit tags, we base our work on LLDA, which is the supervised version of LDA with the document 
tags as the label. 

In this section, we are proposing Aggregated Topic Model (ATM), a supervised learning 
approach from document tags that aggregates the partitions of (also supervised) Labeled LDA 
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(LLDA) [20] results into a single topic model. The labels from this supervised approach are taken 
from tags of each document in the corpus. The objective for ATM is to provide a topic modeling tool 
while also solving the memory requirement of LLDA when dealing with a very large number of tags, 
without sacrificing the coherence of the produced topic sets. LLDA posits a single topic-word 
distribution for each unique tag (label) that it found in the document, leading to a huge memory 
requirement for very large number (more than 10.000) of tags, in which case can be considered as an 
extreme multi-label classification problem [59]. 

This approach pushes the number of topics (K) to tens of thousands, given the traditional tool 
that typically only manage K within tens or in hundreds. Caution needs to be taken as having too 
many topics will typically result in over clustering topics into a small and highly similar clusters [61]; 
hence, one important element of ATM is the merging of topics which have the same labels. 

Different topic labels having a similar top-words distribution can be found using topic_sim 
metric. This different topic label is still retained (not merged) and can serve as additional human-
readable caption for each topic. 

The ATM schema is described in notations that combine standard graphical model plate notation 
(Figure 6), extended with an aggregating process notion. We begin the description of ATM by some 
definitions, following the notation of [71]. Firstly, we define a set of topic models which is a collection 
of entire topic model partitions inferred by a labeled topic modeling training for N sessions where 
each of the sessions works on an equally sized partition of the dataset, 𝑇 = {𝛷ଵ, 𝛷ଶ, … , 𝛷ே} (5) 

Each topic set partition (𝛷௜) itself is defined as a set of topics obtained from a partition of Labeled 

LDA training (dashed box on the Figure 6), each having K topic: 𝛷௜ = {𝜑ଵ, 𝜑ଶ, … , 𝜑௄} (6) 

Each of the topic 𝜑 are further composed of term words which belong to that topic. In other words, 

a distribution of word probability given that topic, 𝜑௞ = 𝑝(𝑤|𝑧 = 𝑘) (7) 

Hence, each word has probability given we select a particular topic. 𝑝(𝑤|𝑧 = 𝑘) =  {𝑃φ௞(𝑤ଵ), 𝑃φ௞(𝑤ଵ), . . . , 𝑃φ௞(𝑤௩)} (8) 

We can implement 𝜑 as a dictionary; each of the entries is a unique word that has probability value. 

Next, we define the count of each topic and the document tag labels for each as follows: 𝐶 = 𝑐൫φ1൯, c൫φ2൯, … , c൫φ𝑘൯ (9) Λ = 𝜆൫φ1൯, 𝜆൫φ2൯, … , 𝜆൫φ𝑘൯ (10) 

Note that c(φ௞) is defined as count of words in any document (document m at word n) that has been 

assigned topic index k: 𝑐(φ௞)  =  |{ 𝑧 | 𝑧௠,௡ = 𝑘 }| (11) 
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Figure 6. Aggregated topic model plate notation and schema. 

Next, we are going to briefly describe the aggregation process to merge several labeled topic 
models into one. The aggregation process needs to use merging function between two topics that 
have the same labels (see Algorithm 1 (b)). The concept of merge is to recalculate the probability of 
each word component based on the weighted average of each word component given count of that 
topic (C). The output of ATM can be described as a semantic relatedness word vector, similar to the 
output of LDA/LLDA. However, ATM is able to manage all 44.280 unique labels in the main 650K 
corpus. 

This merging function will be invoked from inside the aggregate function (see Algorithm 1 (a))., 
which essentially looks for any two or more topics which have the same label and merges them. The 
number of the assigned topic is represented by the area of the square (Figure 7). Each of the boxes is 
a topic (φ); the area is defined by C(φ) that is still decomposable by the (semantically related) 
keywords that are represented by the top-words w1,w2,...,wv, variables which each have an area 
proportional to the probability of each word within that topic, Pφk(w1). This provides a selection of 
words that, along with word embedding selection, comprise our event keywords and regular 
expression features. 
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procedure aggregate: 
input:   
T: set of topics {𝛷ଵ..௄} 
C: topic assignments count for all topic {𝑐൫φ1..𝐾൯} 
Λ: set of labels of all topic {𝜆൫φ1..𝐾൯} 
output: merged topic model 𝑀 = {൫φ′1..𝐾൯} 

begin: 
 initialize M = {} 
 for each topic φ ∈ Φ: 
  if label 𝜆(φ) exists in M:  
    let φ௘௫௜௦௧௜௡௚  where 𝜆(φ𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔) =  𝜆(φ)  

    φ′ = merge(φ, φ௘௫௜௦௧௜௡௚) 

append φ′ into M 
   else  
    append φ into M, with adjusted C(φ′) 
  end if 
 end for 
end 
 

function merge(φ1, φ2): 
input:   𝛗𝟏, 𝛗𝟐: topics to be merged  
C: topic assignments count for all topic {𝑐൫φ1..𝐾൯} 
output: new topic φ′ 
begin: 
 create new φ′  which has all top-words from both φଵ, φଶ  

 let C௠௘௥௚௘ =  C(φଵ) + C(φଶ) 

 for each 𝑤 ∈ φଵ𝑎𝑛𝑑 𝑤 ∈ φଵ: 
  if w exists in both φ1, φ2: 

   let 𝑃ᇱ(𝑤) = ௉φ1(௪)×஼൫φ1൯+௉φ2(௪)×஼൫φ2൯஼೘೐ೝ೒೐   
  else if w exists only in φ1: 

   let 𝑃ᇱ(𝑤) = ௉φ1(௪)×஼൫φ1൯஼೘೐ೝ೒೐  

  else if w exists only in φ2: 

   let 𝑃ᇱ(𝑤) = ௉φ2(௪)×஼൫φ2൯஼೘೐ೝ೒೐  

  end if 
  append w into φ’   
 end for 
 set C(φᇱ) = C௠௘௥௚௘   

 return φ′ 
end 
 

(a) (b) 

Algorithm 1. Aggregate procedure (a) and Merge (b) function to form the aggregated model. 

The aggregated topics will have all a unique set of labels (tags) from all documents. In order to 
see find the most similar topic that will be useful in exploring the semantic relatedness of the corpus, 
we adapt the standard cosine similarity for two vectors, making it appropriate in the context of topic 
models top-words vector. This similarity metric can be used to cluster similar topics and for 
taxonomy use is later demonstrated at Section 5.3. 
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(a) (b) 

Figure 7. Treemap of Topic Proportions (a) and the top-words from Two Sample Topics (accident and 
fire) (b). The area shown on the left figure is determined by the number of topic assignments to that 
particular label/C(φ). The area shown on the right figure is determined by the probability of each 
word within that topic/Pφk(w1). 

4.4. Semantic Gazetteer for Event Keywords Feature and Numeric Argument Recognition 

The large corpus provides wealth opportunity, for supervised or unsupervised learning, for 
mining semantic relations between words for adding generalizability of the model that was trained 
from the smaller, more detailed corpus [34]. We use Aggregated Topic Model to learn the semantic 
relatedness between topic label and words and word2vec word embedding to learn semantic 
similarity between words. The keyword extracts handpicked from these exploration models form the 
semantic gazetteer, which serves as a lookup method or list of terms with regards to various concepts 
(part of domain ontology). The term “gazetteer” here should not be confused with traditional 
geographic gazetteer that enlists place names. We used the gazetteer to build two derived features 
from it: (1) event keywords feature and (2) regular expression strings, which will be described as follows. 

