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Abstract: The rise of Google Earth Engine, a cloud computing platform for spatial data, has unlocked
seamless integration for multi-sensor and multi-temporal analysis, which is useful for the identification
of land-cover classes based on their temporal characteristics. Our study aims to employ temporal
patterns from monthly-median Sentinel-1 (S1) C-band synthetic aperture radar data and cloud-filled
monthly spectral indices, i.e., Normalized Difference Vegetation Index (NDVI), Modified Normalized
Difference Water Index (MNDWI), and Normalized Difference Built-up Index (NDBI), from Landsat 8
(L8) OLI for mapping rice cropland areas in the northern part of Central Java Province, Indonesia.
The harmonic function was used to fill the cloud and cloud-masked values in the spectral indices
from Landsat 8 data, and smile Random Forests (RF) and Classification And Regression Trees (CART)
algorithms were used to map rice cropland areas using a combination of monthly S1 and monthly
harmonic L8 spectral indices. An additional terrain variable, Terrain Roughness Index (TRI) from the
SRTM dataset, was also included in the analysis. Our results demonstrated that RF models with 50
(RF50) and 80 (RF80) trees yielded better accuracy for mapping the extent of paddy fields, with user
accuracies of 85.65% (RF50) and 85.75% (RF80), and producer accuracies of 91.63% (RF80) and 93.48%
(RF50) (overall accuracies of 92.10% (RF80) and 92.47% (RF50)), respectively, while CART yielded a
user accuracy of only 84.83% and a producer accuracy of 80.86%. The model variable importance in
both RF50 and RF80 models showed that vertical transmit and horizontal receive (VH) polarization
and harmonic-fitted NDVI were identified as the top five important variables, and the variables
representing February, April, June, and December contributed more to the RF model. The detection
of VH and NDVI as the top variables which contributed up to 51% of the Random Forest model
indicated the importance of the multi-sensor combination for the identification of paddy fields.

Keywords: harmonics; random forest; classification and regression trees; variable importance

1. Introduction

The effort to monitor the extent of paddy fields has been a focus of attention for many years.
Many countries consume rice as the main staple, especially large, densely populated countries such as
Indonesia. However, the growing population in Indonesia put stress on the extent of paddy field areas,
and brought about the conversion of agricultural areas to built-up environments, especially in the
lowland areas of Java Island [1]. The shrinkage in the paddy field extent in Indonesia has largely been
attributed to the expansion of settlement areas [2]. For instance, in Yogyakarta, the growth of settlement
areas absorbed 16% of the paddy field areas between 1972 and 1990, which also facilitated the growing
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road network [3]. Protecting agricultural lands remains a challenge due to weak law enforcement [4].
Therefore, the accurate mapping and monitoring of paddy fields are needed, especially to mitigate the
over-conversion of productive paddy fields to other land-use types.

Various remote sensing data and methods have been used in various studies for paddy field
mapping. These studies have employed spectral, textural, thermal, and temporal properties, using
each variable alone or as a combination of spectral, textural, thermal, and temporal properties. Studies
have also employed medium-to-coarse spatial resolution and passive and active sensors. Because
the agricultural cropping pattern is largely dependent on climatic factors [5], paddy fields can be
characterized by their temporal properties. Early efforts to map paddy fields based on their temporal
properties used a MODIS dataset due to its dense observation time, which offers a better chance of
obtaining cloud-free observation [6–10]. Although Xiao, Boles, Frolking, Li, Babu, Salas and Moore
III [7] emphasized discrepancies in the detected size of paddy field areas due to the inability of a 500
m spatial resolution to detect small patches of field area, and due to the contamination of clouds. In
addition, the combination with other data, such as land surface temperature [11], and higher spatial
resolution data such as Landsat [12–14], has increased the accuracy of paddy field identification, which
demonstrated the benefit of multi-sensor integration for mapping paddy fields.

