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Abstract: Address geolocation aims to associate address texts to the geographic locations. In China,
due to the increasing demand for LBS applications such as take-out services and express delivery,
automatically geolocating the unstructured address information is the key issue that needs to be solved
first. Recently, a few approaches have been proposed to automate the address geolocation by directly
predicting geographic coordinates. However, such point-based methods ignore the hierarchy information
in addresses which may cause poor geolocation performance. In this paper, we propose a hierarchical
region-based approach for geolocating Chinese addresses. We model the address geolocation as a
Sequence-to-Sequence (Seq2Seq) learning task, that is, the input sequence is a textual address, and the
output sequence is a GeoSOT grid code which exactly represents multi-level regions covered by the
address. A novel coarse-to-fine model, which combines BERT and LSTM, is designed to learn the task.
The experimental results demonstrate that our model correctly understands the Chinese addresses and
achieves the highest geolocation accuracy among all the baselines.

Keywords: address geolocation prediction; Chinese addresses; GeoSOT grid code; deep neural network;
BERT; sequence-to-sequence

1. Introduction

Addresses, as natural language descriptions of geographic locations, are often used by humans
in daily life. In China, there are increasing demands for various LBS applications, such as take-out
services, express delivery, online car-hailing services, etc. While the unstructured addresses are easy for
humans to understand and locate, they are difficult for computers to operate with. To enable the use of
unstructured address information by these applications, one prerequisite is automatically assigning the
correct geographic locations for the addresses. This process is commonly called address geolocation.

Accurate estimation of address location is an important factor for LBS applications. In recent years,
deep learning models have been explored for the textual geolocation prediction task. Numerous studies
adopted deep neural networks to predict coordinates (i.e., longitudes and latitudes) of text data including
blogs, tweets, Wikipedia articles, etc. However, such point-based geolocation methods ignore the hierarchy
information in address descriptions (e.g., country, province, city, etc.), which has been shown to be
very effective in previous studies [1,2]. In addition, recent work [3] also demonstrates that predicting
coarse-grained areas is much easier than predicting fine-grained areas.
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Motivated by these studies, we consider a hierarchical region-based approach for Chinese address
geolocation. To be more specific, our goal is to predict multiple regions (from coarse grain to fine grain)
covering the target address location while the coarse-grained region prediction can guide the fine-grained
region prediction. However, two technical challenges stand in our way to reach this goal. First, it is
challenging to understand the meaning of the addresses. Polysemy is a very common phenomenon in
Chinese addresses. An example is shown in Figure 1. The characters in red wireframe are the same but
represent a completely different level of the hierarchy and meaning of the address. Second, determining a
series of hierarchical regions covering the target location and predicting each of them one by one is an
intricate task. How to construct a hierarchy of the related regions and how to predict the fine-grained
region under the supervision of the coarse-grained region prediction remain unclear.

English Address
Room 205, Building 21, Pinyuan Court, No.399 Xiyuan Road, Huqiu Street, Gusu District, Suzhou City, Jiangsu Province

Chinese Address
江苏省苏州市姑苏区虎丘街道西园路 3 9 9号品苑小区 2 1幢 2 0 5室

English Meaning
Province City District Residential Quarter

Figure 1. Polysemy in Chinese.

To address these challenges, we propose a novel coarse-to-fine model for geolocating Chinese
addresses. Our proposed model is based on an encoder–decoder framework augmented with an attention
mechanism [4]. We address the first challenge by taking the state-of-the-art language model BERT
(Bidirectional Encoder Representations from Transformers) as the encoder, which is capable of extracting
different embeddings of the Chinese characters according to the different contexts. We tackle the second
challenge by adopting a multilevel subdivision scheme for the earth’s surface, known in the literature
as GeoSOT (Geographical coordinate Subdividing grid with one dimension integer coding on a 2n

Tree) [5]. Based on GeoSOT, we first build hierarchies of regions related to target address locations
in the training phase. Since each region has a unique identification code, we then train an LSTM (Long
Short-Term Memory) [6] network based decoder to predict each region’s code by attending to the address
semantic meaning.