Event-keywords feature is a binary feature obtained from keyword lookup from a list of terms 
that is used as additional feature for generic classifiers designed for detecting event triggers and other 
arguments. For a matching keyword in the list, it will return “True”, otherwise it will simply return 
“False”. The structure of the Event-keywords feature is basically a set of lists of trigger keywords 
related to each major event that are obtained by selection of either top-words or most similar words 
or bigrams that have the most occurrences. The generated lists (see sample in Table 5) are created by 
three main methods, sorted by the probability or count, which will then be filtered manually: 

1. Semantically related terms given a topic label, which is produced by our Aggregated Topic 
Model. (n-top-words). 

2. Semantic similarity produced by Word2Vec [62] most_similar() function. 
3. Bigrams counts produced by NLTK package n-gram analysis. 

For example, the QUAKE-EVENT (“gempa” in Bahasa Indonesia) has the following set of keyword 
lists (Table 5). The generation of the words composing the list is automatic; however, it is filtered 
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manually for some words, that is, out of context or poorly generated. The calculated bigram is used 
mainly to supplement the I- (inside) entities detection. The first word in the bigram is the seed from 
the semantic relatedness and semantic similarity vector keywords (left and center column). The 
second word of the most counted bigram is then used as a feature for the labeling process. 

Table 5. Event keyword-features for quake event. 

Semantic Similarity Vector 
(Top 5) 

Semantic Relatedness 
Vector (Top 5) 

Bigrams and Count 
Vector (top 5) 

semantic similarity of 
“quake”/gempa: 

1. (“quake/gempa”, 0.753) 
2. (“shake/guncangan”,0.739) 
3. (“tremble/getaran”, 0.719) 
2. (“hurricane/topan”, 0.710) 

3. (“richter”, 0.693) 
 

semantic related of 
“quake”/gempa: 

1. (“shake/menggunca
ng, 0.00177), 

2. (“repeated/susulan”
, 0.00029), 

3. (“strength/kekuatan
”, 0.00013), 

4. (“scattered/berham
buran”, 8.917e-06), 

5. (“cracked/retak”, 
8.916e-06) 

bigrams of 
“quake”/gempa: 

 
1. (“earthquake/gempa 

bumi”, 3094), 
2. (“quake with 

magnitude/gempa 
berkekuatan”, 1993), 

3. (“repeating 
quake/gempa susulan”, 

1062), 
4. (“volcanic 

earthquake/gempa 
vulkanik”, 320), 

5. (“shallow quake/gempa 
dangkal”, 27) 

 

The semantic relatedness and similarity vector obtained from large corpus is also being used to 
build some regular-expression rule-based feature for entity and numerical argument recognition. 
This would improve the generalizability of the model, similar to the approach in [34]. An example of 
this feature is the is_geographical(w) argument feature as listed in Table 4, point 6. The function is 
basically a compiled regular expression pattern from the semantic gazetteer of geographical 
landmarks in Box 1. 

Box 1. Example regular expression for recognizing types of place names. Terms separated by | (or) 
are composed from semantic similarity from names of rivers, settlements, and mountains, 
respectively. 

 
The next use of concept keywords within semantic gazetteer is to build a regular expression to 

recognize arguments from text. This will be the arg_regex feature that the sequence labeler will use. 
The inspiration is from RED/REDEX [72], although we do not employ learner model to learn regex 
from data. Instead, we are using the handcrafted regex similar to the output of that learner. The rule 
of the regex can be illustrated in the diagram below (Figure 8). The main component is the numerical 
expression stated via various regex string of “\d” character class followed by unit (e.g., cm, meter, etc.) 
The expression also accepts ranged expressions such as (10-20 cm), of which the parser will take an 
average number later on. Moreover, a string numeric expression means that the regex will be able to 
detect patterns such as “tens of victims”. The capture group can be started or ended with role string 
such as “the height of” or “person killed”, which will translated to Height-Arg or DeathVictim-Arg 
by the argument extraction step. Some vague unit expression is also added to model notion of 
estimates such as “knee deep”. Note that instead of using regex directly to extract the values, we are 

(river|lake|sewer|riverbank|slope|ponds 

|settlements|villages|area|farm|mount|mountain|caldera|crater)(\s[A-Z]\w+) 
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using regex to build a feature to detect which portion of the document matches the argument for a 
particular event. The feature will be used by the sequence labeling framework. The reason is that the 
statistical sequence labeler will do more generalization and less “brittle” inference. 

4.5. Smallest Administrative Level (SAL) Geospatial Feature for Pseudo-Location Identification 

To address the problem of discriminating true location entities (LOC) to pseudo-location (PLOC) 
entities, we develop a feature which exploits results from the toponym resolution process, i.e., the 
smallest administrative level. The motivation assumes that news article will report the most precise 
toponym possible to report the location of the event. We first obtain the administrative level from all 
disambiguated place names. Then, we can find the maximum level for a document level. The 
motivation behind this feature is to prefer a precise location more than an imprecise location; hence, 
a level 2 administrative such as city names (Bandung, Jakarta) is more precise than the provincial 
level (level 1). However, this feature will be combined with the event semantic labels (i.e., event type 
labels and event argument labels) from the earlier stages so that the classifier algorithm can make 
prediction based on the peculiarity for particular event types. The consideration is that we observe 
events such as Earthquake, which tend to occur or affect several provinces or even countries; hence, 
larger administrative toponyms mentioned in the text can be seen as true location entities instead of 
PLOC. The feature is referenced as Smallest Administrative Level (SAL) within document scope that 
is resolved by the disambiguation process for each toponyms found in the document using spatial 
minimality (SM) (see Algorithm 2) and spatial minimality centroid distance administrative (SMCD-
ADM, Algorithm 3). SMCD-ADM is our modification derived from the elegant Leidner’s Spatial 
Minimality framework where: 

(1) The area calculation is replaced by the calculation of distance of points to its centroid 
(Centroid Distance). This is useful for speeding up the process and to avoid the degenerate cases where 
there are only two or less toponyms inside the document. In other words, the minimality of area is 
replaced by the minimality of the distance of polygon candidates to its centroid (see Figure 9). 

(2) The minimality of distance is adjusted by multiplying it by the administrative level of an 
area. Hence, the smaller administrative is a candidate referent, the less preferred it is. Note that this 
is the reverse principle from the smallest administrative feature to find out the smallest 
administrative area. This is because in this toponym resolution task, what is sought is the 
commonality of toponym mention, instead of the precision of the place mention on the Pseudo-
location Identification task. 

 
Figure 8. Regular expression to detect numerical argument. The argument typically either started or 
ended with the role keyword followed by various numerical quantities, followed by the unit of the 
argument. For example, “the accident left 2 people killed” will be extracted as 2 (numeric) people 
(unit) killed (role). 
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(a) Spatial Minimality (SM) on degenerate case. In the map, 
the toponyms that need to be disambiguated are “Banten” 
(A), “Jakarta” (B), and “Serang”, which have the two referents 
of “Serang, Banten” (C1) and “Serang, Pekalongan” (C2). The 
Area constructed by ABC2 is much smaller than ABC1 even 
though C2 is much farther due to the degenerate polygon of 
ABC2 which looks like a single line.  

