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Abstract: The purpose of this study is to compare nine models, composed of certainty factors (CFs), 

weights of evidence (WoE), evidential belief function (EBF) and two machine learning models, 

namely random forest (RF) and support vector machine (SVM). In the first step, fifteen landslide 

conditioning factors were selected to prepare thematic maps, including slope aspect, slope angle, 

elevation, stream power index (SPI), sediment transport index (STI), topographic wetness index 

(TWI), plan curvature, profile curvature, land use, normalized difference vegetation index (NDVI), 

soil, lithology, rainfall, distance to rivers and distance to roads. In the second step, 152 landslides 

were randomly divided into two groups at a ratio of 70/30 as the training and validation datasets. 

In the third step, the weights of the CF, WoE and EBF models for conditioning factor were calculated 

separately, and the weights were used to generate the landslide susceptibility maps. The weights of 

each bivariate model were substituted into the RF and SVM models, respectively, and six integrated 

models and landslide susceptibility maps were obtained. In the fourth step, the receiver operating 

characteristic (ROC) curve and related parameters were used for verification and comparison, and 

then the success rate curve and the prediction rate curves were used for re-analysis. The 

comprehensive results showed that the hybrid model is superior to the bivariate model, and all nine 

models have excellent performance. The WoE–RF model has the highest predictive ability (AUC_T: 

0.9993, AUC_P: 0.8968). The landslide susceptibility maps produced in this study can be used to 

manage landslide hazard and risk in Linyou County and other similar areas. 

Keywords: landslide; hybrid integration approaches; bivariate models; decision tree; data mining 

 

1. Introduction 

Landslides cause various types of damage and affect people’s lives and property [1]. In order to 

reduce these losses and hazards, relevant assessments of slope conditions where landslides are likely 

to occur should be made, and a series of countermeasures should be developed based on the 

combined assessment results [2]. The definition of landslide susceptibility can be regarded as the 

tendency of a landslide in a region [3,4]. A landslide susceptibility map is a basic source for 
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representing landslide-prone areas and is a key source for decision-makers, planners, geologists and 

civil engineers to provide valuable information that provides the necessary information to establish 

monitoring systems within the study area or to develop measures that may guarantee human life and 

property [5,6]. The reliability of landslide susceptibility maps depends on the quantity and quality of 

available data, the scale of work and the choice of modeling methods [7]. 

Geographic Information Systems (GIS) and remote sensing (RS) are excellent and useful tools 

for collecting spatial data from the real world and for mapping landslide susceptibility in specific 

areas [8,9]. In recent decades, thanks to the development of GIS and RS technologies, receiving data 

used in GIS has become easier and faster, and these tools have contributed greatly to disaster 

assessment [1,5,10,11]. Therefore, the application of GIS in landslide susceptibility analysis is 

becoming more and more popular [12,13]. 

Many researchers have applied heuristic, deterministic, statistical and soft computing models to 

assess landslide susceptibility. Due to their subjectivity, heuristic methods usually need to add more 

complex techniques to the overall method to evaluate landslide susceptibility [4,14–16]. The 

deterministic method is only applicable to small areas with simple landslide types and relatively 

simple and uniform rock and soil mass [17]. Therefore, in order to avoid unnecessary trouble and to 

reduce the deviation of the above two methods, statistical and soft computing models are usually 

selected for large-scale and complex landslide susceptibility assessment [6]. In recent years, a variety 

of statistical methods and soft computing models have been used for landslide susceptibility 

assessment [18–22], such as support vector machines [23–26], random forest [27–29], artificial neural 

network [30–33], decision trees [34–37], classification and regression tree [38,39], maximum entropy 

[40–42], naïve Bayes [43], neuro-fuzzy [44,45], kernel logistic regression [46,47], alternating decision 

trees [48–50] and boosted regression trees [51]. 

Recently, several hybrid integration methods have been developed, such as integration of Radial 

Basis Function neural network and Rotation Forest [52], and adaptive neuro-fuzzy inference system 

with grey wolf optimizer [53]. The core value of the integrated method is that it has higher accuracy 

in identification and better prediction ability than the single machine learning model [54,55]. This 

function can greatly increase the impact of the technology and assist researchers in their analysis of 

future landslides [12]. 