We make the following contributions in this work: (1) We creatively model the Chinese address
geolocation as a Seq2Seq learning task in which the input is the textual Chinese address and the output is
a GeoSOT grid code. (2) A novel coarse-to-fine model is proposed, which takes the BERT as encoder and
an LSTM model as a decoder. (3) We demonstrate the effectiveness of our coarse-to-fine geolocation model
by conducting detailed experiments. It significantly outperforms the baseline methods.

2. Related Work

This section introduces prior studies that are most relevant to our work, including text-based
geolocation prediction and neural language modeling.

2.1. Textual Geolocation Prediction

Textual geolocation aims at locating the textual addresses with language modeling techniques.
According to the predicting targets, prior studies can be divided into two categories: for coordinates and
for regions.

Coordinate-oriented approaches view the geolocation task from the regression perspective and
directly predict the longitude and latitude of text data. They are widely used in social media data
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geolocation, such as tweets, blogs, social images, etc. Considerable literature has developed various
geolocators by leveraging different features of text content and users, such as location indicative words,
metadata, user profiles, and friendship graphs. For example, as a pioneering work, Fink et al. [7]
presented a method that uses the place name mentions in a blog to determine the blog’s location.
Chi et al. [8] integrated location indicative words, city/country names, hashtags, and mentions and
trained a multinomial Naive Bayes classifier to predict the locations of tweets. Liu et al. [9] proposed a
unified framework to predict geolocations for Flickr images, which combines the information from both
image tags and the user profile. Rahimi et al. [10] proposed GCN, a multiview geolocation model based
on graph convolutional networks that uses both text and network context. Miura et al. [11] unified text,
metadata, and user network representations with a neural network for geolocation prediction. However,
most studies are conducted on social media data like Twitter, where metadata and external gazetteers are
needed. By contrast, our geolocation model only relies on textual features.

Region-oriented approaches take the geolocation prediction as a classification task by first partitioning
the regions into discrete subregions using regular grids, adaptive grids or city-level regions. These
approaches treat the resulting discrete regions as either a flat list [12–18] or a nested hierarchy [2,3]. For
example, Wing and Baldridge [12] was the first to use the n-gram statistical language model and a discrete,
regular grid division of the earth’s surface to predict the grids belonging to the document. It was extended
by Roller et al. [13] with additional considerations of data distribution, the authors defined an alternative
grid construction using k-d trees that more robustly adapt to data. Rout et al. [16] uses an SVM classifier
and a number of features that reflect different aspects and characteristics of Twitter user networks to
predict city-level location. Dredze et al. [18] adopted a supervised learning approach, training a multiclass
classifier to identify the city of a tweet. Foregoing taking discrete regions as a flat list, the other research
thread tried to predict text geolocation hierarchically by treating the discrete regions as a nested hierarchy.
Mahmud et al. [1] developed a two-level hierarchical location classifier which first predicts time zone or
state, and then predicts the city label. Wing and Baldridge [2] constructed a grid hierarchy. The probability
of the final fine-grained location can be computed recursively from the leaf node up to the root. Recently,
Kulkarni et al. [19] proposed a multilevel geocoder (MLG) for geolocating tweets. MLG exploits the natural
hierarchy of the geographic locations by jointly predicting at different levels of granularity. However, with
the deepening hierarchy, such classification-based geolocation methods can hardly handle the classification
because the output space is too large. To overcome this limitation, we propose the coarse-to-fine model
(CFM) to achieve multilevel geolocation in a Seq2Seq fashion. To the best of our knowledge, our method is
the first deep learning-based neural network which models the geolocation prediction as a Seq2Seq task.

