
 

ISPRS Int. J. Geo-Inf. 2020, 9, 705; doi:10.3390/ijgi9120705 www.mdpi.com/journal/ijgi 

Article 

Developing Versatile Graphic Map Load Metrics 

Radek Barvir and Vit Vozenilek * 

Department of Geoinformatics, Palacky University Olomouc, 17. listopadu 50,  

771 46 Olomouc, Czech Republic; radek.barvir@upol.cz 

* Correspondence: vit.vozenilek@upol.cz; Tel.: +420 585 634 513 

Received: 4 October 2020; Accepted: 23 November 2020; Published: 25 November 2020 

Abstract: Graphic map load is a property of a map quantifying the amount of map content. It 

indicates the visual complexity of the map and helps cartographers to adapt maps and other 

geospatial visualizations to accomplish their purpose. Generally, map design needs to enable the 

user to quickly, comprehensively, and intuitively obtain the relevant spatial information from a 

map. Especially, this applies in cases like crisis management, immunology and military. However, 

there are no widely applicable metrics to assess the complexity of cartographic products. This paper 

evaluates seven simple metrics for graphic map load calculation based on image analytics using the 

set of 50 various maps on an easily understandable scale of 0–100%. The metrics are compared to 

values of user-perceived map load survey joined by 62 respondents. All the suggested metrics are 

designed for calculation with easy-accessible software and therefore suitable for use in any user 

environment. Metrics utilizing the principle of edge detection have been found suitable for a 

diversity of geospatial visualizations providing the best results among other metrics. 
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1. Introduction 

Map load, together with similar terms, e.g. map complexity or map density, is determined for 

quantifying the amount of map content. As Harrie et al. [1] consider, map complexity level can 

influence readability for users. Therefore, designing maps with the proper level of map load leading 

to adequate map complexity underlines its essential role for disciplines where effectivity of map-

reading process is crucial, e.g. crisis management [2]. Even though the term “map complexity” is 

more frequently used when aiming for map readability evaluation, “map load” is being applied in 

this paper as the amount of graphics does not necessarily fully describe the complexity itself [3]. Inour 

study, graphic map load is represented by several indices quantifying image representations of maps 

influenced by map symbols’ design and their distribution. 

By the time when researchers have been focusing on map load, there has been a consensus on 

dividing it to intellectual (also called information) map load and graphic (visual) map load [4]. While 

the intellectual map load is influenced by both map reader knowledge and skills as well as by 

surrounding conditions, the graphic map load is more comfortable to be measured and compared 

between map samples [5]. Although the concepts of graphic map load vary author by author [4,6], 

this map property can be interpreted as a fullness of a map covered by map symbols and labels 

influenced by their spatial density, parameters (shape, size, fill etc.) and spatial distribution [7]. There 

are also researchers recognising more specific types of map load, e.g. [6,8,9]. For example, few studies 

[10,11] recognise label density. On the other hand, Robinson [5] and Brophy [12] discuss even the 

distinctiveness of graphic and intellectual map load. This paper aims to establish a metric for effective 

quantification of graphic map load suitable for a wide variety of map styles. 

Map load concerning its equivalent terms have been studied by cartographers since the middle 

of the 20th century [5] and peaked in the 1970s and 1980s by studies of Sukhov [13,14] and others. In 
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the early stages of that research, there were many various approaches to examine map load through 

vector measurements based on the graph theory using vertex and edges count and length [6] or map 

symbols area coverage [10]. Those theoretical principles were though applicable only for specific 

cartographic methods, e.g., choropleth and isopleth maps. They were very limited or even impossible 

to be used for a wide range of other map types, as later discussed by Fairbairn [8]. 

Later, Shannon’s Entropy became the advanced approach applied especially for intellectual map 

load analysis. There were several studies based on the idea that a higher level of uncertainty with 

more unexpected information leads to more complex maps [15]. Entropy in terms of map load 

measurements and map generalization was deeply examined by Bjørke [16], Sukhov [13,14] and 

Neumann [17]. 

While many theoretical approaches enriched the concept of map load measuring, empirical 

experiments on map complexity have occurred much later and still lack [18]. Conversely, Brandli [19] 

examined unconventional methods for map load estimation by user tasks evaluation. Additionally, 

eye-tracking techniques [20–23] and compression rate [24] contributed in challenging research on 

map load. Unfortunately, those methods based on user testing cannot provide results comparable 

with results obtained at different time with another respondent group with different knowledge and 

skills. 