Multiple studies have benefited from the characteristics of radar that can penetrate clouds and
operate both in the day and at night. Moreover, a radar signal is able to describe the phenology of rice
fields at different paddy growth stages due to their distinct difference from the radar interaction with the
plant water content, background water and plant structure such as plant height, leaf size, stalk diameter
and crop yield [15]. For instance, during the flooding stage, a darker tone can be found due to the specular
reflection of the radar pulses when interacting with water, while during the growing stages, increasing
backscatter values are found due to the multiple reflection and volume scattering from the plant [15]. Thus,
this triggered the multi-temporal analysis using radar sensors, such as ALOS/PalSar [16,17], which has
been used with relatively high accuracy, although misclassification between dryland crops and orchard
due to their similar backscatter amplitude has been observed [16]. Currently, paddy field mapping has
benefited from freely available c-band dual-polarization Sentinel-1 SAR data with 10 m spatial resolution
and 12-day temporal resolution, [18–23]. In addition to the use of Sentinel-1 data, combinations with
other data, such as Landsat 8 [24–27] and Sentinel-2 [26,28,29], have also been employed in order to better
exploit spectral, textural, and temporal information for the identification of paddy fields.

The usage of multi-temporal and multi-sensor datasets places a demand on computational time
and processing, especially when large-area mapping is needed. Therefore, there has been a growing
use of the cloud computing platform of Google Earth Engine (GEE) [30], developed in 2010, which
aims to dissipate the hardware limitations for multi-scale computation, from local to the global scale.
From 2011 to 2017, there were approximately 300 scientific studies employed the GEE services for
various earth observation studies [31]. The studies focused on crop mapping, water resources, and
land-use and land-cover change mapping and were conducted mostly by using optical medium
resolution optical data, such as Landsat, followed by the c-band Sentinel-1 data [32]. Overall, the GEE
platform has offered the capability for multi-scale geospatial computation by using multi-sensor, and
multi-temporal remote sensing data.

Several studies to map paddy fields have benefited from the multi-temporal and multi-sensor data
archive in the GEE platform [20,23,28,33]. Nevertheless, a problem remains with the inclusion of optical
imagery in the analysis which requires additional processing to compensate for important missing data
during the rainy season, which is the start of the rice planting season or the flooding stage [25]. The
way to avoid cloudy images is to select relatively cloud-free images for use in the classification analysis,
as conducted by Onojeghuo, Blackburn, Wang, Atkinson, Kindred and Miao [27]. However, this would
mean that temporal details would be missing from the optical data, and additional processing would
be required to fill the gap due to the cloud-and cloud shadow.

Addressing the gap or missing values due to the clouds or cloud shadows in the optical data is
important for paddy field mapping. The missing values could altered the phenology and resulted to
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the misclassification of the cropping pattern of the paddy field [34]. Reconstructing the data missing
due to atmospheric disturbances can be performed by using various gap-filling techniques from
spatial, temporal, and spatial-temporal interpolation [35]. The use of temporal interpolations such as
Savitzky–Golay or Whitaker, and the singular spectrum analysis filter is widely accepted, although
performance is degraded if the gap is more than 20% [36]. Another approach uses harmonic curve
functions for filling in missing values [37–39], which were beneficial be used as the input for the
classification and regression of multi-temporal data [40–42] and also to map paddy field types [43].

The efforts to integrate the temporal information or growing stages of paddy fields by using
Landsat data were usually carried out by identifying the inundation/flooding stage by using statistical
approaches employing the spectral indices such as water and vegetation index to compensate for
the missing data due to clouds and cloud shadows [33,34]. Our study aims to explore the mapping
applicability and accuracy from combining the 2019 monthly data from the spectral indices from
gap-filled Landsat 8 OLI, and Sentinel-1 time-series data for mapping paddy fields with the testing
areas of Tegal and Cirebon districts, West and Central Java Provinces, Indonesia. A harmonic function
was used to fill in the data that were missing due to clouds and cloud shadows in Landsat 8 OLI, and
was simultaneously used with Sentinel-1 monthly-median data as the input for Random Forest (RF)
and Classification and Regression Tree (CART) classification.