2.2. Neural Language Modeling

Language modeling aims to learn the joint probability of word sequences in a language. The first
neural language model was proposed by Bengio et al. [20], who proposed to represent each word by a
continuous real-vector and leverage a feedforward neural network to learn the distributed representation
of each word. Compared with the traditional statistical language model, the neural language model
substantially ameliorates the curse of dimensionality and exhibits better generalization ability. With
the rapid development of deep learning technologies, the feedforward neural network-based language
model was later extended to recursive neural networks [21] and convolutional neural networks based
language models [22]. However, these models for learning word embeddings only allow a single
context-independent representation for each word. In other words, they can hardly handle polysemy.
To solve this problem, the concept of pretraining word embeddings was proposed [23] and widely adopted
in ELMo (Embeddings from Language Models) [24], GPT (Generative Pre-Training) [25] and BERT [26].
ELMo is a two-layer bidirectional LSTM model. It learns the representation for each word depending on
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the entire context in which it is used. Therefore, even the same word will have different representations
if the context is different. It has been proven that ELMo functions well for the word disambiguation
task. GPT uses the Transformer [27] decoder (uni-directional) instead of the LSTM as the language model
to better capture long-distance word relations. Moreover, fine-tuning the language model is taken as a
training target together with downstream tasks. BERT integrates the advantages of ELMo and GPT, which
takes the transformer encoder (bidirectional) as the language model. It achieves great success in a wide
range of NLP tasks. Recently, a lite BERT (i.e., ALBERT) [28] is proposed to decrease memory consumption
and increase the training speed of BERT. In this work, we leverage the pretrained BERT to extract the
character representations in Chinese addresses.

3. Methodology

3.1. Problem Statement

We model the coarse-to-fine geolocation as a Seq2Seq task. The given address V can be viewed as a
sequence of n Chinese characters {v1, v2, . . . , vn}. The output of the model is the GeoSOT grid code C ,
which is a sequence of digits containing p quaternary digits {c1, c2, . . . , cp} with ct being the digit at time t.
We formulate the geolocation as the inference over a probabilistic model. The goal of the inference is to
generate a code sequence c∗1:p which maximizes P(c1:p|v1:n):

c∗1:p = arg max
c1:p

p

∏
t=1

P (ct|c0:t−1, v1:n) (1)

3.2. Overall Architecture

Figure 2 illustrates the overall architecture of our coarse-to-fine geolocation model. Essentially,
it follows an encoder–decoder framework with an attention mechanism. The encoder is used to learn
the location-specific information implied in the input address V, and the decoder is used to generate the
GeoSOT code sequence C.
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Figure 2. The overall architecture of CFM.
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As Chinese addresses are inherently difficult for a machine to understand, we leverage the advanced
language model BERT as the encoder to capture the complex relationships between Chinese characters
in the address. It consists of N identical Transformer (abbr. Trm) blocks. The encoder takes the Chinese
address as input and outputs the feature representation hi for each Chinese character. Considering that the
hierarchical locations covered by the given address are represented by a GeoSOT grid code, a LSTM-based
decoder is used to predict the code digit one by one. The probability for each digit is computed after a
character-level attention layer. The details of our model are elaborated in the following sections.

3.3. GeoSOT Subdivision Scheme

GeoSOT (Geographical coordinate Subdividing grid with One dimension integer coding on a 2n Tree)
is a geo-referencing and coding framework [5]. Taking the intersection of the prime meridian and equator
as the central point, GeoSOT recursively divides the surface of the earth into four grid cells. It finally
constructs a hierarchical quadtree with 32 levels spanning from the global to the centimeter scale. Table 1
shows the grid size at each level.

Table 1. GeoSOT grid size of different levels.

Level Grid Size Level Grid Size Level Grid Size Level Grid Size

1 - 9 128 km 17 512 m 25 2 m
2 - 10 64 km 18 256 m 26 1 m
3 - 11 32 km 19 128 m 27 0.5 m
4 - 12 16 km 20 64 m 28 25 cm
5 - 13 8 km 21 32 m 29 12.5 cm
6 1024 km 14 4 km 22 16 m 30 6.2 cm
7 512 km 15 2 km 23 8 m 31 3.1 cm
8 256 km 16 1 km 24 4 m 32 1.5 cm

Grid cells at each level are indexed using a Z-order filling curve [29]. Each cell can be represented as a
single string containing quaternary numbers such as ’0’, ’1’, ’2’ and ’3’. The longer the GeoSOT code length,
the finer the grid granularity. The subdivision and coding method is shown in Figure 3. The advantages
of GeoSOT codes are two-fold: (1) uniqueness, in which each geographical region on the Earth has only
one unique GeoSOT code; (2) recursiveness, which is the lower-level grids that are subdivided by the
upper-level grids. The GeoSOT grid code can represent the geospatial hierarchies at various levels without
relying on external metadata.