In recent years, the attention of researchers moved from intellectual to visual complexity as a 

more objective and comparable map property [18] and from vector to raster representations due to 

large scope of vector formats [25]. Ai et al. [26] recently presented a very simple metric using the 

count of specific pixels representing each symbol as a simple metric to estimate the map load of ocean 

flows. Analysing maps in an image file format also provide a method to evaluate such complex 

visualizations as topographic maps and city plans are [27]. In recent years, image processing aiming 

for map load measures became a primary way of map complexity estimation [18,24,28]. 

Moreover, measuring map load is significant not only in the mapmaking process. It may also be 

used to evaluate and compare existing maps and map collections to find differences between map 

producers, styles and different cultures of origin. There are large collections of both contemporary 

and historical maps, e.g., The United States Geological Survey (USGS) topographic map archive, UK 

Ordnance Survey, Swiss Siegfried maps, and Sanborn fire insurance map archive, etc. Those sources 

could be examined using spatiotemporal analysis, data mining and image analyses to retrieve map 

load values in a wider scope to reveal changing trends in cartography in terms of map loading and 

complexity [29]. Advanced approaches using neural networks for comprehensive map archives were 

studied by Petitpierre [30]. 

2. Materials and Methods 

Based on current trends and authors' ideas, they proposed three approaches to measure the 

graphic map load using raster map formats: average darkness (AD), image compression (IC) and 

edge detection (ED). All three approaches meet predefined conditions: 

 Are based on processing image representation of maps; 

 Are simple to apply widely; 

 Are measurable on an accessible platform in a short time; 

 Are applicable for a wide range of map styles; 

 Can be measured on a clearly delimited range of values. 

The first approach average darkness (AD) evolves the idea that the darker pixels occur in a map 

image relatively to empty bright pixels, the more loaded the map is. The image compression (IC) 

approach builds the on comparison of file sizes of uncompressed and compressed image files. In 

contrast, the third approach edge detection (ED) uses an edge detection filter to evaluate the presence 

of both hard and soft edges in a map image. The authors developed several metrics for these 

approaches and described them in Sections 2.2–2.4. All the metrics were performed in IrfanView 4.52 

software using built-in tools. 
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2.1. Reference Map Set and Its Evaluation of User-Perceived Map Load 

As no standard way to measure graphic map load exists, a user experiment was prepared to 

gain a set of user-perceived values of the graphic map load for comparing with the developed metrics 

based on digital image analyses. Firstly, a set of 50 various maps was collected for providing a 

reference set (Ref-Set) for both measured and perceived map load. The maps differed in their topic 

(topographic, geographic, thematic), purpose, map scale and size, aspect ratio, area covered, map 

style, level of generalization and age of origin. The set contained cadastral maps, military maps, maps 

with orthophoto base layer, old maps, urban plans, transport schemes, other thematic maps and 

sections of popular web map portals. The scope of diversity was considered wider than in other 

similar studies, and therefore sufficient to fulfil the goal of validating the metrics. All maps were 

obtained in a digital image format even though some of them were designed to be paper maps. From 

the total number of 50 maps, 18 maps were cropped from web-map applications, 22 were exported 

from a graphic or GIS software and 10 maps were scanned. All the digital images of the maps were 

collected and stored in the 8-bit depth for each of the red, green and blue (RGB) channels resulting in 

24 bit per pixel (BPP) in total, which is the most common structure of storing digital images. 

Further, testing of user-perceived map load (UP) followed up to obtain a reference sample of 

map load values. Then the sample was used to be compared with metrics’ measurements. The sample 

of 62 respondents joined the experiment comprising both people with various levels of cartographic 

education (ranging from first-year students of cartography up to experienced cartographers) and 

people without previous cartographic knowledge nor skills. There were 22 respondents with no 

previous cartographic education (36% of the total number), 17 graduates of a five-month-long basic 

course of cartography and geographic information systems (GIS) (27%) and 23 well-experienced ones 

designing maps regularly on a weekly basis at the time of the evaluation (37%). 