Both bivariate models and machine learning models have been widely used in landslide 

susceptibility research. The advantage of the bivariate model is that it can assess the impact of factor 

categories on the occurrence of landslides. It is easy to overlook the interrelationship between these 

factors; however, machine learning models can make up for this shortcoming [56]. Therefore, it is 

necessary to carry out hybrid landslide modeling on the bivariate model and the machine learning 

model. The biggest advantage of this hybrid model is that it can comprehensively evaluate the 

independent variables related to landslides in each type of independent layer [57]. In this study, we 

aim to propose and verify the overall effect of the bivariate statistical-based random forest and 

support vector machine for spatial prediction of landslides in Linyou County, China. 

2. Materials and Methods 

2.1. Study Area 

Linyou County of Baoji City is located in the south of the Loess Plateau, with Qishan mountain 

in the south, Liupan Mountain and its branch Longshan mountain in the west and the Loess Plateau 

and Beishan Mountain on its southern edge in the north. The overall terrain is high in the northwest 

and low in the southeast. The average altitude of the whole territory is 1271 m, the highest altitude is 

1661 m and the lowest altitude is 724 m (Figure 1). The entire area can be divided into four types of 

geomorphic units: the hilly area of low and middle mountains, loess hilly area, loess remnant 

tableland and river valley channel. Linyou County is located in the upper reaches of Qishui River, a 

tributary of Wei River. Its topography is complex, and the density of rivers and gullies is large, with 

0.79 per square kilometer. 
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Figure 1. Location of the study area. 

The study area belongs to a temperate semi-humid–humid monsoon climate zone. There are 

four distinct seasons, with short summers and long winters. In the past 30 years (1990–2019), the 

maximum annual rainfall was 925.4 mm, the minimum annual rainfall was 355.8 mm and the average 

annual precipitation was 603.3 mm (Figure 2). 
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Figure 2. Rainfall distribution from 1990 to 2019. 

2.2. Data Preparation 

The thematic map of landslide inventory constitutes the basis for the prediction of landslide 

susceptibility [58]. In this study, 152 landslides were identified through early reports, remote sensing 

image interpretation and field investigations [45]. Each landslide polygon in the landslide dataset is 

represented by a centroid [59]. In order to identify whether landslides are likely to occur in the area, 

it is necessary to prepare the same number of non-landslide data. Specifically, 152 non-landslide 

points were randomly selected from areas where landslides did not occur. The landslide data were 

randomly divided into two parts according to a ratio of 70/30, respectively, forming two sets of data, 

namely training data and verification data [60]. 

Relevant factors were selected to predict the occurrence of landslide hazards according to the 

characteristics of the study area and previous similar studies [61,62]. In the study area, landslide 

susceptibility evaluation was carried out using fifteen landslide conditioning factors, namely slope 

aspect, slope angle, elevation, stream power index (SPI), sediment transport index (STI), topographic 

wetness index (TWI), plan curvature, profile curvature, land use, normalized difference vegetation 

index (NDVI), soil, lithology, rainfall, distance to rivers and distance to roads (Figure 3). 
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Figure 3. Maps of landslide conditioning factors: (a) slope aspect; (b) slope angle; (c) elevation; (d) 

stream power index (SPI); (e) sediment transport index (STI); (f) topographic wetness index (TWI); (g) 

plan curvature; (h) profile curvature; (i) land use; (j) normalized difference vegetation index (NDVI); 

(k) soil; (l) lithology; (m) rainfall; (n) distance to rivers; (o) distance to roads. 



ISPRS Int. J. Geo-Inf. 2020, 9, 696 6 of 22 

  

The slope aspect affects the discontinuity, the sunshine time and the intensity of solar radiation 

[63]. The slope aspect map includes nine categories: flat, south, north, southwest, northeast, west, 

east, northwest and southeast. The slope angle indicates the steepness of the slope, which affects the 

size and shear strength of the potential slip surface. The slope angle ranges from 0° to 64.67°, and it 

was divided into 6 categories with 10° intervals. Elevation has a great influence on the degree of rock 

weathering, and it is an indispensable factor for the prediction of landslide susceptibility [64]. The 

elevation range is 724–1661 m, which is divided into ten subcategories. SPI indicates the erosion 

capacity of the water flow [65]. STI describes the potential erosive force of slope flow [66]. SPI and 

STI were divided into five categories: <10, 10–20, 20–30, 30–40 and >40. TWI can indicate runoff trends 

and catchment locations. TWI was divided into five categories: <2, 2–3, 3–4, 4–5 and >5. Plan curvature 

and Profile curvature were divided into three categories: concave, plan and convex. Landuse was 

divided into six categories: farmland, forestland, grassland, water, residential areas and bareland. 