(b) Spatial Minimality Centroid Distance (SMCD). 
Instead of preferring referent tuple, which constructs 
minimum area, SMCD prefers the minimum distance to 
the centroid for each tuple. In this strategy, there is no 
calculation of area as in original SM, so degenerate 
polygon cases can be avoided. In the above case, the ABC1 

was correctly selected because d1 < d2. 

Figure 9. Illustration of difference of strategies between original Spatial Minimality (a) and Spatial 
Minimality Centroid Distance (SMCD) on the (b). The SMCD-ADM is SMCD but with adjustment on 
the weight factor of the distance. 

 
Algorithm 2. Algorithm for finding Smallest Administrative Level feature using Spatial Minimality 
(SM) from [12]. 

Note that the smallest administrative level corresponds to the maximum integer indicated on 
administrative level field in the case of our chosen gazetteer (GADM) (the bigger the code number, 
the smaller region. Currently the largest number is 4, indicating village administrative level). Then, 
the binary feature is calculated by simply comparing whether the particular token toponym’s 
administrative level equals the smallest administrative level or not. The feature makes use of the 
output of spatial minimality algorithm to disambiguate document from the detected toponyms. 
Hence, basically it uses geometric minimality heuristics. 

function getSmallestAdministrativeLevel (D: document, 
G: gazetteer): 

output: smallest administrative level of the 
document 
begin: 
 initialize toponyms T = {} 
 T = extract location entities from D 
 DT = DisambiguateDocumentSM (T, G) 
 L = {} 
 for each t in DT : 
  adm_level = lookup administrative level  
    of t from G 
  append adm_level to L 
 return maximum adm_level from L 
end 
 

function DisambiguateDocumentSM( T: list of 
toponyms, G: gazetteer ):  
begin 
 for each t in T: 
    let 𝜏(t) = lookup set all possible candidate- 
        referents tuples from t in gazetteer 
  let S = cross product of 𝜏ଵ × 𝜏ଶ × … × 𝜏௡ 
  for each N-tuple C 𝜖 𝑆 do: 
   H = polygon from all centroids in C  
   A = Calculate area of H 
  return tuple C* that has minimum A from 
all tuple C  
end 
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Algorithm 3. Modified Spatial Minimality with Centroid Distance and adjustment factor based on 
Administrative level and adjustment constant M (SMCD-ADM). 

5. Experiments and Results 

As indicated earlier we approach the geotagging and event extraction as a sequence labeling 
problem. Geotagging problem in this work is cast as a subset of entity extraction, extracting the LOC 
entities as toponyms for the further steps. The entity extraction, event classification, argument 
extraction, and pseudo-location detection steps make use of the Conditional Random Field sequence 
labeler from the NCRF++ toolkit [73]. We configured a CRF inference layer that sits on top of 
(bidirectional) LSTM word sequence layer and did not use any character sequence layer. The LSTM 
layer functions as feature extractor, while the CRF is set up to capture dependencies of neighboring 
labels. We chose the BiLSTM-CRF as it is currently one of the state-of-the art model combinations 
[74], replacing regular linear chain CRF in our earlier attempt. We also used Glove [32] word 
embedding vector trained from the corpus on the bottom layer. Adam optimization (included in 
NCRF++) is used for all of the training session. Most importantly, all combination of features listed 
on Table 4 tested and fetched as handcrafted features to the NCRF++ training setting. The training of 
this model then commenced with 927 sentences, 16,444 tokens on subset of the large corpus with four 
main topic categories: Quake (24%), Accident (21%), Flood (30%), and Fire (25%). We evaluated the 
standard definition of precision, recall, and the F1-score on each of the steps above. 

5.1. Geotagging 

For the entity extraction, we then compare the model with baseline LSTM-CRF with gazetteer 
and POS tag features without including the event-keyword features and regular expression argument 
extractor. The inclusion of the two features is seen as a reasonable improvement. A similar approach 
is also taken for Pseudo-location detection. For the detailed set of features, please refer to Table 4. The 
entity extraction result is summarized in Table 6. 

Table 6. Entity extraction performance (step 1). 

Entity 
(Baseline) LSTM-CRF with 

Gaz + Postag Features 

(Proposed) LSTM-CRF with 
Org_regex + Arg_regex + 

Ev_Keywords + Gaz + Postag Features 
P R F1 P R F1 

LOC 0.929 0.897 0.912 0.951 0.897 0.923 
ARG 0.762 0.767 0.764 0.857 0.709 0.776 
ORG 0.697 0.847 0.765 0.787 0.847 0.816 
EVE 0.850 0.888 0.869 0.855 0.925 0.889 

micro avg 0.797 0.830 0.813 0.863 0.811 0.836 

function DisambiguateDocumentSMCD-ADM(T: list of toponyms, G: gazetteer):  

begin 
 for each t in T: 
  let 𝜏(t) = lookup set all possible candidate references from t in gazetteer G 
 let S = cross product of 𝜏ଵ × 𝜏ଶ × … × 𝜏௡ 
 for each N-tuple C 𝜖 𝑆: 
  Cd = calculate centroid of all points in C using G 
  maxP = find point p 𝜖 𝐶 that has maximum distance to centroid Cd 
  maxdistc = distance of maxP to centroid Cd 
  adm_levelc = administrative level of maxP  
  adjusted_maxdistc = (adm_levelc + 1) ∙  𝑀 ∙ maxdistc 
 return tuple C that has smallest adjusted_maxdistc 
end 



ISPRS Int. J. Geo-Inf. 2020, 9, 712 29 of 39 

 

macro avg 0.809 0.850 0.828 0.863 0.845 0.851 
weighted 

avg 
0.801 0.830 0.814 0.865 0.811 0.834 

Event extraction stage result which is composed from event trigger classification step (Table 7) 
and event argument extraction step (Table 8) is done by training CRF again, but with the predicted 
Entities fetched from the earlier Entity Extraction step. 

Table 7. Event trigger classification performance (step 3). 

Event 
(Baseline) LSTM-CRF with Gaz 

+ Postag Features 
(Proposed) LSTM-CRF with 

Entity Features 
P R F1  P R F1  

ACCIDENT-
EVENT 

1.000 1.000 1.000 0.962 1.000 0.980 

FIRE-EVENT 0.806 0.967 0.879 0.968 1.000 0.984 
FLOOD-
EVENT 

0.886 0.861 0.873 1.000 0.972 0.986 

QUAKE-
EVENT 

0.885 0.793 0.836 1.000 1.000 1.000 

micro avg 0.885 0.900 0.893 0.983 0.992 0.988 
macro avg 0.894 0.905 0.897 0.982 0.993 0.987 

weighted avg 0.889 0.900 0.892 0.984 0.992 0.988 

Table 8. Argument extraction performance (step 4). 