2. Materials and Methods

2.1. Study Area

The study took place in the Tegal and Cirebon districts, West and Central Java Provinces, Indonesia,
at the location 108.6◦ E to 109.4◦ E, and 6.7◦ N to 7.1◦ N (Figure 1). The study area is a lowland coastal
plain dominated by urban, aquaculture, cropland, and paddy field land cover. These areas supply
the demand for rice, where the Cirebon district provides approximately 37.2% of rice for Jakarta, the
capital city of Indonesia [44]. These areas are in the top ten areas with the highest rate of conversion
from agricultural to non-agricultural use, with a loss percentage of 8.76% and 5.88% for Cirebon and
Tegal districts, respectively, based on the data from 2009 to 2013 [45].
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2.2. Harmonic Regression for Landsat 8 OLI

The 2019 Landsat 8 OLI Tier 1 (LANDSAT/LC08/C01/T1_SR) data archive in GEE was used in
this study to generate the temporal spectral indices used as the input for classification. We performed
cloud and cloud shadow masking using quality bands from the Landsat dataset, and topography
correction to the Landsat 8 OLI data to remove the effect of terrain and terrain shadow from the pixel
values. The topography correction followed Sun–Canopy–Sensor correction with the moderator C
(SCS+C) method in GEE using the code from Poortinga, et al. [46].

The SCS+C method, developed by Soenen, et al. [47] was a development from the original SCS
method [48], which used the parameter of the terrain slope (α), solar zenith angle (θ), and incidence
angle (i). However, the SCS method tends to overestimate at a certain terrain configuration so that the
combination with a C-parameter from C-correction method [49] was introduced. The C-parameter was
derived by the ratio of the regression slope (b) and intercept (a) from the linear relationship (Equation
(1)) from the uncorrected reflectance (L) with the cosine of local incidence angle (i) (Equation (2)). The
C-parameter was then introduced to the original SCS approach as the additive component (Equation
(3)). The details of SCS+C correction to produce topographic corrected reflectance (Ln) can be written,
as follows:

L = a + b cos i (1)

C =
a
b

(2)

Ln = L
cosα cosθ+ C

cos i + C
(3)

In GEE, the terrain slope was derived by using the digital elevation model (DEM) from the Shuttle
Radar Topographic Mission (SRTM; USGS/SRTMGL1_003), with the solar zenith angle was taken from
the Landsat-8 metadata, while the incidence angle was calculated by subtracting the solar azimuth
angle with the aspect variable from the DEM data.

Following the topographic correction, several spectral indices such as the Normalized Vegetation
Index (NDVI) (Equation (4)), Modified Normalized Difference Water Index (MNDWI) (Equation
(5)) [50] and Normalized Difference Built Up Index (NDBI) (Equation (6)) [51], were calculated to
obtain the temporal information used for identifying irrigated areas [52]. The following spectral bands
of green, red, Near Infrared (NIR), and Shortwave Infrared (SWIR1) from Landsat 8 OLI were used in
the calculation:

NDVI =
NIR−Red
NIR + Red

(4)

MNDWI =
Green− SWIR1
Green + SWIR1

(5)

NDBI =
SWIR1−NIR
SWIR1 + NIR

(6)

The spectral indices NDVI, MNDWI, and NDBI from Landsat 8 OLI contained missing values
due to cloud and cloud-shadow masking by using the quality assessment (QA) layer, so additional
gap-filling was conducted by using harmonic regression. The harmonic regression function is a
frequency domain time-series analysis that reconstructs the periodic/seasonality waves from the sine
and cosine functions of the original time-series data [39,53]. The harmonics models to calculate the
fitted time-series data (Y(t)), based on Clinton [54] and Adams, et al. [55], can be expressed in the
Equation (7) as follows:

Y(t) = β0 + β1t +
∑
j≥1

(β2 cos(2π jt) + β3 sin(2π jt)) + et (7)
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Whereas t represents the time bands since 1 January 1970, j represent the order of harmonics,
β0 and β1t represent the intercept and slope (trend) coefficients, β2 and β3 represent the independent
fitting coefficients, and et represents the residual error term.