NDVI is used to measure vegetation trends that affect the mechanical properties of slopes and 

hydrological processes related to the instability of the land and slopes in the study area [67,68]. The 

NDVI values range from −0.02 to 0.58 and were divided into five subcategories. Soil affects the 

movement of groundwater and surface water, and its physical and mechanical properties vary 

depending on the type of soil [69,70]. The soil map includes six categories, namely fimic anthrosol, 

calcaric cambisol, eutric cambisol, gleyic cambisol, calcaric regosol and eutric regosol. Lithology is 

very important for the occurrence of landslides, and has a great influence on the scale, type, 

distribution and activity nature of landslides [71]. The lithology is divided into 13 groups. Rainfall 

can cause a decrease in shear strength and induce landslides [72,73]. Rainfall categories in the study 

area include: <400, 400–500, 500–600 and >600. Distance to rivers determines the water content of the 

rocks and soil that make up the main slope [74]. The distance to rivers map includes five buffers: <200, 

200–400, 400–600, 600–800 and >800. The construction of a road will affect the stability of the slope 

angle [75,76]. Therefore, distance to roads affects slope stability. The distance to roads map includes 

five buffers: <500, 500–1000, 1000–1500, 1500–2000 and >2000. Finally, all thematic maps were 

resampled and converted to the same resolution (20 m × 20 m). 

2.3. Certainty Factors (CFs) 

The CF model was first proposed in 1990 [77] and modified subsequently [78]. CF can be 

expressed as follows: 

PPa-PPs
if PPa  PPs

PPa(1-PPs)
PPa-PPs

if PPa < PPs
PPs(1-PPa)

CF = {  


 

(1) 

where PPa is the conditional probability in class a, PPs is the prior probability of the total study area 

[79]. 

The change range of CF to [−1, 1] is such that the larger the value is, the more likely the landslide 

will occur. When the CF value approaches 0, it is difficult to give the certainty of the landslide, 

because the prior probability is the same as the conditional probability. 

2.4. Weights of Evidence (WoE) 

WoE is based on the Bayesian probability model and uses logarithmic linear form [80]. The main 

objective of WoE is to determine the spatial relationship between landslides and conditioning factors 

[81]. 

 
 

P B A
W ln

P B A
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P B A
W ln

P B A
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C W W    
(4) 

where P represents the probability, B represents each category of each factor and B  represents each 

category of non-members of each factor. The pixel point A represents the occurrence of landslide, 

while A  represents non-landslide. W 
 indicates the positive correlation between each category 

and landslide. W 
 indicates the negative correlation between category and landslide. C indicates 

the correlation between landslide and category characteristics [82]. 

2.5. Evidential Belief Function (EBF) 

EBF method is mainly based on the evidence theory algorithm of Dempster–Shafer [83]. EBF is 

the sum of Bel (degree of belief), Dis (degree of disbelief), Unc (degree of uncertainty) and Pls (degree 

of plausibilities), and its range is [0, 1] [84]. Bel is used to expressing the correlation between landslide 

and conditioning factors in the study, and it is expressed using the following formula [85]: 

1 2 n

n

i-1 i i-1 ii=2

Bel + Bel + L + Bel
Belief Bel =

1 - Bel Dis - Dis Bel
（ ）

 

(5) 

where nBel
 denotes the elements of each type or range. 

2.6. Random Forest (RF) 

RF is a powerful integrated learning model proposed by Breiman in 2001 [86]. It has outstanding 

performance in classification, regression and unsupervised learning [87,88]. In the RF model, the 

landslide conditioning factor iP (random variable) and a previous random variable are generated 

independently and distributed on the binary decision tree. The training and verification dataset and 

random vector iP are grown on two trees (landslides and non-landslides), and the set of the tree 

structure classification   1 2ph x i p n ， ,  , ,  of input variable x is obtained. Generally, in RF 

method, generalization error is shown as follows [89]: 

  , , 0x ygeneralization error P mg x y 
 

(6) 

       , maxp p j y p pmg x y av I h x y av I h x j   
 

(7) 

where x and y represent the landslide conditioning factors, mg is the margin function and I is the 

indicator function [86]. 

2.7. Support Vector Machine (SVM) 

SVM is a non-linear classification system based on structural risk minimization and Vapnik-

Chervonenkis dimension, which can be used for assortment and recurrence [90]. It separates classes 

from decision-making areas and maximizes the gap between classes [91]. This method can find an 

optimal hyperplane for binary classification problems to separate the two classes [92]. 