The experiment always began with a brief introductory into graphic map load meaning 

presented to the users. Then, a subset of twenty-five maps from the Ref-Set was displayed for two 

seconds each to illustrate the scope of map load in the Ref-Set. The reason was to prevent the 

respondents from the relative comparison of maps in subsequent evaluation. After this freewatching, 

each individual respondent watched each of the 25 maps for 18 seconds and during this time they 

evaluated the graphic map load of each map shown on the stimulus (slide showing a map). They 

wrote down their subjective perceived value of graphic map load in a scale ranging from 0 to 100% 

(stored as value LUP ∈ <0;100%>). Moreover, they subjectively estimated if the map was either 

subloaded, overloaded or loaded adequately to the expected map purpose by ticking one of those 

possibilities. These subjective evaluations were stored as LSE ∈ {subloaded; loaded adequately; 

overloaded}. The time of 18 seconds was set after the consideration that around 6 seconds are 

necessary to watch the map layout and evaluate the visualisation methods used, another 6 seconds 

to process the ideas (to think about the percentage of map load) and another 6 seconds to write the 

values down and get ready for another stimulus. This assumption was also examined in a small pre-

testing joined by 5 respondents, all indicating this time was sufficient to fulfil the task. The count of 

25 of the 50 maps per respondent was chosen to prevent the respondents from getting bored and 

inattentive by the long duration of the experiment and so to avoid receiving inaccurate answers in 

the latter part of the experiment. The experiment composed of a short introduction, task description 

and both the freewatching and the evaluating part took usually 12 to 15 minutes, which fits the 

attention span described commonly in psychological research [31,32]. 

Each map was displayed in full extent and a detailed cutout in this part of the experiment to 

cover both global and accurate way of map perception (Figure 1). The total number of 62 sets of 

records of LUP values and subjective evaluations LSE of graphic map load adequacy was collected. 

Finally, few details about the respondents themselves were collected. Respondents recorded their 

evaluations into pre-printed paper forms, which were then aggregated into a digital file for further 

processing. 
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(a) (b) 

Figure 1. User experiment in progress (a) with an example of map stimuli in its second phase (b). 

The same Ref-Set, whose map load was first subjectively evaluated by respondents and marked 

as LUP, was also measured using metrics based on image analytics described in Sections 2.2–2.4. 

Values provided by the metrics were then compared with the average user-perceived values using 

Pearson correlation coefficient followed by calculating t-statistics and p-value, and Euclidean 

distance. The LUP values categorised to three populations according to LSE were also evaluated using 

Kruskal–Wallis nonparametric test. 

2.2. Measuring Map Load Using Average Darkness Approach 

The AD approach was based on the average pixel darkness of a map (Figure 2). The metric 

principle of AD comes from an assumption: the darker map, the more graphically loaded the map. 

The AD approach considers that maps mostly have a bright background while the map symbols are 

performed in darker colours. Therefore, the more content there is present in a map, the darker the 

map is supposed to be. In contrary, for mostly empty maps, the light background is expected to cover 

most of the map area and the average darkness is lower. This approach evolves the old principle of 

map load calculation [10] used mostly for topographic maps with a standardised map key. Some up-

to-date thematic maps, though, use various graphic styles and colour schemes including inverse-

design principle which is expected to be problematic for map load evaluation. Even though, still the 

majority of maps including the thematic ones use the principle the more intensive phenomenon the 

darker (more intensive) colour. The AD metric’s principle could be likened to how much ink would 

be necessary to print the map in black and white relatively to how much ink would be necessary to 

print the black area of the same size. 

 

Figure 2. Principle of the average darkness (AD) metric. 



ISPRS Int. J. Geo-Inf. 2020, 9, 705 5 of 16 

 

Each image file standing for a map from the Ref-Set was processed in IrfanView 4.52 software 

to obtain values of graphic map load according to AD metric. The average pixel brightness was 

computed by the histogram tool. The software calculated the brightness of each pixel as 0.299R + 

0.587G + 0.114B (representing multiple of each RGB channel value). The received number was on a 

scale 0–255 where 0 represented black and 255 white colours. The LAD (representing the graphic map 

load according to AD metric) value needed to be transformed Equation (1): 

��� =
���%

���
∙ (255 − ���), (1)

where: BRT represents the average pixel brightness index displayed in IrfanView. 

2.3. Measuring Map Load Using Image Compression Approach 

Another approach for graphic map load measurements was developed considering the 

difference in compression effectivity. The IC metrics used a ratio of compressed to uncompressed 

image file size (in kB) representing each map from the Ref-Set. Various image file formats and their 

compressed forms were examined, resulting in metrics IC1–IC3. The IC1 metric calculates a ratio of 

the size of slightly compressed JPG file (quality 90/100) to the size of uncompressed TIF file, while 

the IC2 metric was using highly compressed JPG file (quality 20/100) in the numerator instead. The 

IC3 metric quantified the size ratio of TIF compressed by LZW algorithm to uncompressed TIF file. 