0

00

000

0000

01 02 03

003002001 020010 030…… ……

00200010 0030… … …
0203020202010200

……

1st level

2nd level

3rd level
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Figure 3. GeoSOT subdivision model.
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3.4. Representing Chinese Textual Addresses

Given the raw Chinese addresses, we first aim to transform them into a computer-operable form,
then extract geographical features (e.g., location or spatial relations) that can be understood by computers
to support the subsequent geolocation prediction.

3.4.1. Input Processing

Tokenization. is the process of splitting the raw text into smaller pieces. Different from nonlogo
syllabary languages, such as English, the Chinese language is formed by a stream of characters with
no white space to separate them. In addition, there are a huge number of word-level combinations in
Chinese, which means that building a word-level vocabulary is more likely to encounter out-of-vocabulary
situations in the testing phase. By contrast, the number of Chinese characters is relatively limited, and we
can easily exhaust all Chinese characters to construct the vocabulary. Based on the above observations, we
consider performing the character-level tokenization for Chinese address texts in this work.

Input Embedding. In the previous step, we obtained a sequence of character-level tokens for each
address. To further transform them into a computer-operable form, we take advantage of the word
embedding technique. Word embeddings are the distributed representations of words, which encode each
word into a unique real-valued vector [30,31]. Compared to the traditional one-hot representations, word
embeddings are able to overcome the sparsity of training data and greatly reduce trainable parameters.

In our work, the embedding vector ei for each character-level token vi is directly retrieved from an
embedding matrix E by a lookup operation. Moreover, the token positions are added to the initial input to
record the location information. Similarly, we transform each token’s position into an embedding, called
position embedding pi, which is retrieved from another embedding matrix P. Both E and P are trainable.
For each character, we sum the token embedding ei and the position embedding pi. Finally, an input
embedding matrix X is obtained.

3.4.2. Feature Extraction

After the input embedding layer, each Chinese character in the raw addresses is transformed into a
2D vector. We then apply the encoder module, i.e., the BERT model, to extract high-level semantic features
from the input embedding matrices. The encoder module consists of N identical blocks (i.e., transformer
blocks). Each block contains a multihead self-attention layer (MultiHead) and a feed-forward layer (FFN).

The self-attention mechanism [27] allows each character in the same address to build an attentive
context by weighting them with different relevance to each other regardless of the address length. Formally,
the computation steps in this layer are as follows:

f = MultiHead(X) = [head1, . . . , headh]W
O, (2)

headi(X) = softmax(
(XWQ

i )(XWK
i )T√

dk
)(XWV

i ). (3)

where WQ
i ,WK

i ,WV
i ,WO are trainable parameters and dk is the dimension of WK

i . Concatenating h heads
together, we obtain one feature vector f after projection by WO for each input character in the address.
Following the MultiHead layer, the FFN layer is applied to generate the output of the block. Similar
to [27], we employ the residual connection (brown dotted line in Figure 2) and layer normalization around
two blocks.
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3.5. Coarse-to-Fine Location Prediction

To conduct the coarse-to-fine location prediction, i.e., predicting the GeoSOT code sequence essentially,
we leverage the LSTM architecture with attention mechanism as our decoder.

LSTM [6] is a recursive neural network which introduces a cell state and three elementwise
multiplication gates, called forget gate, input gate and output gate, to control the cell state. These
three gates control how information is stored, forgotten, and exploited inside the network.