In this study, we used the radial basis function with optimum 
   2

, expi im m m m   
 

[93]. The decision function of SVM can be expressed by the following formula [92]: 

   
n

2

1

sign expi i i i
i

m n m m uf  


 
    

 


 

(8) 

where   is used as the kernel parameter and i  is used as the Lagrange multiplier. 
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3. Results and Analysis 

3.1. Application of the CF Model 

The CF model was applied to each class of the landslide conditioning factors, and the CF weights 

were computed as shown in Figure 4. It is noted that the positive CF weights indicate the higher 

impact of the class of the conditioning factors on landslide occurrence. Accordingly, in terms of slope 

aspect, the results show that southeast (CF = 0.475), south (CF = 0.264), southwest (CF = 0.180) and 

east (CF = 0.074) were the most important classes for landslide incidence. However, the northeast, 

northwest, north, west, and flat had the least effect due to having negative CF weights. In terms of 

slope angle, the results showed that the slope angle between 30 and 40 had the highest potential for 

landslide occurrence (CF = 0.196). Slope angles lower than 10 were ranked in the next position with 

CF weight equal to 0.029, and other slope angle classes were not more effective and assigned by 

negative weights so that slope angles more than 40 did not play any role in landslide occurrence (CF 

= −1). Elevations between 800 and 900 m (CF = 0.587), 1100 and 1200 m (CF = 0.341), 1200 and 1300 m 

(CF = 0.089) and 1400 and 1500 m (CF = 0.116) were positively correlated with the occurrence of 

landslides in the study area. Another conditioning factor, SPI, analyzed based on CF weight, showed 

that SPI between 30 and 40 (CF = 0.271) had the greatest potential for landslide occurrence. It is 

followed by SPI between 10 and 20 (CF = 0.193) and SPI lower than 10 (CF = 0.046). This indicates that 

these classes of SPI were more prone to landslide occurrence compared to other classes. Analysis of 

CF weights for STI illustrated that the values between 30 and 40 and lower than 10 assigned a CF 

equal to 0.342 and 0.067 and thus concluded that they were more susceptible compared to other 

classes of STI for landslide occurrence. In the case of TWI, the result of CF weights indicated that 

lower TWI values (<2) obtained the highest CF value (0.098). According to Figure 1, 66 landslide 

locations occurred only at this class of TWI. Additionally, results showed that the higher the TWI 

was, the lower the potential for landslide incidence would be. In terms of plan curvature, results 

showed that plan (CF = 0.216) and convex (CF = 0.144) slope forms and, in the case of plan curvature, 

concave slope form (CF = 0.059) were the most important on landslide occurrence in the study area. 
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Figure 4. Weights of factors using certainty factors (CFs), evidential belief function (EBF) and weights 

of evidence (WoE) models. 
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3.2. Application of EBF Model 

In this study, the EBF model was performed, and the result is reported based on the “Bel” index, 

which is shown in Figure 4. The higher the Bel weight of each class of the conditioning factor was, 

the higher the potential of the class would be. The southeast slope aspect was the most important 

class among other slope aspect classes (Bel = 0.235) to landslide occurrence. It is followed by south 

(Bel = 0.168), southwest (Bel = 0.151), east (Bel = 0.133), northeast (Bel = 0.094), northwest (Bel = 0.078), 

north (Bel = 0.072), west (Bel = 0.068) and flat (Bel = 0.000). In the case of slope angle, results showed 

that slope angles lower than 40 were more susceptible and had more potential for landslide 

occurrence. Among all classes, slope angles between 30 and 40 had the greatest impact on landslides 

of the study area (Bel = 0.294). This was followed by 0–10 (0.244), 10–20 (0.232) and 20–30 (0.230). 

Although only two landslides occurred in elevations between 800 and 900 m, the number of equipped 

pixels for this class is low and thus this class of elevation obtained the highest Bel weights (0.292), 

indicating the highest susceptibility for landslide occurrence. This was followed by 1100–1200 (0.183), 

1400–1500 (0.136), 1200–1300 (0.132), 1000–1100 (0.105), 1300–1400 (0.086) and 1500–1600 (0.066). In 

the case of SPI and Bel weights, results showed that SPI between 30 and 40 (0.291), 10 and 20 (0.263), 

<10 (0.223), >40 (0.174) and between 20 and 30 (0.076) were the most important SPI values for landslide 

occurrence. Among all classes of STI, factor results showed that STI between 20 and 30 had the highest 

Bel weight (0.459), and thus it was shown to be the most susceptible class. It was followed by STI < 

10 (0.324) and between 10 and 20 (0.218). However, according to TWI results, with increasing TWI 

values, the probability of landslide occurrence decreased, such that the first class (TWI < 2) was shown 

to be the critical class for landslide occurrence (Bel = 0.332).  