All image format transformations were processed in IrfanView and map load values LIC1, LIC2 and LIC3 

were calculated Equations (2)–(4): 

���� =
������

����
, (2)

���� =
������

����
, (3)

���� =
�������

����
, (4)

where: 

 s represents respective image file size in kB 

 JPG90 is a map image stored in JPG format with quality 90/100, JPG20 with quality 20/100 

 TIFLZW is a map image stored in TIF format with LZW compression 

 TIF represents a map image stored in uncompressed TIF file format 

2.4. Measuring Map Load Using Edge Detection Approach 

The edge detection (ED) approach uses a filter to detect edges in map images. In this experiment, 

a fuzzy approach was used taking into account sharp as well as soft edges, unlike in some related 

articles, e.g. [18], with applying binary principle distinguishing edge and non-edge pixels. The 

principle of the ED metric is that the more and the sharper edges in a map, the higher graphic map 

load it is. While large areas covered by the same colour make the map simple, the colour transitions 

represented by neighbouring map symbols make the map more complex. Some researchers [18,27,33] 

also describe this idea. Three metrics ED1–ED3 were designed. The first step in all of them consisted 

of measuring the map load value LED using a built-in filter to convert each map image into an edge 

detection image. Brighter colours in the edge detection image indicated sharper edges (Figure 3). 



ISPRS Int. J. Geo-Inf. 2020, 9, 705 6 of 16 

 

 

Figure 3. Edge detection image of one of the maps from the Ref-Set. 

The edge detection image was then processed similarly to the AD metric (see Sections 2.2) by 

investigating the average brightness of average pixel (Figure 4). As bright pixels represented more 

loaded parts of a map and dark ones the less loaded parts, the average pixel values were just shrunk 

to scale 0–100% instead of 0–255. The calculation process of map load LED1 is presented in Equation 

(5): 

���� =
���%

���
∙ ���, (5)

where: 

 EDD represents the average pixel brightness of the edge detection image displayed in IrfanView 

 

Figure 4. Principle of the ED1 metric. 

Because the map load values LED1 for most maps in the Ref-Set ranged only a few percent, the 

metrics ED2 and ED3 were developed to use a wider scope of 0–100% scale rather than just its lower 

part while still preserving 0 and 100% thresholds. Map load values LED2 and LED3 were therefore 

derived by rooting LED1 value according to Equations (6) and (7): 

���� = �����, (6)

���� = �����
� , (7)
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2.5. Bit-Depth Experiment 

A small experiment was also performed to evaluate how using various bit depths could 

potentially influence the results provided by the metrics. As all maps from the Ref-Set were obtained 

in the RGB colour space with 24 BPP, two maps M4 and M32 were also converted to 8 BPP and 4 BPP. 

This was done using the decrease color depth tool in IrfanView with the Floyd–Steinberg dithering 

settings. While M4 presented a map cropped from a web map application and had never been printed 

on a paper before, M32 had been digitised by scanning. Both the maps in all three variants (24, 8 and 

4 BPP) were then measured by all presented metrics in the same way as in Sections 2.2–2.4. 

3. Results 

3.1. User-Perceived Map Load Evaluation 

Data obtained during the initial experiment were first digitised into an electronic sheet for 

further processing. The scope of 0–100% scale differed from one respondent to another. While some 

respondents perceived the average map load to be only 22%, the respondent with the highest average 

LUP value reached 80%. It was caused by giving the respondents a considerable degree of freedom, 

which limited only the minimum and maximum values. Because of that, they could express their 

personal feeling of map load. Subsequently, the data for each respondent had to be normalized to the 

range 0–1 according to the minimum and maximum values for later correlation measures. 

However, obtaining exact values of graphic map load of each map from the Ref-Set was just a 

minor part of the study. An essential task was to get a view which maps from the Ref-Set are the more 

loaded ones and which, on the other hand, are the less graphically loaded and how much. Letter M 

and a number marked each of the 50 maps, so there were maps M01–M50. For six samples from the 

Ref-Set, maps M5, M16, M27, M29, M40 and M49 (some shown in Figure 5), the most frequent 

evaluation of LSE was that they were subloaded to expected map purpose. In contrary, M15, M17, 

M20, M25, M32, M35, M39, M41, M45, M47 and M48 were mostly evaluated to be overloaded (some 

shown in Figure 6). The rest of the maps from the Ref-Set were mostly marked as loaded adequately. 