Event 
(Baseline) CRF with Gaz + 

Postag Features  
(Proposed) CRF with 

Entity + Event Features 
P R F1  P R F1  

DeathVictim-Arg 0.615 0.381 0.471 0.760 0.905 0.826 
Vehicle-Arg 0.625 0.435 0.513 1.000 0.913 0.955 
Height-Arg 0.875 0.700 0.778 0.833 1.000 0.909 

OfficerOfficial-Arg 0.711 0.678 0.694 0.849 0.839 0.844 
Time-Arg 0.927 0.962 0.944 1.000 1.000 1.000 
Place-Arg 0.873 0.832 0.852 0.900 0.884 0.892 
Street-Arg 0.708 0.810 0.756 0.526 0.952 0.678 

Strength-Arg 0.952 1.000 0.976 1.000 1.000 1.000 
micro avg 0.822 0.766 0.793 0.869 0.912 0.890 
macro avg 0.786 0.725 0.748 0.859 0.937 0.888 

weighted avg 0.812 0.766 0.785 0.884 0.912 0.894 
The above results displayed the baseline performance vs. highest performance of particular 

combination of features for each step of the event geoparsing which use sequence labeling (steps 1, 
3, 4) with the exception of step 5. We are separating the result of step 5 due to its central importance 
in this process. To see which features combinations contribute the most to the performance of the 
system, we conducted the ablation test for each of the four sequence labeling steps where sequence 
labeling is applied. There are 9 features in total to be tested, of which some subset of possible feature 
combinations feature the label displayed on the leftmost column (testing and analyzing all 29 
combinations is prohibitive for our resource). The enabled features are represented by blue box, while 
the disabled features are represented by grey box. The performance of the particular combination is 
displayed in the chart with the range of weighted F1 score performance (based on enabled features) 
between 0.65 and 0.9 (vertical axis on the top graphic of Figure 10). The entity label produced by the 
entity extraction step is referred as entity feature. Similarly, the result for the event trigger 
classification step is called event feature, and the result from argument classification is argument 



ISPRS Int. J. Geo-Inf. 2020, 9, 712 30 of 39 

 

feature. The arg_regex and org_regex is both the regular expression feature derived from keywords 
from semantic gazetteer, for the detection of numerical argument and organization, respectively. 

 
Figure 10. Ablation Test of weighted F1 score from nine combinations of features of four geotagging 
steps (step 1, 3, 4, and 5 from Figure 4). Active features are marked as blue cells (below part of the 
graphic). Missing score points means such combination of features is not applicable on that particular 
step. 

5.2. The Pseudo-Location Classification 

In this fifth step experiment setting, the objective is that every toponym in the corpus is attached 
a correct label, indicating whether it is a valid, precise toponym that serves as true locational reference 
label (LOC) or a pseudo-location (PLOC). This is the 𝑝௜(௞) variable explained in Section 4.1. From the 
ablation test, the use of geospatial information of SAL feature (Section 4) is very effective to boost the 
F1 score. The combination of argument and event feature with SAL feature will add to the performance 
by a significant margin. This shows that event semantics can actually aim to the identification of 
pseudo-location entities, which is a crucial task in our event geoparser model. The result of this step 
is presented on Table 9. 

Table 9. Pseudo-location identification (step 5). 

Tag 
(baseline) LSTM-CRF with Gaz + Postag Feature 

(Proposed) LSTM-CRF with 
Sal + Event + Arg Feature 

P R F1  P R F1  
PLOC 0.835 0.784 0.809 0.971 0.879 0.923 
LOC 0.528 0.655 0.585 0.809 0.948 0.873 

micro avg 0.713 0.741 0.727 0.908 0.902 0.905 
macro avg 0.681 0.720 0.697 0.890 0.914 0.898 

weighted avg 0.733 0.741 0.734 0.917 0.902 0.906 

To provide a more illustrative case for this task, we inspected the output from step 3, step 4, and 
step 5 of the event geoparsing workflow and found interesting instances of pseudo-location 
identification. One of the labeled sentences is displayed on Figure 11. The sentence is a news snippet 
about an accident of a trailer truck in Demak regency which happened while on its way to Kudus 
regency. Geotagging step and geocoding step of the first stage and second stage have been 
performed, and we are focusing to the Step 5 (of the third stage) of this discussion. On this step, if we 
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remove the information from the event semantics (event argument and event trigger features), the 
geoparser fail to see that Kudus is not the location of the accident event (i.e., non-locative). Both are 
seen as valid literal toponyms. Thus, it labeled both toponyms as correct locations of the accident 
event (LOCs) whereas Demak is the locative one. However, with the inclusion of a feature from Step 
4 (arg) and Step 3 (event), the geoparser correctly identified the real location of the event). In 
particular, step 4 produced the label for Kudus FromTo-Arg (the origin or destination of the vehicle) 
instead of Place-Arg, indicating destination instead of location of event. This is in accordance to our 
observation in the news stories that the event semantics for accident (ACCIDENT-EVENT) often has 
such argument role (the supposed destination of vehicle). The Central Java (Jawa Tengah) is the 
province of both cities, and it is also a correct, locative toponym. However, due to lack of precision 
of that toponym (i.e., not precise), it is correctly marked as PLOC. To be able to differentiate this, the 
inference algorithm was assisted by information about the smallest administrative level of Step 2, 
which requires the use of toponym resolution algorithm with hierarchical gazetteer due to some 
ambiguities of Kudus and Demak. With the proposed workflow, the final stage of the process then 
resolves the accident event location coordinate to City of Demak, Jawa Tengah (−6.875, 110.652) by 
identifying out two PLOCs (Kudus and Jawa Tengah). 

 
Figure 11. Event geoparser correctly assigned the real LOC label to Demak and pseudo-location PLOC 
label to Kudus with the help of event argument (step 4) and event trigger feature (step 3) outputs. 
Entity tags from Step 1 output are omitted for clarity. 

5.3. Aggregated Topic Model 

There are two main variants of LDA solver that we use, the Gibbs Sampler and Variational 
method. MALLET implements Gibbs sampler while the Gensim toolkit uses Variational method. 
Gibbs sampling generally provides better quality of topic model. The quality of topic model can be 
measured using some different metric. The earliest method uses perplexity metric [58] while the latter 
works often use the topic coherence metric, introduced in [75]. The one used in this experiment, topic 
coherence, is a metric that measures the quality of the produced topic model given by the co-
occurrence of the top words in a particular topic. The more coherence scores towards zero, the higher 
the probability of co-occurring top-words of a topic within the corpus; thus, it generally means the 
higher quality of the topic discovered. The topic coherence metric (UMass) is described as 

𝐶𝑜ℎ(𝑡, 𝑉௧) = ෍ ෍ 𝑙𝑜𝑔 𝐷(𝑣௠௧, 𝑣௟௧) + 1𝐷(𝑣௟௧)௠ିଵ
௟ୀଵ

ெ
௠ୀଶ  (12) 

where 𝐷(𝑣) represents document frequency, i.e., the number of documents that has word v at least 
once. 𝐷(𝑣ଵ, 𝑣ଶ) is the co-document frequency, defined as a number of documents which have both 
words 𝑣ଵ, 𝑣ଶ. Thus, the coherence metric (Coh) is calculated based on co-document frequency of each 
m top words pairs for topic t. 
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We compared the coherence metric using the following approach: 

1. LDA implementation of MALLET (LDA via Gibbs Sampler) [76]; 
2. LDA implementation of Gensim (LDA Variational Bayes) [77]; 
3. Labeled LDA (LLDA) code that is implemented inside MALLET [76]; 
4. Aggregated Topic Model. 

The result from this comparison is listed in the table above (Table 10). In terms of coherence 
metric, our proposed method is placed better than LDA VB K = 600 and LDA Gibbs K = 100. However, 
K is much higher than the counterpart. The Labeled LDA that was tested on our system (32 GB RAM) 
crashed due to insufficient memory if being initialized with K more than 15,000 labels. 

Table 10. Topic coherence metric from topic models (lower coherence score is better). 