3.3. Application of WoE Model 

The WoE model was performed on a training dataset, and the weights (C) were calculated for 

each class of each conditioning factor. A positive C weight of the class indicated greater importance 

of landslide occurrence in the class. Results showed that in the case of slope aspect, the highest C 

weight was obtained for southeast (0.775) because most of the landslide locations (24 cases) occurred 

in this class. This was followed by south (C = 0.349), southwest (C = 0.230), east (C = 0.091), northeast 

(C = −0.304), northwest (C = −0.506), north (C = −0.594), west (C = −0.658) and flat (C = 0.000). In terms 

of slope angle, although only nine landslide locations occurred at a slope angle between 30° and 40 

(C = 0.236), this class was shown to be the most susceptible class to landslide occurrence compared 

to other classes. This was due to this fact that these few landslides occurred in a low number of pixels 

with a slope angle between 30 and 40. Slope angles between 0 and 10 (C = 0.038), 10 and 20 (C = 

−0.036) and 20 and 30 (C = −0.038) were shown to be ranked as next in importance in terms of 

susceptibility to landslide occurrence. However, slope angles higher than 40 had no susceptibility to 

landslide occurrence because they did not have any landslides. The most susceptible range of 

elevation above sea level for landslide incidence in this study was obtained for 800–900 m (C = 0.896). 

Elevations between 1100 and 1200 m (C = 0.507), 1400 and 1500 m (C = 0.152) and 1200 and 1300 m (C 

= 0.126) were assigned positive weights and hence had more landslide incidence compared to those 

with negative C weights such as elevation ranges of 1000-1100 m (C = −0.149), 1300-1400 m (C = −0.448) 

and 1500–1600 m (C = −0.616). However, there were no landslides at elevations lower than 800 m (C 

= 0.000) or higher than 1600 m (C = 0.000) and therefore no possibility of landslides at these elevations. 

For SPI factor, results showed that the highest C weight was computed for SPI between 30 and 40 

(0.333), followed by 10 and 20 (C = 0.272), <10 (C = 0.133), >40 (C = −0.407) and 20 and 30 (C = −1.085). 

Results of C weight for STI showed that the most susceptible class for landslide incidence was STI 

between 20 - 30 (C = 0.439), followed by STI < 10 (C = 0.337) and 10 - 20 (C = −0.383). Results also 

indicated that STI > 30 had no contribution to landslide occurrence in the study area. There was a 

reverse relationship between TWI and probability of landslide occurrence, so the higher the TWI 

values, the less the C weights would be and thus the lower the probability of landslide occurrence. 

In other words, the lowest TWI values had the highest potential for landslide incidence. For example, 

TWI < 2 with C weight equal to 0.254 was more susceptible compared to other classes such as TWI 
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between 2 and 3 (C = −0.177), 3 and 4 (C = −0.196), 4 and 5 (C = −0.680) and >5 (C = 0.000). Similar to 

CF and Bel indexes, the C weight for plan and profile curvatures had the same result; however, in 

terms of profile curvature, concave slope forms were more important and had the highest 

contribution to landsides in the study area. 

3.4.  Hybrid Integration of CF, EBF and WoE with RF Model 

The bivariate models, namely CF, EBF and WoE, used in this study to landslide modeling have 

the weakness that they only consider the sub-factor weights for landslide susceptibility assessment 

whereas not all of the factors have the same effect on landslide occurrences. Therefore, it was assumed 

that if the RF decision tree classifier were to be integrated with the mentioned bivariate models, the 

goodness-of-fit and prediction accuracy would be enhanced by decreasing the noise and over-fitting 

problems of the RF classifier. At first, the landslide susceptibility index (LSI) for each class of each 

landslide conditioning factor were computed and assigned by CF, EBF and WoE methods. Then, the 

landslide training dataset was overlaid with the obtained results, and it was considered as input to 

the RF classifier. Finally, the LSIs were computed in Weka software [94] and then transformed in 

ArcGIS software. 

3.5. Hybrid Integration of CF, EBF and WoE with the Benchmark SVM Model 

In this study, to check the prediction power of the bivariate models integrated with the SVM 

model, we integrated the bivariate models of CF, EBF and WoE with SVM as a benchmark model. 