Seasonal values obtained from fitting harmonic functions have been used in various mapping
applications that use remote sensing data, especially for land-cover classification [56,57] and the
detection of land-use changes [41]. Harmonic regression implementation in GEE was adapted from
Nicholas Clinton’s code [54] for fitting one-cycle seasonality per year with the NDVI, MNDWI, and
NDBI values. The selection of the first harmonic was used to avoid over-fitting and to represent the
overall productivity of the study area [39,42]. Following the harmonic regression analysis, median
composites from the values of each of the harmonic-fitted spectral indices were derived to generate the
monthly data for 2019. Median values were chosen due to the ability to better represent the vegetation
biophysical properties [58] with the median value’s statistical nature, which was not being affected by
the outliers. Some examples of harmonic fitted NDVI values (taken from a pixel of the study area) can
be found in Figure 2.
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2.3. Sentinel-1 Time Series Process

The 2019 archive of 10 m spatial resolution C-band Synthetic Aperture Radar (SAR) Sentinel-1
Ground Range Detected (GRD) data in GEE in the data collection COPERNICUS/S1_GRD was used in
this study. The archive data of Sentinel-1 GRD in GEE undergo several processes, such as thermal
noise removal, radiometric calibration, terrain correction by using the DEM data from SRTM or ASTER
GDEM for higher latitude data (>60◦ North and South), and log scaling conversion from backscatter
coefficient (σ◦) to decibels (db) by using the following equation (Equation (8)).

db = 10× log σ◦ (8)

In addition, we aggregated the values by taking the mean values to change the pixel size from 10
m to 30 m to follow the spatial resolution of Landsat 8 OLI. We employed the dual vertical transmit and
vertical receive (VV) polarization and vertical transmit and horizontal receive (VH) polarization. The
monthly median composites of the ascending orbit of Sentinel-1 from both VV and VH polarizations
in 2019 from January to December were generated and used as the input for classification. The
median value was chosen and used for the same reason as mentioned previously on the Landsat-8 OLI
data processing.

2.4. Ancillary Data

Ancillary data in the form of terrain configuration data were used for the classification. The
inclusion of terrain configuration in the classification process is thought to increase the accuracy of
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land cover classification [58,59]. The Shuttle Radar Topographic Mission (SRTM) data from the GEE
database (USGS/SRTMGL1_003) with a pixel size of 30 m over the study area was used to generate
the Terrain Ruggedness Index (TRI) data. The TRI calculation (Equation (9)) was developed by Riley,
et al. [60], and represents terrain roughness from the elevation difference between the center pixel
(Xoo) and the surrounding pixels (Xij) within a specified moving window on the original elevation
raster image.

TRI = 2
√∑

(Xoo−Xij)2 (9)

2.5. Classification and Accuracy Assessment

This study employed RF and CART algorithms, available on the GEE system. RF is an algorithm
developed by Breiman [61], which can be used for classification and regression analysis. On the
classification task, the RF algorithm works by creating a set of tree classifiers from random subsets of
the original data, and the majority vote is used as the basis for the classification decision. The tuning
parameter for the number of trees in RF was determined by using the grid search method with values
of 10 to 100 and an interval of 10. The Out-of-Bag (OOB) error for each iteration was compared, and the
model with the lowest OOB error was selected. The variable importance result was then extracted. The
OOB is a byproduct of a bagging algorithm, including the RF algorithm, which employs the unused
samples in the bootstrap process and is beneficial for evaluating the error on the generated model [62].

In addition, the CART algorithm, originally developed by Breiman, et al. [63] in 1984, was used for
the comparison. CART is a classifier that works by creating rules (which can be displayed in the form
of a decision tree) for classification or regression by minimizing the heterogeneity measured from the
heterogeneity criterion, i.e., the Gini Index or Entropy [64]. By looking at the RF and CART methods,
RF can be considered as a development of CART that uses multiple trees in the decision-making
process. However, CART is relatively simple, and its computational burden is less heavy than RF,
which can be useful in avoiding the 1 million points computation limitation in GEE, which would
undermine our comparison analysis.