 

Figure 5. Maps with the lowest LUP values also marked by respondents as subloaded in LSE (two simple 

maps of Czechia and cutout of Google maps focused on the south part of Kazakhstan). 

The highest average user-perceived map load values were detected for M45 (LUP = 88%), M39 

and M48 (both LUP = 82%). Four more maps exceeded LUP of 80%. The significantly lowest value of 

user-perceived graphic map load, on the other hand, had M16 (LUP = 8%). The second less-loaded was 

M27 (LUP = 16%) followed by M40 (LUP = 20%) as captured in Figure 5. 
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Figure 6. Maps with the highest LUP values also marked by respondents as overloaded in LSE (two 

sections of topographic maps and a geological map of Slovakia). 

As a part of the user-experiment evaluation, both LUP and LSE were visualized together in Figure 

7. For each respondent R1–R62, LUP were coloured according to LSE (green representing map load 

values for maps evaluated as subloaded, yellow for maps loaded adequately to their map aim and 

red representing overloaded ones). This visualisation captures how subjective evaluation can use a 

wide range of scopes and differs one from another respondent and, therefore, how an objective metric 

for map comparison is necessary. Dotted lines represent the average LUP for each of the LSE classes in 

representative colour. 

 

Figure 7. Respondents’ evaluation of LUP of the maps from the Ref-Set coloured by LSE (green 

representing subloaded maps, red overloaded and yellow maps loaded adequately to their aim). 

For the Kruskal–Wallis test, the null hypothesis was set saying all three populations (subloaded, 

overloaded, loaded adequately) contain the same LUP values. The sampling distribution vas 

calculated to be H = 720,08. This value was then compared to χ²a,k-1 reaching 5.99 (less than 720,08) 

and so, according to p-value 4.33 · 10−157, the null hypothesis was rejected. This means the populations 

categorised according to LSE reached different levels of user-perceived map load (LUP). 

3.2. Average Darkness Approach 

The LAD values measured in IrfanView software were added to the summary table along with 

LUP values. Pearson correlation coefficient and Euclidean distances between average LUP and LAD were 

then calculated for each map from the ref-set. The results reveal no significant link between LAD 

(orange points) and LUP (blue points) values (Figure 8). While LAD for most topographic and some 

thematic maps with white background rose adequately to LUP, for maps with a coloured and black 

background, e.g., M13 and M24 (Figure 9), the AD metric failed due to ignoring the trend of user-

perceived map load. In addition, maps with orthophoto background, e.g., M7, M8, M10, were 

evaluated with much higher values than other maps, as visible in Figure 8. The correlation coefficient 

0.07 indicated no significant correlation between LUP and LAD value sets, which was also supported 

by p-value of t-statistics reaching 0,64. Euclidean distance value was 1.62. The result of the Pearson 

correlation indicated that the AD metric is not suitable for graphic map load evaluation. 
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Figure 8. Graphic map load of the Ref-Set maps from user testing (LUP, marked blue) and measured 

by the AD metric (LAD, marked orange) sorted in ascending order by LUP, dotted lines indicate trend. 

 

Figure 9. Examples of the maps where map load values were overestimated using AD metric. 

3.3. Image Compression Approach 

Similarly, IC1, IC2 and IC3 metrics through respective graphic map load values LIC1, LIC2 and LIC3 

were statistically compared with LUP values. For the IC1 metric using JPG image compression with 

90% image quality, the correlation coefficient of 0.55 (p-value 3.41 · 10−5) and Euclidean distance 2.01 

were calculated. In the case of the IC2 metric, the indicators showed a slightly better correlation 

comparing to the ED1 metric resulting in 0.60 (p-value 4.88 · 10−6) and Euclidean distance 1.97. Finally, 

when examining IC3 metric, Pearson correlation of 0.56 was detected (p-value 2.87 · 10−5), and the 

Euclidean distance 1.32 fits better with the scope used by respondents. According to the p-values, a 

statistically significant correlation was found between sets of LUP and LIC1,2,3. 