We first computed the landslide susceptibility index (LSI) for each class of each landslide 

conditioning factor by CF, EBF and WoE bivariate methods. In the next step, we overlaid landslide 

training locations on each bivariate model, and for each landslide location, a feature was extracted. 

All of these features were the considered as input to the SVM classifier. Consequently, the LSIs were 

computed in Weka software and then were transformed in ArcGIS software. 

Finally, the landslide susceptibility maps were reclassified into five classes—very high (5%), 

high (10%), moderate (15%), low (20%) and very low (50%)—using the equal-area classification 

method for each bivariate model and its ensembles with RF and SVM models (Figure 5) [95]. 



ISPRS Int. J. Geo-Inf. 2020, 9, 696 12 of 22 

  

 

Figure 5. Landslide susceptibility maps: (a) CF model, (b) EBF model, (c) WoE model, (d) CF-RF 

model, (e) EBF–RF model, (f) WoE–RF model, (g) CF–SVM model, (h) EBF–SVM model, (i) WoE–

SVM model. 

3.6.  Model Validation and Comparison 

In this study, the performance and prediction accuracy of the individual bivariate models and 

its ensembles with RF and SVM models were checked and analyzed using training and validation 

datasets by plotting the ROC curve [96–98] (Table 1; Table 2, Figures 6 and 7). The SVM was used as 

a benchmark model for assessing the ensemble of the bivariate models with RF classifiers. The SVM 

is known as a powerful state-of-the-art soft computing machine learning model that outperformed 

other models in many studies of susceptibility mapping [47,99]. The AUC, SE and CI at 95% 

confidence level statistical metrics were used for this aim. According to Table 1, results showed that 

the AUC values were 0.827, 0.816, 0.819, 0.982, 0.980, 0.978, 0.856, 0.856 and 0.857 for CF, EBF, WoE, 

CF–RF, EBF–RF, WoE–RF, CF–SVM, EBF–SVM and WoE–SVM models, respectively. According to 

Table 1, results showed that among individual models, the CF had the highest performance (AUC = 
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0.827), followed by WoE and EBF models. Moreover, it shows that among ensemble models, the 

highest performance was obtained for the CF–RF model, followed by EBF–RF and WoE–RF models. 

In other words, the bivariate models, when integrated with the RF model, had the highest 

performance/goodness-of-fit compared to its ensembles with the SVM model. 

Table 1. Models performance using training dataset. 

Variable AUC SE 95% CI 

CF 0.827 0.0285 0.769 to 0.875 

EBF 0.816 0.0289 0.758 to 0.866 

WoE 0.819 0.0291 0.760 to 0.868 

CF–RF 0.982 0.00650 0.954 to 0.995 

EBF–RF 0.980 0.00696 0.951 to 0.994 

WoE–RF 0.978 0.00742 0.948 to 0.993 

CF–SVM 0.856 0.0256 0.802 to 0.901 

EBF–SVM 0.857 0.0256 0.802 to 0.901 

WoE–SVM 0.851 0.0258 0.796 to 0.896 

Table 2. Models performance using validating dataset. 

Variable AUC SE 95% CI 

CF 0.727 0.0532 0.624 to 0.815 

EBF 0.725 0.0545 0.622 to 0.813 

WoE 0.733 0.0521 0.631 to 0.820 

CF–RF 0.861 0.0375 0.773 to 0.924 

EBF–RF 0.848 0.0402 0.758 to 0.914 

WoE–RF 0.860 0.0392 0.772 to 0.924 

CF–SVM 0.802 0.0476 0.706 to 0.878 

EBF–SVM 0.811 0.0476 0.716 to 0.885 

WoE–SVM 0.795 0.0472 0.698 to 0.872 

 

Figure 6. ROC curves using training data. 
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Figure 7. ROC curves using validating data. 

The results of the prediction accuracy of the individual bivariate models and its ensembles with 

RF and SVM using the validation dataset are shown in Table 2 and Figure 7. Although according to 

the training dataset, the CF bivariate model was more powerful than the EBF and WoE models, the 

WoE model based on the validation dataset was selected as having the highest prediction accuracy. 