Both RF and CART classifications used the same input variables. The list of input variables
and their codenames are listed in Table 1. The total accumulated number of variables used from the
monthly Landsat 8 and Sentinel 1, including the TRI from SRTM, was 61, with the pixel dimension of
867 × 480 pixels for each layer. Therefore, a tileScale parameter was set during the classification process
to 8 to avoid 100 mb memory limit in GEE. To train classification algorithm, 174 points of training data
were collected which consisted of 62 points for paddy fields, 80 points for non-paddy fields, and 32
points for water body.

Table 1. List of variables used in the classification process.

Data Variables Codename * Number Variables

Landsat 8
Harmonic-fitted NDVI FNDVI1 to FNDVI12 12

Harmonic-fitted MNDWI FMNDWI1 to FMNDWI12 12
Harmonic-fitted NDBI FNDBI1 to FNDBI12 12

Sentinel-1
VV Polarization VV1 to VV12 12
VH Polarization VH1 to VH12 12

SRTM Terrain Ruggedness Index TRI 1

Pixel Dimension: 867 × 480 pixels Total Layer 61

* the number on the codenames represents the month.

An accuracy assessment was conducted by constructing the error matrix using randomly sampled
points. A total of 3000 points were distributed, and the land cover information for each point was
added by performing a visual check using the Google Map high-resolution satellite view. Following
the visual inspection, several accuracy components, namely, producer (PA), user (UA), and overall
accuracies (OA), were calculated. Before conducting the accuracy assessment, the classification maps
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were filtered using a majority filter in a 3 × 3 window to remove small, isolated classes from the
final maps.

The workflow of our analysis is shown in Figure 3.
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3. Results

3.1. Out-of-Bag Error (OOB) and Variable Importance

A grid search and the corresponding OOB error values for each iteration were calculated (Figure 4).
From the grid search, we found that the error ranged from 8.046% to 15.517%. The lowest errors were
obtained by setting the number of trees to 50 and 80 trees with an OOB value of 8.046%. Therefore, the
two classifications were performed by using 50 and 80 trees as the parameter setting, and the variable
importance values from these two classification analyses were derived.
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Figure 5A,B showed the top 15 important variables with the highest importance values on the
RF50 and RF80 models. The graphs showed that the VH backscatter in August and in October was
listed as the most important variable in the RF50 and RF80 models. The VH backscatter was then
followed by the FNDVI in April and January as the second greatest contributing variable in the RF50
and RF80 models. Both Figure 5A,B show that the VH and FNDVI variables for different months were
included in the top 15 variables. In the RF50 model, the FNDBI in March was identified as one of the
top 15 variables.
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Figure 5. Variable importance for the two best models, i.e., (A) Random Forests (RF) model with 50
trees (RF50), and (B) RF model with 80 trees (RF80).

Previous figures showed the top variables contributing to the RF50 and RF80 models. Because
every variable used in the RF analysis possessed importance values, they can be summarized based on
the date (the month the data represents), and the type of dataset itself (Figure 6A,B). The TRI variable
was not included in this analysis because it did not represent the date, and only consisted of one layer.
In addition, the TRI showed relatively poor importance values both for the RF50 and RF80 models,
and ranked 53 and 59 out of 61 variables, correspondingly.

Figure 6A shows that the important variables usually were from the months of February, April,
June, and December for the RF50 and RF80 models. Most of the months, except for June, represented
the rainy season in Indonesia, which is the growing season for croplands, especially paddy fields. In
addition to the date, Figure 5B shows that the summary of VH polarization and FNDVI performed
better than other datasets, such as FMNDWI, VV polarization, and FNDBI.
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Figure 6. Summary of variable importance based on (A) timing (months) of the temporal variable, and
(B) type of data.