Even though the IC metrics provided generally better results than AD metric, still several maps 

from the Ref-Set were evaluated with the intense disorder to user perception occurred. In the case of 

the IC1 and IC2 metrics based on JPG compression, samples M13, M20, M38, M45 and M47 became 

a sort of outliers with extremely high values comparing to the trend of other maps (Figure 10). Those 

maps represent mostly complex topographic with lots of symbols, several different colours used and 

white background, and contrast old maps (Figure 11), but also a quite simple monochromatic map 

M13 (Figure 9). 
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Figure 10. Graphic map load of maps from the Ref-Set obtained during user testing (LUP, marked blue) 

and measured by IC2 metric (LIC2, marked orange) sorted in ascending order by LUP, dotted lines 

indicate trends. 

 

Figure 11. Examples of the maps where map load values were overestimated using IC1 metric. 

In contrary, IC3 metric tends to be more chaotic and under-evaluating several maps from the 

Ref-Set. As captured in Figure 12, especially maps M11, M14, M16, M17, M22 and M24, all with a 

limited number of colours, obtained extremely low LIC3 values. Therefore, according to the issues 

described above, the metrics based on the IC approach were found to correlate with user perception 

of map load. However, these metrics can be influenced by image characteristics and so may deviate 

from user-perceived values. 

 

Figure 12. Graphic map load of maps from the Ref-Set obtained during user testing (LUP, marked blue) 

and measured by IC3 metric (LIC3, marked orange) sorted in ascending order by LUP, dotted lines 

indicate trends. 
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3.4. Edge Detection Approach 

The results for all ED1, ED2 and ED3 metrics brought higher correlation coefficients with 

average values of LUP. In the case of ED1, it was 0.72 (p-value 2.73 · 10−9), for ED2 even 0.77 (p-value 

9.17 · 10−11) and for ED3 correlation of 0.77 (p-value 4.52 · 10−5) was detected. Therefore, a statistically 

significant correlation was found especially between ED2 and UP, ED3 and UP metrics, respectively. 

As expected, the Euclidean distance declined with the rising ED metric index—2.05 for ED1, 1.21 for 

ED2 and 0.69 for ED3 metric. 

Figure 13 shows a higher level of harmony between LED3 and LUP values comparing to LED1, 

especially in the first half of the map samples ordered ascending by the average user-perceived 

graphic map load. In the second half, deviations rise. However, no extreme disorders were found 

between the values measured using the ED3 metric and the respondents’ estimations. Higher 

differences were detected for the samples M14, M17, M19 and M24. Those maps may seem complex 

at the initial sight, but can be easily interpreted when watched longer. Therefore, the limited time the 

respondents had for evaluation of the maps might have played some significant role in this issue. 

 

Figure 13. User-perceived values (LUP, marked blue), map load values measured by ED1 metric (LED1, 

marked orange) and ED3 metric (LED3, marked green) sorted in ascending order by LUP. Dotted lines 

indicate trends. 

Map M21 (Figure 14) was the most graphically loaded according to all ED metrics, while 

according to UP, this map was the fifth most loaded one. This map represents an old army map with 

hatches used to express terrain. The edge detection filter interpreted the numerous dark hatches on 

its white background as sharp edges, and so contributed to higher LED value. On the other hand, the 

values LED2 = 61% and especially LED3 = 72% were very close to reference LUP = 74%. The similar issue 

caused by the number of edges is evident on the old map of Silesia M25 (Figure 14). In addition, M37 

(Figure 14) representing a grid map of the Minecraft world obtained higher values comparing to 

neighbouring maps sorted by LUP. 

 

Figure 14. Maps M21 and M25 with the highest LED values and M37. 

Table 1 shows the average normalised LUP values along with measured map load values for maps 

M01–M50. All numbers are rounded to integer, but for calculations, their precise values were used. 
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Table 1. User perceived and measured map-load values of maps from the Ref-Set [%]. 