Additionally, it indicated that the AUC values were 0.727, 0.725, 0.733, 0.861, 0.848, 0.860, 0.802, 0.811 

and 0.795 for CF, EBF, WoE, CF–RF, EBF–RF, WoE–RF, CF–SVM, EBF–SVM and WoE–SVM models, 

respectively. It is also similar to the training dataset that of all of these models: the CF bivariate model 

integrated with RF model outperformed and outclassed other models with the highest prediction 

accuracy (AUC = 0.861). This was followed by WoE–SVM (AUC = 0.860) and EBF–SVM (AUC = 0.848). 

However, the individual bivariate models, when integrated with the SVM model, showed improved 

prediction accuracy. 

3.7. Validation of Landslide Susceptibility Maps 

In this study, in addition to checking the goodness-of-fit and prediction accuracy by the ROC 

curve, we evaluated the usability of the proposed models using success and prediction rate curves. 

The ROC curve was plotted based on training and validation datasets, that are used to evaluate the 

performance and prediction accuracy of a given model [100,101]. However, the success and 

prediction rate curves were designed based on only landslide locations divided into training and 

validation datasets, respectively [95]. Table 3 and Figures 8 and 9 show the validation of the proposed 

models by success (AUC_T) and prediction (AUC_P) rate curves. It can be observed that individual 

models had a higher performance in comparison to the ROC curve (AUC > 0.82). Among individual 

bivariate models, results illustrated that the CF model had the highest performance (AUC_T = 0.8324) 

and prediction accuracy (AUC_P = 0.7679) for landslide susceptibility mapping in the study area, 

followed by WoE and EBF models. Results according to training dataset showed that the AUC-Ts 

were 0.8324, 0.8244, 0.8251, 0.9996, 0.9991, 0.9993, 0.8558, 0.8461 and 0.8484 for CF, EBF, WoE, CF–RF, 

EBF–RF, WoE–RF, CF–SVM, EBF–SVM and WoE–SVM models, respectively. However, based on 

validation datasets, these values were 0.7679, 0.7508, 0.7646, 0.8810, 0.8763, 0.8968, 0.8105, 0.8066, and 

0.8055, respectively. Overall, results based on the validation dataset indicated that WoE–RF was the 

accurate ensemble model (AUC_P = 0.8968). This was followed by CF–RF, EBF–RF, CF–SVM, EBF–

SVM and WoE–SVM ensemble models. 
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Table 3. Validation of landslide susceptibility maps. 

Variable AUC_T AUC_P 

CF 0.8324 0.7679 

EBF 0.8244 0.7508 

WoE 0.8251 0.7646 

CF–RF 0.9996 0.8810 

EBF–RF 0.9991 0.8763 

WoE–RF 0.9993 0.8968 

CF–SVM 0.8558 0.8105 

EBF–SVM 0.8461 0.8066 

WoE–SVM 0.8484 0.8055 

 

Figure 8. Model validation with the success rate (AUC_T) curve. 

 

Figure 9. Model validation with the prediction rate (AUC_P) curve. 
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4. Discussion 

Landslides are one of the most significant natural disasters for all countries in the world, and 

landslide prediction is getting more and more attention [102]. To obtain higher accuracy of landslide 

susceptibility maps, there are higher requirements for the quality of the collected data, the selection 

of suitable models and the selection of effective parameters of the models [7]. The main advantage of 

the bivariate model is that it is easy to understand, does not require too much training and does not 

require parameter adjustment. However, bivariate algorithm modeling must be based on strict 

compliance with assumptions and does not analyze the relationships between each factor. Therefore, 

the bivariate model always ignores the importance of parameters. For machine learning models, these 

problems are avoided. Machine learning algorithms can determine the best parameters, but they 

cannot determine the weight of each factor category. It is therefore particularly necessary to introduce 

some integrated models to eliminate these limitations. In recent years, some integrated machine learning 

methods have been applied to landslide susceptibility research. For example, Nguyen et al. [103] proposed 

a new hybrid machine learning model for spatial prediction of landslides, namely particle swarm 

optimization adaptive neural fuzzy inference system (PSOANFIS), particle swarm optimization artificial 

neural network (PSOANN) and rotation forest based on optimal first decision tree (RFBFDT). The results 

showed that RFBFDT (AUC = 0.826) is the best method compared with other hybrid models and a 

promising hybrid machine learning method. Tien Bui et al. [104] proposed an integrated model (ABSGD) 

combining a function algorithm, stochastic gradient descent (SGD) and AdaBoost (AB) Meta classifier to 

predict the spatial distribution of landslides in Iran’s Sarkhoon watershed. The results showed that the 

performance of the ABSGD model (AUC = 0.860) is better than other models. The combined use of the 

function algorithm and the Meta classifier can reduce noise, prevent overfitting, and improve the 

prediction ability of a single SGD algorithm in landslide spatial prediction. Pham et al. [105] proposed a 

new hybrid intelligent model MBSVM for landslides in the Uttarakhand State, Northern India, which is 

an integration of MultiBoost integration and support vector machine (SVM). Comparison results show 

that MBSVM (AUC =  0.966) is superior to LR, single SVM and mixed ABSVM models. 