Figure 6B shows the superiority of the cross-polarization of VH from Sentinel-1C as the better
dataset for classifying paddy fields followed by FNDVI and FMNDWI. Based on the summary in
Figure 6B, VH polarization contributed from 27.9 to 28.2% of the model importance, while FNDVI
contributed from 22.8 to 22/9% of the model importance in RF50 and RF80, respectively. Figure 7 shows
the temporal variability of VH backscatter in the study area to better understand the phenology of
paddy fields over a year. Here, the higher backscatter values can be seen from February to July 2019,
which can be attributed to the increasing double bounce from the interaction between the paddy plants
and the water background. From the figure, it is evident that not all paddy fields have similar patterns,
which can also be attributed to the different cropping patterns and cropping intensities in this area.
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3.2. Classification Results and Accuracy Assessment

Figure 8B–D display the classification results from CART and two RF models (RF50 and RF80
models) with the background from VH polarization taken in October 2019. VH polarization was used
as it was identified as the best contributing variable in the RF80 model. The paddy field distribution
had approximately −20 decibels of VH backscatter, which was more than aquaculture and seawater
backscatter and lower than the urban class. The October backscatter values of paddy fields in this
month are influenced by an interaction of radar pulse with open bare soil. The lowest backscatter
was represented by aquaculture and seawater due to the low radar pulse that was returned to the
sensor due to the specular reflection from the water content, while urban features possessed the highest
backscatter values due to the double-bounce interaction between the building and the radar signal.
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Figure 8. Paddy classification maps (yellow areas) from (B) Classification And Regression Trees (CART)
model, (C) RF50 model, and (D) RF80 model. The background image was represented by the VH
polarization for October data (A). The green box shows the area of dryland farming where most
inconsistencies between maps were found.

Figure 8B–D display the classification results (majority filtered) from CART and two RF models
(the RF50 and RF80 models). All maps show a relatively similar spatial distribution, although CART
detected fewer paddy fields than did other maps of the RF50 and RF80 models, and inconsistencies
between maps were found. One inconsistency was in the separation between dryland farming areas
(green box in Figure 7) as detected from the Google Earth imagery, which CART detected as paddy
fields, whereas the RF models consistently detected fewer paddy fields for that particular area. Such
misclassification resulted in low accuracy for the CART map as compared to the RF maps for PA, UA,
and OA (Table 2). The low PA percentage for the CART map indicated a larger omission error for
paddy fields as evidenced by the lesser number of paddy fields detected. The complete error matrix
can be found in Appendix A.
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Table 2. Accuracies of CART and RF maps for the paddy field class.

Model PA (%) UA (%) OA (%)

CART 80.87 84.83 87.57
RF50 93.48 85.66 92.47
RF80 91.63 85.76 92.10

4. Discussion

GEE provided a platform for processing multi-sensor and multi-temporal remote sensing data
easily. We conducted the analysis in GEE by using a combination of Sentinel-1 and Landsat 8 monthly
time-series data for mapping paddy fields in parts of West and Central Java Provinces, Indonesia.
Several variables, such as the VV and VH backscatters, harmonics-fitted NDVI, NDBI, and MNDWI
time-series, and TRI from the Sentinel-1, Landsat 8, and SRTM data were used as the input for the RF
and CART classification algorithms. From the analysis, the variable importance was identified and the
classification accuracies were determined.

The variable importance recapitulation (Figure 6) showed importance based on the seasonality
and the type of dataset. Based on seasonality, the data collected in February, April, June, and December
were identified as the important variables for the paddy planting season of the area. The seasonal
patterns of the paddy field, including rewetting and transplanting, were distinct. It was useful to
separate this class from other classes that showed seasonal flooding, such as the wetlands class [13].
In addition, Lasko, Vadrevu, Tran and Justice [21] and Kontgis, Warren, Skillman, Chartrand and
Moody [19] also found that the backscatter values during the flooding and harvesting stage were
important for separating paddy fields from other classes. The unique characteristics of paddy fields
during different planting stages, especially the radar backscatter, were defined by the interaction of
the radar pulse between plants and water [65], which helped to define paddy field areas and other
ancillary information, such as crop intensity and crop rotation.