Map LUP LAD LIC1 LIC2 LIC3 LED1 LED2 LED3 

M01 35 21 6 5 34 3 17 31 

M02 47 24 10 8 58 6 24 39 

M03 41 23 11 9 72 7 27 42 

M04 40 21 10 9 60 7 26 41 

M05 28 11 5 4 14 2 15 29 

M06 35 12 9 6 41 4 21 35 

M07 39 57 10 9 60 6 25 40 

M08 58 55 11 10 65 8 29 44 

M09 26 8 6 9 9 8 28 43 

M10 46 48 10 9 51 6 25 40 

M11 43 12 4 5 3 3 18 32 

M12 56 17 5 5 13 3 16 29 

M13 33 45 20 18 15 4 21 35 

M14 69 12 5 7 9 5 23 37 

M15 91 22 12 15 94 21 45 59 

M16 2 3 3 3 1 1 10 22 

M17 66 14 6 5 7 4 20 34 

M18 51 5 5 3 38 4 20 34 

M19 74 12 8 9 36 9 30 44 

M20 91 22 56 59 48 24 49 62 

M21 74 40 18 24 69 37 61 72 

M22 31 7 3 4 2 2 16 29 

M23 34 11 5 5 9 4 19 33 

M24 44 67 3 3 5 2 13 26 

M25 82 35 14 23 80 34 59 70 

M26 26 16 6 7 38 6 24 39 

M27 5 34 4 5 13 2 14 27 

M28 25 20 8 6 63 5 22 36 

M29 25 23 4 4 29 3 17 31 

M30 72 22 12 15 88 17 42 56 

M31 23 15 5 4 32 3 18 32 

M32 84 29 10 13 78 14 37 52 

M33 45 53 16 15 92 14 38 52 

M34 56 15 10 9 65 7 27 42 

M35 80 19 17 19 93 23 48 61 

M36 54 21 11 10 67 9 30 44 

M37 28 55 15 11 36 15 38 53 

M38 80 28 48 59 88 23 48 61 

M39 90 20 12 11 67 12 35 50 

M40 14 7 5 5 29 4 19 33 

M41 61 23 10 10 51 10 32 47 

M42 62 19 12 11 73 10 32 47 

M43 72 10 7 9 38 9 30 45 

M44 66 21 6 9 50 7 27 41 

M45 93 35 61 64 64 28 53 65 

M46 63 11 13 10 46 10 32 46 

M47 84 25 58 55 59 24 49 62 

M48 90 23 20 20 49 27 52 65 

M49 23 28 7 8 34 6 25 40 

M50 44 12 12 9 72 9 30 45 
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3.5. Bit-Depth Influence 

Additionally, the results of the map samples M4 and M32 with lowered bit depth were collected 

and examined to discover how individual metrics are sensitive to this parameter. While the 24 BPP 

version offers 65,536 possible colours, the 8 BPP lower to 256 colours and 4 BPP to only 16 colours. 

This strong colour reduction, especially in the case of 4 BPP version, led to a dotted texture on 

monochrome areas (Figure 15) resulting in sharp changes of colour hue. While the AD approach was 

not influenced by this reduction much, in the case of ED approach, the lower bit depth resulted in a 

bit higher map load values. The most affected was the IC approach where decreasing the colour depth 

lowered significantly the file size of the uncompressed image files and, therefore, raised the final map 

load value. The map load values are noted in Table 2. 

 

Figure 15. Dotted structures caused by colour depth reduction in the case of M4. 

Table 2. Map load values (in %) of M4 and M32 with decreased bit depth. 

Map Load Metrics [%] 
M4 

24 BPP 

M4 

8 BPP 

M4 

4 BPP 

M32 

24 BPP 

M32 

8 BPP 

M32 

4 BPP 

LAD 21 21 21 29 29 31 

LIC1 10 34 87 10 40 94 

LIC2 9 27 54 13 41 83 

LIC3 62 65 56 78 56 46 

LED1 7 8 12 14 15 17 

LED2 26 29 34 37 38 41 

LED3 41 44 49 52 53 55 

As visible from Table 2, for the AD metrics, the map load values remained the same in the case 

of M4 for all bit depths and only increased from 29% to 31% in the case of the 4 BPP version of M32. 

For IC1 and IC2 metrics, the map load values are increasing significantly with lowering the bit depth. 

In the case of IC3 metric, for M4 the map load is the highest for 8 BPP and the lowest for 4 BPP, while 

for M32 is decreasing with lowering bit depth. For ED1, ED2 and ED3 metrics, the map load values 

are slightly increasing when lowering the bit depth. Therefore, the ED approach seems to be less 

dependent on the bit depth of images and even though the correlation was proved for both 

approaches, the ED approach tends to provide more consistent values and is more suitable to work 

as a versatile map load metric. 