Top words Model K 
Coherence 

Flood Topic Quake Topic 
20 Labeled LDA (LLDA) (15K only) 2,588 −201.01 −187.46 
20 Aggregated Topic Model (ATM)  44,280 −393.96 −394.31 
20 LDA Gibbs K = 100 100 −421.87 −424.72 
20 LDA Gibbs K = 600 600 −285.51 −397.41 
20 LDA VB K = 600 600 −453.82 −417.77 

To explore some thematic space from the corpus, we are interested in obtaining some taxonomy 
for popular topics. The resulting proposed topic model from the corpus can easily be queried for the 
top words based on the topic label obtained from document tag (𝜑௞) and also the topic similarity 
using the algorithm. From the seed topic label (for example “jakarta flood”/“banjir jakarta”), we limit 
to the five most similar topics, each having ten of their top-words as a cut off. The result is then 
displayed as a tree structure in Figure 12. Obtaining this result is not doable straightforwardly from 
the Labeled LDA because the memory limitation on the number of unique document tags. 

 
Figure 12. Taxonomy generated (translated) by topic similarity metric from seed root node (topic tag) 
“banjir_jakarta” (jakarta_flood). The leaf nodes are the top words of their respective parent topic. The 
generated tree is limited to the 5 most similar topics. 

5.4. Disambiguation and Toponym Resolution 

We test the SMCD-ADM with the baseline disambiguation method based on spatial minimality 
heuristic introduced by Leidner [12]. We also use the one-referent-per-discourse heuristic, meaning that 
several instances or tokens of the same toponym will be resolve to a single referent throughout 
document. The accuracy is calculated by dividing the correct disambiguation with the number of 
toponyms tested. The number of unique toponyms tested is slightly different, as there is a limitation 
that spatial minimality cannot work with less than three points in the candidate tuple. The result is 
presented on Table 11. 
  

flood_jakarta 
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Table 11. Toponym resolution performance (accuracy) (step 2). 

Algorithm Spatial Minimality SMCD-ADM 
Toponyms tested 791 792 

Correct Disambiguation 561 588 
Accuracy 0.70 0.74 

5.5. Auto Generation of Rich Thematic Map from Single Article 

The last experiment is more of an exploratory task which captures the information in form of 
thematic choropleth map. The task is to fetch text of the flood topic through the entire (extended) 
event extraction geoparsing workflow, obtaining tagged entities, event triggers, arguments, and 
pseudo-locations. The article of our choice contains several events of the same type at several places, 
and each has numerical arguments describing measurements of the event. From our observations, 
these types of articles are pretty common in the corpus. 

The numerical arguments and the location entities (after discarding all pseudo-locations) are 
linked through the same sentence index, and the arguments are extracted and parsed and 
appropriately projected onto the map only from a single document. In the case of the article about 
flood report, the main arguments are the height of the flood (Height-Arg, in centimeters) in several 
areas in Jakarta. If there are several numbers within the span of the argument, these numbers will be 
averaged before they linked to a particular location. We use Geopandas toolkit for visualization of 
the thematic map using the extraction result and filter the query with geo dataframes in South Jakarta 
and East Jakarta. 

The basemap was provided from GADM all countries data. The overlay waterway data of river 
Ciliwung (blue line) is obtained from petajakarta.org. The extraction visualization result can be seen 
in the diagram on Figure 12. 

6. Discussion 

In the first and second experiment, we are testing the combination of features for the three stages 
of event geoparsing. The first stage can be considered as standard geotagging using NER with some 
help from POS tagger component. In the first step, even though the model is equipped with event 
keywords features and regular expression rules compiled from semantic gazetteer, it had improved 
entity recognition by a small margin of 2.46% (weighted F1 on first entity extraction step on Table 6). 
The second step (event trigger classification) resulted in 10.76% improvement (see Table 7). In the 
third step (argument extraction on Table 8), the improvement margin was 13.88%. The small 
improvement margin in the first step can be explained to the relatively standard entity extraction 
task, which can already be performed well with existing methods. However, as we continue along 
the downstream stages (which use features from the earlier stages including semantic labels such as 
event label and event arguments), the results gained get more significant. Thus any accuracy gained 
in the earlier stage is important to the downstream stage, as observed in many extraction works (e.g., 
[34] or [78]). This is much more apparent to the last stage which is arguably the centerpiece of the 
event geoparser requirement to separate pseudo-location from the real location of the event. It can be 
seen that the pseudo-location identification task had been improved significantly in order to 
discriminate the true location of an event vs. its pseudo-location. The use of event semantics, i.e., 
event labels (from Step 3) and argument (from step 4) combined with geospatial feature (SAL from 
Step 2) eventually improved the performance by a substantial margin. From the ablation test we 
tested, if we use only dd SAL geospatial feature, it will only increase around 6,2% from the baseline 
performance. If we include the argument feature, it would add more significant performance, up to 
22.9%. Including the event feature will further increase the F1 score, outperforming the baseline 
gazetteer and postag feature by 23.43% margin. This shows that event semantics supplied by the 
event extraction methods from our proposed event geoparsing stages are able to improve geoparsing 
with event-level scope resolution. The inspection of the event geoparser’s output from Section 5.2 
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also supported this hypothesis, which also answers the problem posed in Section 2.3 regarding the 
ability to identify both locative and precise LOC entities. 

The list of event keywords and both of the arg/org regex features that had been derived from 
semantic gazetteer are able to improve the recall as they provided related and similar keywords that 
might not be seen in the development set, thus preventing overfitting that might hinder model 
generalization. The inclusion of those features only works well for the first and second stages of the 
extraction (approximately 2.77% and 4.44%, respectively). 

The third experiment shows that Aggregated Topic Model (ATM) can serve as an alternative 
topic model due to the capability of holding a large number of K within the Labeled LDA setting. 
This is especially useful when dealing with memory problem of LLDA with a large number of labels 
(extreme labeling problem) that we often find in web news portals or social media. The ATM can still 
provide decent coherence, even better than LDA (Gibbs sampling version with K = 600), despite the 
large number of topics that it needs to handle. The coherence of ATM, however, is less than LDA or 
LLDA with lower K setting. From the ablation that we conduct in Section 5.1, the addition of the 
handcrafted feature that uses information from keywords derived from semantic exploration added 
performance around 3-19% for each step. 

The event extraction framework used in this work is still using local, per sentence features, 
except (1) the tags result for each step  and (2) the SAL of the document where the feature must be 
computed per document (global) after a toponym disambiguation is performed. The work of [78] and 
[34] uses global features and a joint model to perform the event extraction task, and its integration is 
worth to pursue. Moreover, it is worth to mention that the task of event extraction can be structured 
(due to its similarity) as dependency parsing task, with semantic roles representing the dependent 
entities to the event anchors or trigger [79]. 

With all the event geoparser components put in place, we then have the choropleth map 
visualized automatically for flood topic (Figure 13) on a single document. Darker tone means higher 
water level (Height-Arg), which is only one of the argument types extracted (along with number of 
AffectedVillage-Arg and other numerical arguments). The Cause-Arg is also extracted with value 
“Kali Ciliwung” (Ciliwung River), which is represented by the blue line overlaid on top of the 
choropleth map. The interplay between extracted event semantics and inferred geospatial location 
provided can be seen. This may be used as richer data for generating various thematic maps and 
further geospatial analysis. Arguably, looking at the thematic map is easier and faster for delivering 
geospatial information across to the human reader. The map can be considered as an exploratory 
analysis to augment the geospatial event information presented in text and gives the reader a better 
understanding of it. The ability to efficiently extract and map information from a single document 
without the need of multi-documents aggregation or retrieval methods shows a potential use case of 
event-level scope resolution geoparser. 
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Figure 13. Visualization sample from a single article with result from our proposed Event Geoparser. 
The source article is displayed and tagged with colors, indicating arguments, event trigger, and 
pseudo-location/real-location label for every detected toponym. 