As defined in Equation (1), the generated GeoSOT code ct at time t is predicted based on all the
previously generated parent codes c<t before ct and the hidden states H = {ht}L

t=1 of the encoder. To be
more specific:

P (ct | H, c<t) = softmax (Ws � gt) , (4)

gt = tanh (Wt[st, at]) , (5)

st = LSTM(ct−1, st−1). (6)

where st is the t-th hidden state of the decoder calculated by the LSTM cell. at is the attention vector which
is widely used in many applications. The vanilla attention mechanism is proposed to focus on the semantic
relevance between the encoder states {ht}L

t=1 and the decoder state st at time t. The attention vector is
usually represented by the weighted sum of the encoder hidden states:

at =
L

∑
i=1

βti hi, βti = softmax
(

u tanh
([

WAtt
1 st, WAtt

2 hi

]))
. (7)

where u, WAtt
1 , and WAtt

2 are learnable parameters in the attention mechanism.

4. Results and Discussion

4.1. Experiment Settings

Datasets. The address dataset (https://doi.org/10.18170/DVN/WSXCNM) is collected from
Amap, which is a leading digital map content provider in China. The dataset covers the whole
country and the total size is 400,000. It contains multiple attributes, including POI name, category,
hierarchical address description, latitude and longitude, etc. We preprocess the raw dataset by deleting
duplicate or nonconforming records (e.g., weird separators, non-Chinese characters). After preprocessing,
385,793 addresses are used. The distribution of the token length of all the addresses is shown in Figure 4.
The average number of tokens is 12. In addition, according to the latitude and longitude information, we
calculate the GeoSOT code based on the 17th level for each address. An example of the processed address
data is shown in Table 2.

Table 2. An example address from the dataset.

Address
(In Chinese)

Address
(In English) Lon. Lat. GeoSOT Code

(L17)

北京市海淀区民族园路2号
大润发超市

RT-MART, Minzuyuan Road No.2,
Haidian District, Beijing 116.391121 39.982151 30232031113311211

https://doi.org/10.18170/DVN/WSXCNM
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Figure 4. The distribution of the Chinese address lengths.

Implementation Details. The dataset is divided into training, validation and testing set in 8:1:1
proportions. We implement our approach by PyTorch (https://pytorch.org). In terms of hyper-parameter
setting, the number of layers (i.e., Transformer blocks) and the number of self-attention heads in the
encoder is 12. The dimensions of hidden vector are set as 768 in the encoder and decoder. We use the
Adam optimizer [32] with the batch size 100 and the learning rate 0.001. The network was trained for
400 epochs and the best epoch was chosen by observing the performance on the validation set. In addition,
all the training in this work was done on a single NVIDIA GeForce GTX 1080 Ti GPU with 11 GB RAM.

4.2. Visualizing the Performance in Polysemy Recognition

We claimed earlier that polysemy is a common phenomenon in Chinese addresses, which presents a
challenge to correct geolocation. To demonstrate that our model is able to recognize the different semantic
or geographical meanings of the same Chinese character, we visualize the t-SNE [33] plot of the learned
character embeddings with tensorboard (https://tensorflow.google.cn/tensorboard).

First, we explore the Chinese character “市” , which is a common example of polysemy in Chinese
addresses. Semantically, it can represent both a city-level region (e.g., Beijing, Shanghai, Guangzhou, etc.)
and a market (e.g., supermarket, bazaar, country fair, etc.). Figure 5a shows two obvious clusters as the
red cluster represents the “region” meaning and the blue cluster refers to the “market” meaning. The two
clusters are separated because they have no semantic association at all.

(a) Embeddings of “市” (in Chinese) (b) Embeddings of “区” (in Chinese)

Figure 5. Performance in distinguishing polysemy.

https://pytorch.org
https://tensorflow.google.cn/tensorboard
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We provide further evidence of our model’s distinguishability with another Chinese character “区”.
As we showed earlier by the example Figure 1, this character can represent both a district-level region
and a residence-level region. Though they refer to similar semantic meanings, i.e., geographic regions, the
geospatial meanings are different. An interesting finding is shown in Figure 5b. Character embeddings that
refer to large geographic regions (i.e., districts) are clustered together (see the red dots). Similarly, those
refer to small geographic regions (i.e., residential quarters) are also clustered together (see the blue dots).