4. Discussion 

As there has been no standard nor conventional way for graphic map load measurements 

available, the developed approaches with metrics were compared to the user-perceived evaluation 

experiment. Even in this group of respondents, the various scope of the 0–100% scale was used. 

Therefore, normalization of the data collection was done so any substantial influence of the scope 
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used seems to be present. Conversely, the user-perceived values were evaluated according to 

subjective feelings with no need of cartographic skills and therefore are expected to be similar to 

potential different user groups. As the aim of this study was to evaluate the potential of the new 

metrics rather than aiming for measurements of precise map load values of each map, the number of 

62 respondents was considered sufficient for this purpose and comparable with other studies on map 

evaluation [22,34–36]. 

Additionally, the Ref-Set consisted of a limited amount of 50 various sample maps. The aim 

when compiling the Ref-Set was to choose various map styles differing in as many aspects as possible. 

Most of the maps originated in Czechia and had labels in the Czech language to the respondents to 

understand the map topic. Even though it was not possible to cover all unusual visualisation styles 

nor all different regions, the Ref-Set covered the most frequent map types used in daily life while 

representing the huge diversity of the cartographic production. Such various set of sample maps was 

not found in any previous study focusing on map load evaluation. 

All approaches, including their parameters developed in this study, are, of course, not the only 

potential solutions. Other image compression methods could be examined as well as various edge 

detection methods. This study aimed, though, to find which approach seems to be most effective in 

the estimation of graphic map load of various map styles as most other studies focused only on a 

single map type, cartographic method or map style. According to the study results, a significant 

correlation with user-perceived map load was found for IC1, IC2, IC3, AD1, AD2 and AD3 metrics 

while no significant correlation for the AD metric. Nevertheless, the ED approach seems to be more 

suitable for graphic map load evaluation than two other suggested approaches as the ED2 and ED3 

metrics provided the best correlations with UP (0.77) and were not strongly affected by diversity in 

bit depth as the IC1 and IC2 metrics were. Therefore, the ED approach will be examined deeply in 

further research, where different filters and their behaviour will be examined concerning the graphic 

map load. 

All metrics provided enough easy-to-use tools for quick evaluation of map load. All steps of the 

measurement were done manually using graphic user interface of the software, so calculating precise 

processing time is not possible as this is affected mostly by the agility of the evaluator. However, all 

maps from the Ref-Set were possible to be evaluated on an ordinary laptop (equipped with 2.9 GHz 

processor, 8GB RAM, Windows 64-bit operating system) in a short time. The most time-consuming 

operation, the edge detection, in the case of the largest map sample M17 (23.623 × 17.989 pixels), took 

9 s. The histogram tool provided results immediately so the average brightness could be read. In 

addition, resaving files and their compression took only a few seconds. Examined values were noted 

into an Excel sheet with predefined Equations to compute map load values for all seven metrics. 

Therefore, the presented approaches could easily be applied on a variety of single-sheet maps. 

5. Conclusions 

In the study, three approaches for graphic map load were applied and compared with the user-

perceived values achieved during user testing. For both the principles, the same Ref-Set of 50 various 

maps was used. The most promising results were obtained with ED metrics applying edge detection 

filter followed by measuring the average pixel brightness of the processed image map representation. 

Especially for metrics ED2 and ED3, high correlation coefficient 0.77 was registered. Therefore, edge 

detection is an approach, which is going to be examined more deeply in ongoing research. 

Metrics based on average pixel darkness and image compression (AD, IC1, IC2 and IC3) were 

found fitting the user-perceived map load only for limited map styles. The AD metric was 

successfully evaluating maps with bright background and darker map symbols, typically 

topographic maps. Conversely, inverse map colouring significantly increased the measured values 

of graphic map load. Moreover, different levels of contrast do not allow to use this approach for 

comparison of various map styles. On the other hand, the image-compression metrics suffered from 

undervaluation of the map load values in the case of maps with the limited colour count used. Despite 

these limitations, the correlation was found between UP and all three metrics of the IC approach (IC1, 

IC2 and IC3). 
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Even though the ED metrics’ results showed significantly better correlation with UP map load 

values, it should be considered that for other Ref-Set or respondent group correlations could differ 

slightly. Furthermore, the UP values of perceived map load relate to respondents’ judgements, which 

may differ in time, with improving skills and other conditions. This supports the idea that designing 

a stable objective metric for analysing graphic map load is worth and may help cartographers to 

design more suitable maps. 
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