7. Conclusion 

Geoparsing and event extraction are both active research topics and have been around for more 
than a decade. The recent works on geoparsers are more equipped with natural language processing 
and machine learning techniques to better cope with the sheer size of unstructured text data. 
However, even in the modern geoparsers landscape, little has been studied on integration of 
geoparsing with event extraction framework (or vice versa) for the event geolocation needs, 
especially in dealing with the resolution on the event-level scope where existing geoparsers are only 
coupled with independent event coder component in a separate, opaque fashion. 

The work described in this paper described a novel approach that tightly integrates geoparsing 
and event extraction in three stages. In particular, it shows how the integration of event semantics 
with geospatial based features benefited the event geoparsing workflow by substantially improving 
the pseudo-location identification which is crucial to the task of resolving the event-level resolution 
scope. The integrated event extraction framework provides event semantics (event types and 
arguments) which is beneficial to the main goal of event geolocation, which also enables the 
extraction of numerical arguments at particular disambiguated toponym, which provides richer 
semantic context for further processing. This in turn would be useful for many Geographical 

Extracted Pseudo LOCs entities 

(lat,long): 

1. Jakarta Raya,Indonesia  

(-6.197602429787846, 

106.83139222722116) 

2. Jakarta Timur,Jakarta 

Raya,Indonesia 

(-6.253493193386638, 

106.88971076153182) 

3. Jakarta Selatan,Jakarta 

Raya,Indonesia (-6.256679776683385, 

106.81568629190677)') 
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Information Retrieval applications, as suggested by the thematic map generation example only from 
a single document. 

We also augmented the geoparser with the Aggregated Topic Model as a semantic exploratory 
tool from a large multilabeled corpus, which is typical on the news sites. The ablation test shows that 
the event keywords derived from ATM and word2vec are able to improve the generalizability of the 
model. The coherence test shows an acceptable performance of ATM even with a very large number 
of topics (K). Thus, it is a valuable tool for exploring semantic relatedness especially with multi 
labeled corpora. 

Moreover, contributed by this work is the event geoparsing news corpus in Bahasa Indonesia, 
which offered a new testbed for extraction of events and event arguments along with geoparsing 
task. This may serve to expedite the research of further event extraction framework. Even though the 
domain for this geoparser is news articles in Bahasa Indonesia, we believe that the proposed event 
geoparsing model is useful in other languages as well, given a good enough corpora. In the future, 
we plan to develop a pipeline which integrates a visual GIR system as additional component to the 
extraction and geoparsing method described here, and which serves automatically generated 
thematic maps from attribute data. In terms of the model’s architecture, casting (most of) event 
geoparsing tasks as pipeline of sequence labeling tasks which will be solved by LSTM-CRF model 
works well with the categorical corpus. It may be supplanted by joint, structured prediction models 
for better performance. This particular result served as evidence that integration of geoparser method 
(disambiguation to the correct administrative level and coordinate) with event extraction technique 
is useful to resolve geoparsing at event-level scope of resolution. Lastly, it must be noted that the 
integrated event extraction as described will add several layers of processing. This may be a 
disadvantage in terms of runtime of execution of the model, especially in large scale settings such as 
in GDELT or ICEWS scale. 

Author Contributions: Agung Dewandaru is responsible for the conceptualization of the research, 
implementation and experiments. Dwi Hendratmo Widyantoro envisaged the extraction process and advised 
about the revised neural method. Saiful Akbar contributed on the result analysis and error analysis.  All authors 
have read and agreed to the published version of the manuscript. 

Funding: This research was partially supported by P3MI-ITB program. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Himmelstein: M. Local search: The Internet is the Yellow Pages. Computer 2005, 38, 26–34, 
doi:10.1109/MC.2005.65. 

2. Wunderwald, M. NewsX: Event Extraction from News Articles. Master’s Thesis, Dresden University of 
Technology, Dresden, Germany, 2011. 

3. Gelernter, J.; Balaji, S. An algorithm for local geoparsing of microtext. GeoInformatica 2013, 17, 635–667, 
doi:10.1007/s10707-012-0173-8. 

4. Wang, W.; Stewart, K. Spatiotemporal and semantic information extraction from Web news reports about 
natural hazards. Comput. Environ. Urban. Syst. 2015, 50, 30–40, doi:10.1016/j.compenvurbsys.2014.11.001. 

5. Freifeld, C.C.; Mandl, K.D.; Reis, B.Y.; Brownstein, J.S. HealthMap: Global Infectious Disease Monitoring 
through. J. Am. Med. Inform. Assoc. 2008, 15, 150–157, doi:10.1197/jamia.M2544.Introduction. 

6. Purves, R.; Clough, P.; Jones, C.B.; Arampatzis, A.; Bucher, B.; Finch, D.; Fu, G.; Joho, H.; Syed, A.K.; Vaid, 
S.; et al. The design and implementation of SPIRIT: A spatially aware search engine for information 
retrieval on the Internet. Int. J. Geogr. Inf. Sci. 2007, 21, 717–745, doi:10.1080/13658810601169840. 

7. Gritta, M.; Pilehvar, M.T.; Collier, N. A pragmatic guide to geoparsing evaluation. Lang. Resour. Eval. 2020, 
54, 683–712, doi:10.1007/s10579-019-09475-3. 

8. Woodruff, A.G. (GIPSY) Georeferenced Information Processing System. J. Am. Soc. Inf. Sci. 1994, 45, 1–44. 
9. Gritta, M. Where Are You Talking About? Advances and Challenges of Geographic Analysis of Text with 

Application to Disease Monitoring. Ph.D.; Thesis, University of Cambridge, Cambridge, UK, 2019. 



ISPRS Int. J. Geo-Inf. 2020, 9, 712 37 of 39 

 

10. Bo, A.; Peng, S.; Xinming, T.; Alimu, N. Spatio-temporal visualization system of news events based on GIS. 
In Proceedings of the IEEE 3rd International Conference on Communication Software and Networks, Xi’an, 
China, 27–29 May 2011; pp. 448–451, doi:10.1109/iccsn.2011.6014089. 

11. Grover, C.; Tobin, R.; Byrne, K.; Woollard, M.; Reid, J.; Dunn, S.; Ball, J. Use of the Edinburgh geoparser for 
georeferencing digitized historical collections. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 3875–
3889, doi:10.1098/rsta.2010.0149. 

12. Leidner, J.L.Toponym resolution in text: Annotation, evaluation and applications of spatial grounding of 
place names, The University of Edinburgh, 2008. 

13. Amitay, E.; Har’El, N.; Sivan, R.; Soffer, A.; Web-a-Where: Geotagging Web Content, in SIGIR ’04 
Proceedings of the 27th annual international ACM SIGIR conference on Research and development in 
information retrieval, 2004, pp. 273–280. 

14. Karimzadeh, M.; Pezanowski, S.; MacEachren, A.M.; Wallgrün, J.O. GeoTxt: A scalable geoparsing system 
for unstructured text geolocation. Trans. GIS 2019, 23, 118–136, doi:10.1111/tgis.12510. 