The reasons why our model can distinguish polysemy are two-fold. First, the Bert-based encoder
helps address this to a certain extent. It can capture the contextual information and obtain the precise
semantic meaning of Chinese characters. Second, the coarse-to-fine predicting strategy assists. When
decoding different levels of geographic regions, the model is forced to attend to the input characters that
are truly useful.

4.3. Comparison in Geolocation Prediction

We evaluate our proposed method using three metrics. Accuracy is the percentage of correctly
predicted GeoSOT codes. Taking the prediction of the L17 GeoSOT code as an example, only when all
17 digits are predicted correctly is it considered as a correct case. We take it as a hard metric because
GeoSOT code can be directly used in various downstream applications. This is why correctly predicting
the total GeoSOT code is important. Moreover, we use two distance-based metrics which are often used in
textual geolocation related works: the mean and median error distances [34] between the centeroid of the
assigned GeoSOT grid and the actual coordinate.

Accuracy. Two classic models often used in Seq2Seq learning are taken as baselines. One is the
Vanilla-RNN model. It adopts a basic RNN to map the input sequence to a vector of a fixed dimension,
and then uses another deep RNN to decode the target sequence from the vector. Similarly, we take the
character embedding as the input and predict the corresponding GeoSOT grid code. The other one is the
Bi-LSTM model. It is also provided as a strong baseline which uses the bidirectional LSTM units and
character level attention mechanism. The performances of different models in terms of GeoSOT code
prediction accuracy are presented in Figure 6. The difference between Figure 6a,b is the setting of input
address sequence lengths, that is, the average character length of the former is 10 and that of the latter is
20. Moreover, under the same input length, we predict GeoSOT codes of different lengths: 13, 15 and 17,
respectively. Please note that longer GeoSOT codes represent finer regions.

(a) Average address length: 10 (b) Average address length: 20

Figure 6. Comparison of the geolocation accuracy under different input/output lengths.
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It is clearly shown in Figure 6 that our method outperforms the other baselines significantly. When
the input length is fixed, the prediction accuracy of the three methods will decrease as the GeoSOT
code length increases. This is in line with common sense since predicting fine-grained regions is more
difficult than predicting coarse-grained regions. However, our model still outperforms the baselines
significantly. Moreover, if we fix the output code length, the Vanilla-RNN model and Bi-LSTM model
achieve similar performance when the input addresses are short. However, when the address lengths
become longer, the Bi-LSTM model outperforms the Vanilla-RNN model. Regardless of the input address
length, the geolocation performance of our model is stable and outperforms the baselines. This is because
the self-attention mechanism used in our encoder is not sensitive to the sequence length. It exhibits
superiority in capturing the correct context information. In addition, it is worth noting that, with the input
and output length getting longer, the geolocating task becomes more difficult across all methods with
increasing input and output length.

Distance-based metrics. We take two state-of-the-art machine learning algorithms based on decision
trees as baselines. In detail, we experiment with the two following algorithms: (1) XGBoost-regression,
(2) XGBoost-classification. XGBoost (extreme Gradient Boosting) is an advanced implementation of the
gradient boosting algorithm. During the training phase, XGBoost grows a sequence of weak learners
(i.e., shallow trees), in which each weak learner focuses on correcting the residual errors of the current
model approximation. By aggregating the weak learner outputs, XGBoost generates a strong learner.
Given the Chinese addresses, we use XGBoost-regression to predict the coordinates. We calculate
the mean and median error distances between the predicted location and the actual location. As for
XGBoost-classification, it is used to predict the GeoSOT code. Specifically, given a GeoSOT level,
it predicts over a large set of grid cells. Similarly, we take the centeroid of the predicted GeoSOT grid
to calculate the distance-based metrics. We implement the aforementioned methods with SciKit-learn
(https://scikit-learn.org/). In terms of the hyper-parameter setting, the max depth and eta are set as 7
and 0.1, respectively. Moreover, we set the hidden size as 768, 1024, and 2048, respectively, in our model
for comparison.