In this article, the landslide susceptibility was simulated for 15 landslide conditioning factors such as 

the slope aspect, slope angle, elevation, SPI, STI, TWI, plan curvature, profile curvature, landuse, NDVI, 

soil, lithology, rainfall, distance to rivers and distance to roads. The CF, EBF and WoE models as bivariate 

models and the RF and SVM models as machine learning models were integrated and compared to choose 

the best model. The CF, WoE and EBF models calculated the correlation between landslide conditioning 

factors and landslide occurrence. The weights of the CF, EBF and WoE models are used to judge the 

importance of each type of factor for landslides. In order to get an integrated model with the RF model, 

firstly, the CF, EBF and WoE models were calculated and the LSI of various landslide conditioning factors 

was recorded. Then, LSI was superimposed with the landslide dataset, and the corresponding features 

were extracted for each landslide point in the dataset to form new model training input data. Finally, 

the LSI calculated by the Weka software was converted into ArcGIS software, and the landslide 

susceptibility map is obtained and partitioned. The same is true for the comparative SVM integration 

model. In order to obtain the advantages and disadvantages between the models, the ROC curve and 

the necessary parameters are used for comparison between the models. The comparison of the nine 

models shows that all the integrated models are better than all the single models, and the CF-RF 

model has the best performance among the nine models. The integration model mixed with RF is 

superior to the integration model mixed with the comparison model SVM selected after many tests. 

The CF–RF model in the validation data set had the largest AUC value (0.848) and the smallest SE 

(0.0375). In order to obtain the most suitable model for this study area more accurately, the success 

rate (AUC_T) curve and the prediction rate (AUC_P) curve were introduced to verify the AUC value 

obtained by the nine models. As stated in the results, the success rate (AUC_T) curve and the 

prediction rate (AUC_P) curve only consider the landslides that have occurred, and will have better 

performance than the AUC value obtained by the ROC curve. For the landslide susceptibility map, 

this classification method will be better matching. The results show that the WoE–RF model as an 

integrated model is superior to the other eight models (AUC_T: 0.9993, AUC_P: 0.8968). The other 

eight models also produced reasonable and good performance. 
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5. Conclusions 

Landslide susceptibility prediction is critical to spatial planning and civil safety. Landslide 

susceptibility mapping is an indispensable step for spatial prediction of landslide susceptibility. This 

study introduced RF as a machine learning algorithm combined with three bivariate models (the CF, 

WoE and EBF models) to solve this problem. For this reason, 15 conditioning factors were selected in 

the study area. These factors are slope aspect, slope angle, elevation, SPI, STI, TWI, plan curvature, 

profile curvature, landuse, NDVI, soil, lithology, rainfall, distance to rivers and distance to roads. In 

this paper, the correlation between the conditioning factor and the occurrence of landslide were 

calculated by three different bivariate models, and the weights were obtained. Then, the weights of 

the bivariate model were brought into the machine learning model to form six integrated models. 

Next, these nine different models were applied to the spatial prediction of landslides in Linyou 

County. Finally, the accuracy of the generated model was verified by the ROC curve, the success rate 

curve and the prediction rate curve using two ways of solving the AUC value, and the best model 

was obtained by comparison. The AUC_T values of the CF, EBF, WoE, CF–RF, EBF–RF, WoE–RF, 

CF–SVM, EBF–SVM and WoE–SVM models were 0.8324, 0.8244, 0.8251, 0.9996, 0.9991, 0.9993, 0.8558, 

0.8461 and 0.8484, respectively. The results show that all models have good prediction accuracy, but 

the prediction ability is different. After comparing the performance of the single model and the 

hybrid model, it was found that the performance of the single model is significantly improved after 

the collection. As an integrated model, the WoE–RF model has the highest prediction rate (AUC_T: 

0.9993, AUC_P: 0.8968). Therefore, the nine landslide susceptibility maps produced by Linyou 

County can be used as useful tools for government personnel and local authorities to carry out land 

management and planning. 
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