15. Gritta, M.; Pilehvar, M.T.; Collier, N. Which Melbourne? Augmenting Geocoding with Maps. Proceedings 
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) 
2018, 1, 1285–1296, doi:10.18653/v1/p18-1119. 

16. D’Ignazio, C.; Bhargava, R.; Zuckerman, E.; Beck, L.; CLIFF-CLAVIN: Determining Geographic Focus for 
News Articles, Proc. NewsKDD Data Sci. News Publ., 2014. 

17. Lieberman, M.D.; Sperling, J.; Washington, D.C.; STEWARD: Architecture of a Spatio-Textual Search 
Engine, In Proceedings of the 15th annual ACM international symposium on Advances in geographic 
information systems, 2007, no. c. 

18. LDC, ACE (Automatic Content Extraction) English Annotation Guidelines for Events V5.4.3 Linguistic 
Data Consortium, 2005, Available online: https://www.ldc.upenn.edu/collaborations/past-projects/ace. 

19. Dewandaru, A.; Supriana, S.I.; Akbar, S. Event-Oriented Map Extraction From Web News Portal: Binary 
Map Case Study on Diphteria Outbreak and Flood in Jakarta. 2018 5th International Conference on Advanced 
Informatics: Concept Theory and Applications (ICAICTA) 2018, 72–77, doi:10.1109/icaicta.2018.8541345. 

20. Ramage, D.; Hall, D.; Nallapati, R.; Manning, C.D. Labeled LDA. Proceedings of the 2009 Conference on 
Empirical Methods in Natural Language Processing Volume 1-EMNLP ’09 2009, 248–256, 
doi:10.3115/1699510.1699543. 

21. B.; Technologies, CLAVIN. Available online: https://github.com/Novetta/CLAVIN. 
22. Teitler, B.E.; Lieberman, M.D.; Panozzo, D.; Sankaranarayanan, J.; Samet, H.; Sperling, J. NewsStand. 

Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in geographic information systems 
GIS ’08 2008, 2008, 1,, doi:10.1145/1463434.1463458. 

23. Andogah, G.; Bouma, G.; Nerbonne, J. Every document has a geographical scope. Data Knowl. Eng. 2012, 
81–82, 1–20, doi:10.1016/j.datak.2012.07.002. 

24. Li, H.; Srihari, R.K.; Niu, C.; Li, W. Location normalization for information extraction. Proceedings of the 19th 
international conference on Computational linguistics, 2002, pp. 1–7. 

25. Srihari, R.K.; Li, W.; Cornell, T.; Niu, C. InfoXtract: A customizable intermediate level information 
extraction engine. Nat. Lang. Eng. 2006, 14, 33–69,, doi:10.1017/s1351324906004116. 

26. P. A. Schrodt and K.; Leetaru, GDELT: Global Data on Events, Location and Tone, 1979-2012, Int. Stud. 
Assoc. Meet., pp. 1–49, 2013. 

27. Leetaru, K.H. Fulltext Geocoding Versus Spatial Metadata for Large Text Archives: Towards a 
Geographically Enriched Wikipedia. D-Lib Mag. 2012, 18, 1–23, doi:10.1045/september2012-leetaru. 

28. Lee, S.J.; Liu, H.; Ward, M.D. Lost in Space: Geolocation in Event Data. Politi. Sci. Res. Methods 2018, 7, 871–
888, doi:10.1017/psrm.2018.23. 

29. Handbook of Computational Approaches to Counterterrorism. Handbook of Computational Approaches to 
Counterterrorism 2013, doi:10.1007/978-1-4614-5311-6. 

30. Halterman, A., Massachusetts Institute of Technology Political Science Department Linking Events and 
Locations in Political Text Andrew Halterman, Massachusetts Institute of Technology, 2018. 

31. Imani, M.B.; Chandra, S.; Ma, S.; Khan, L.; Thuraisingham, B. Focus location extraction from political news 
reports with bias correction. 2017 IEEE International Conference on Big Data (Big Data) 2017, 1956–1964, 
doi:10.1109/bigdata.2017.8258141. 



ISPRS Int. J. Geo-Inf. 2020, 9, 712 38 of 39 

 

32. Pennington, J.; Socher, R.; Manning, C. Glove: Global Vectors for Word Representation. Proceedings of the 
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 2014, 1532–1543,, 
doi:10.3115/v1/d14-1162. 

33. Halterman, A. Geolocating Political Events in Text. Proceedings of the Third Workshop on Natural 
Language Processing and Computational Social Science 2019, 29–39. 

34. Yang, B.; Mitchell, T.M. Joint Extraction of Events and Entities within a Document Context. In Proceedings 
of the Proceedings of the 2016 Conference of the North American Chapter of the Association for 
Computational Linguistics: Human Language Technologies; Association for Computational Linguistics 
(ACL), 2016; pp. 289–299. 

35. Leidner, J.L.; Lieberman, M.D. Detecting geographical references in the form of place names and associated 
spatial natural language. SIGSPATIAL Spéc. 2011, 3, 5–11, doi:10.1145/2047296.2047298. 

36. Kwok, K.L.; Deng, Q. GeoName. the HLT-NAACL 2003 workshop 2003, doi:10.3115/1119394.1119398. 
37. Morton-Owens, E.G., A Tool For Extracting And Indexing Spatio-Temporal Information From Biographical 

Articles in Wikipedia, 2012, Available online: 
http://www.cs.nyu.edu/web/Research/MsTheses/owens_emily.pdf. 

38. Schilder, F.; Versley, Y.; Habel, C., Extracting spatial information: Grounding, classifying and linking 
spatial expressions, Proc. Work. Geogr. Inf. Retr. SIGIR 2004, pp. 1–3, 2004, Available online: 
http://publikationen.stub.uni-
frankfurt.de/frontdoor/deliver/index/docId/9959/file/VERSLEY_Extracting_spatial_information.pdf. 

39. Lan, R.; Adelfio, M.D.; Samet, H. Spatio-temporal disease tracking using news articles. Proceedings of the 
Third ACM SIGSPATIAL International Workshop on the Use of GIS in Public Health, HealthGIS 2014, 14, 31–38, 
doi:10.1145/2676629.2676637. 

40. Monteiro, B.R.; Davis, C.A.; Fonseca, F. A survey on the geographic scope of textual documents. Comput. 
Geosci. 2016, 96, 23–34, doi:10.1016/j.cageo.2016.07.017. 

41. Bensalem, I.; Kholladi, M.-K. Toponym Disambiguation by Arborescent Relationships. J. Comput. Sci. 2010, 
6, 653–659, doi:10.3844/jcssp.2010.653.659. 

42. Markert, K.; Nissim, M., Towards a corpus annotated for metonymies: The case of location names, Proc. 
3rd Int. Conf. Lang. Resour. Eval. Lr. 2002, pp. 1385–1392, 2002. 

43. Hogenboom, F. An Overview of Event Extraction from Text, Comput. Sci. 2011. 
44. Pustejovsky, J. et al., The Specification Language TimeML, pp. 1–15, 2004. 
45. Wang, W.; Zhao, D.; Wang, N. Chinese News Event 5W1H Elements Extraction Using Semantic Role 

Labeling. 2010 Third International Symposium on Information Processing 2010, 484–489, 
doi:10.1109/isip.2010.112. 

46. Khodra, M.L. Event extraction on Indonesian news article using multiclass categorization. 2015 2nd 
International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA) 2015, 
1–5. 