The performances of each model are shown in Table 3. The results show that the regression-based
method that directly predicts coordinates performs poorly. As for XGBoost-classification, it is also not easy
to predict correctly over a large number of classes. Taking the 13th level as an example, there are almost
14 million GeoSOT grids in the world. By contrast, our proposed model consistently outperforms the other
two models under any hidden layer dimension. We attribute it to the fact that our method sequentially
learns to assign multi-granularity geographic areas according to the hierarchical geographic information
implied in the addresses.

Table 3. Comparison of the distance-based errors.

Methods XGBoost-Regression XGBoost-Classification Ours-768 Ours-1024 Ours-2048

Mean (m) 1170.4 723.8 612.3 583.2 552.6
Mid (m) 1065.0 591.5 497.7 460.0 423.2

4.4. Ablation Study

Finally, we explore the impact of different parameter settings on the model performance. Taking
the self-attention head as an example, Table 4 shows the comparative performance of our model under
different numbers of heads. It can be seen that the increase in accuracy is small, which indicates that
increasing the number of self-attention heads in the encoder module can improve the performance, but
not significantly. In addition, we train the model with 12 heads for about 5.5 h more than that with six

https://scikit-learn.org/
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heads. Although we choose 12 heads in order to achieve the highest performance in this work, we suggest
that researchers balance the trade-off between the speed and performance.

Table 4. Comparison of the training performances under different parameter settings.

Number of Encoders Training Time Training Loss Evaluation Loss Accuracy

6 3 h, 21 m, 30 s 0.036 0.038 96.10%
8 5 h, 15 m, 12 s 0.032 0.030 96.23%

10 7 h, 11 m, 37 s 0.029 0.031 96.37%
12 8 h, 59 m, 42 s 0.028 0.029 96.41%

4.5. Discussion

Geolocating textual addresses is an important task in various LBS applications. Previous studies
tried to predict the coordinates in a regression fashion or predict a discrete region by multi-classification.
However, they all suffered from too large output space. By contrast, even for a person, the intuitive way of
geolocating a textual address is to correlate a series of regions with different scales based on the hierarchical
geographic information implied in the address. This motivates us to consider a coarse-to-fine geolocating
approach. Specifically, this paper opens up a new paradigm for geolocation prediction, i.e., predicting a
series of hierarchical regions in a Seq2Seq fashion. Its strength lies in taking full advantage of the inherent
hierarchy information in Chinese addresses without relying on any additional information beyond the
texts. Moreover, the discrete global grid system, GeoSOT, provides a globally unified benchmark for
hierarchically discretizing the earth’s surface. Without relying on any external gazetteers, we sequentially
predict a GeoSOT code which exactly represents a set of regions from coarse to fine.

We think that there are at least three limitations and opportunities for new use. First, although our
approach focuses on Chinese addresses, it is possible to be generalized to more types of geographical texts,
e.g., Weibo or travel notes. Theoretically, these datasets can be directly trained with our proposed model.
We take this as one of our future works. Second, the GeoSOT grid code can be replaced by any other
type of geocodes such as GeoHash [35] and Google S2 [19]. Considering that different LBS applications
use different geocoding methods, we plan to support user-defined coding methods in the future. Third,
this approach is expected to be intelligent enough to predict the granularity. In this work, we take the
explicit control of the granularity of the predicted region (e.g., L13, L15, L17). However, we believe that it
is more intelligent to predict the granularity by the model itself according to the input data. This is because
different applications and the amount of original information contained in the input data will affect the
final prediction granularity. We plan to take these factors into account and adapt our model to predict the
GeoSOT codes of variable lengths.

5. Conclusions

In this paper, we introduce a novel coarse-to-fine model for geolocating Chinese addresses.
Our proposed approach first models the geolocation prediction as a Seq2Seq learning task, and then
develops a deep learning-based neural network to solve it. Without any additional information beyond
texts or external gazetteers, our model takes the textual address as input and outputs the GeoSOT grid
code that exactly represents a series of hierarchical regions covered by the address. Compared with
previous studies, our method effectively narrows the prediction space. The experimental results in terms
of distinguishing polysemy and geolocation accuracy demonstrate the significant advantages of our model
in the geolocation task.
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