47. Rauch, E.; Bukatin, M.; Baker, K. A confidence-based framework for disambiguating geographic terms. 
Proceedings of the HLT-NAACL 2003 workshop on Analysis of geographic references, 2003, 50–54. 

48. Leidner, J.L.; Sinclair, G.; Webber, B. Grounding spatial named entities for information extraction and 
question answering. the HLT-NAACL 2003 workshop 2003, doi:10.3115/1119394.1119399. 

49. Habib, M.B.; Van Keulen, M. A Hybrid Approach for Robust Multilingual Toponym Extraction and 
Disambiguation. Computer Vision 2013, 7912 LNCS, 1–15, doi:10.1007/978-3-642-38634-3_1. 

50. Nissim, M.; Matheson, C.; Reid, J.; Recognizing Geographical Entities in Scottish Historical Documents., 
Proc. Work. Geogr. Inf. Retr. SIGIR 2004, 2004. 

51. Adams, B.; McKenzie, G.; Gahegan, M. Frankenplace. In Proceedings of the Proceedings of the 24th 
International Conference on World Wide Web 15 Companion; Association for Computing Machinery 
(ACM), 2015; pp. 12–22. 

52. Buscaldi, D. Toponym Disambiguation in Information Retrieval. Toponym Disambiguation in Information 
Retrieval 2015. 

53. Smith, D.A.; Crane, G. Disambiguating Geographic Names in a Historical Digital Library. Computer Vision 
2001, 2163, 127–136, doi:10.1007/3-540-44796-2_12. 

54. Wei, W.W., University of Iowa Automated spatiotemporal and semantic information extraction for 
hazards, The University of Iowa, IA, USA, 2018. 



ISPRS Int. J. Geo-Inf. 2020, 9, 712 39 of 39 

 

55. Wang, J.; Zhang, J.; An, Y.; Lin, H.; Yang, Z.; Zhang, Y.; Sun, Y. Biomedical event trigger detection by 
dependency-based word embedding. BMC Med. Genom. 2016, 9, 45, doi:10.1186/s12920-016-0203-8. 

56. Blei, D.M.; Carin, L.; Dunson, D.B. Probabilistic Topic Models. IEEE Signal. Process. Mag. 2010, 27, 55–65, 
doi:10.1109/msp.2010.938079. 

57. Řehůřek, R. Scalability of Semantic Analysis in Natural Language Processing, p. 147, 2011, Available online: 
http://radimrehurek.com/phd_rehurek.pdf. 

58. M., D.; Blei, A.Y.N.; Jordan, M.I., Latent Dirichlet Allocation, J. Mach. Learn. Res., 2003, 3, pp. 993–1022. 
59. Papanikolaou, Y.; Tsoumakas, G. Subset Labeled LDA for Large-Scale Multi-Label Classification 2017. 
60. Kang, D.; Park, Y.; Chari, S.N. Hetero-Labeled LDA: A Partially Supervised Topic Model with 

Heterogeneous Labels. Public-Key Cryptography – PKC 2018 2014, I, 640–655, doi:10.1007/978-3-662-44848-
9_41. 

61. Greene, D.; O’Callaghan, D.; Cunningham, P. How Many Topics? Stability Analysis for Topic Models. 
Public-Key Cryptography – PKC 2018 2014, I, 498–513, doi:10.1007/978-3-662-44848-9_32. 

62. 10.1162/153244303322533223. Appl. Phys. Lett. 2000, 1, 39, doi:10.1162/153244303322533223. 
63. Leidner, J.L. An evaluation dataset for the toponym resolution task. Comput. Environ. Urban. Syst. 2006, 30, 

400–417, doi:10.1016/j.compenvurbsys.2005.07.003. 
64. Gritta, M.; Pilehvar, M.T.; Limsopatham, N.; Collier, N. What’s missing in geographical parsing? Lang. 

Resour. Evaluation 2018, 52, 603–623, doi:10.1007/s10579-017-9385-8. 
65. Ha, L.Q.; Hanna, P.; Ming, J.; Smith, F.J. Extending Zipf’s law to n-grams for large corpora. Artif. Intell. Rev. 

2009, 32, 101–113, doi:10.1007/s10462-009-9135-4. 
66. Dewandaru, A. Event Geoparsing Indonesian News Dataset, IEEE Dataport, 2020. . 
67. Bender, E.M.; Lascarides, A. Linguistic Fundamentals for Natural Language Processing II: 100 Essentials 

from Semantics and Pragmatics. Synth. Lect. Hum. Lang. Technol. 2019, 12, 1–268, 
doi:10.2200/s00935ed1v02y201907hlt043. 

68. C. E.; Data, PETRARCH : The successor to TABARI, no. August 2014, pp. 1–3, 2019. 
69. GADM database of Global Administrative Areas, version 2.0, Berkeley, CA Univ. Berkeley, 2012. 
70. Purwarianti, A.; Andhika, A.; Wicaksono, A.F.; Afif, I.; Ferdian, F. InaNLP: Indonesia natural language 

processing toolkit, case study: Complaint tweet classification. 2016 International Conference On Advanced 
Informatics: Concepts, Theory And Application (ICAICTA) 2017, 1–5, doi:10.1109/icaicta.2016.7803103. 

71. Strohmeyer, D.; Eggers, T.; Haupt, M. Waverider Aerodynamics and Preliminary Design for Two-Stage-
to-Orbit Missions, Part 1. J. Spacecr. Rocket. 1998, 35, 450–458, doi:10.2514/2.3375. 

72. Murtaugh, M.A.; Gibson, B.S.; Redd, D.; Zeng-Treitler, Q. Regular expression-based learning to extract 
bodyweight values from clinical notes. J. Biomed. Informatics 2015, 54, 186–190, doi:10.1016/j.jbi.2015.02.009. 

73. Yang, J.; Zhang, Y. NCRF + + : An Open-source Neural Sequence Labeling Toolkit. In Proceedings of the 
Proceedings of ACL 2018, System Demonstrations; Association for Computational Linguistics (ACL), 2018; 
pp. 74–79. 

74. Lin, J.C.-W.; Shao, Y.; Zhang, J.; Yun, U. Enhanced sequence labeling based on latent variable conditional 
random fields. Neurocomputing 2020, 403, 431–440, doi:10.1016/j.neucom.2020.04.102. 

75. D.; Mimno, H.M.; Wallach, E.; Talley, M. Leenders, and A. McCallum, Optimizing Semantic Coherence in 
Topic Models, Proc. 2011 Conf. Empir. Methods Nat. Lang. Process., no. 2, pp. 262–272, 2011, Available 
online: http://mimno.infosci.cornell.edu/papers/mimno-semantic-emnlp.pdf. 

76. Mimno, D. Package ‘mallet,’ Compr. R Arch. Netw., pp. 1–11, 2015, Available online: https://cran.r-
project.org/web/packages/mallet/mallet.pdf. 

77. Řehůřek, R.; Petr, S. Software Framework for Topic Modelling with Large Corpora. ELRA, p. 45, 2010. 
78. Q.; Li, H.J.; L Huang, Joint Event Extraction via Structured Prediction with Global Features, 2013. 
79. D. McClosky, M. Surdeanu, and C. D.; Manning, Event extraction as dependency parsing, ACL-HLT 2011-

Proc. 49th Annu. Meet. Assoc. Comput. Linguist. Hum. Lang. Technol., vol. 1, pp. 1626–1635, 2011. 

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional 
affiliations. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