Each dataset of radar backscatters and spectral indices used in this study showed different
importance levels for identifying paddy fields. Figure 5 shows VH polarization as the best variable
for identifying paddy fields, with FNDVI as the second most important variable. Our finding of the
best variables was similar to that in the study by Onojeghuo, Blackburn, Wang, Atkinson, Kindred
and Miao [27], which identified VH polarization and NDVI time-series data as the best combination
for identifying paddy fields, while Lasko, Vadrevu, Tran and Justice [21] suggested that the ratio
data between time-series VV and VH performed better for identifying paddy fields, although the
accuracy was only 0.4 to 1.1% better than when using VH polarization alone. The identification of
VH polarization as the best predictor can be attributed to lower sensitivity to the water background
than VV polarization, so that the values of VH polarization reflect the phenology of the paddy growth
better [27]. Nonetheless, the identification of VH and harmonic-fitted NDVI (FNDVI) variables as
important variables marked the potential of the synergy between time-series and multi-sensor data
for paddy field mapping and the ability of the gap-filled method of harmonic function to reconstruct
important temporal characteristics in mapping paddy fields.

Apart from the variable derived from Landsat 8 and Sentinel-1 data, our study also identified
the low contribution of the TRI variable to the classification model. This may have resulted from
the characteristics of the study area, which is relatively plain, so there is no distinct difference in the
terrain configuration between the paddy field and non-paddy field classes. However, TRI’s importance
would be greater if the study area had a complex terrain, as this would undermine the distribution of
land-use types.

From an accuracy perspective, the accuracy of maps produced by the RF models was relatively
better than the results of the CART algorithm, although CART had a faster and relatively lower
computational burden in GEE than did RF. From the RF model results (Table 2), it is evident that the UA
for the paddy fields is relatively lower than the PA, which indicates the misclassification in the form
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of omission of the non-paddy field classes that were included as paddy fields. The misclassification
in RF50 and RF80 were identical with the 144 and 140 points of omission error (Appendix A) and
were contributed by the omission of 2 land cover types: (1.) dryland farming areas (Figure 9A,B), and
(2.) riparian areas (Figure 9C,D). The omission of dryland farming as paddy field mapping was also
occurred at the study using time-series ALOS/PALSAR data due to the relatively similar backscatter
values [16] Although, there was also a possibility that inter-cropping of paddy during the rainy season
and other crops occurred in the dryland farming area, which resulted in misclassification. On the other
hand, the omission of the riparian areas as paddy fields can be caused by the repeated inundation
during the rainy season, which similar to the characteristics of paddy fields.
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In our study, GEE provided a friendly interface for generating monthly variables from Landsat-8
and Sentinel-1 data and integrating those into the classification process. The benefits of using GEE
can be stressed on the easy implementation to access and pre-process the original time-series dataset
from Landsat-8 and Sentinel-1 data to create monthly composites, thus resulting in the less noisy data
in the temporal composited data and the less computational time on data access and data storage
compared to the conventional process. However, the usage of GEE was not always without a problem.
In our study, the main problem was the memory limit when training the RF classification by using
61 variables and 174 training points, as mentioned by Gorelick, Hancher, Dixon, Ilyushchenko, Thau
and Moore [30] as the scaling challenges and computational model mismatch when the process is not
parallelizable and large dataset was used [32]. The memory limit problem can be solved by increasing
the tile size, reducing the training points, and reducing input layers by selecting only the important
variables. Therefore, the variable importance result of our study can be used as the basis for variable
selection for larger-scale application of paddy field mapping.

In addition, Tamiminia, Salehi, Mahdianpari, Quackenbush, Adeli and Brisco [32] also emphasized
the limited option of the classification algorithm in GEE, although future improvement can be initiated
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with the GEE collaboration with Tensorflow. So that, in the future, extended studies by using GEE
may benefit from the development of deep learning methods for time-series satellite imagery data,
as applied in convolutional neural networks [66], recurrent neural networks [67], long short-term
memory [68], and temporal convolutional neural networks [69].

5. Conclusions

Our study highlighted the applicability of Landsat 8 and Sentinel-1 monthly time-series data for
mapping paddy fields in parts of Central and West Java Provinces, Indonesia, by using GEE. The results
of variable importance showed VH polarization time-series data as the best variable for detecting
paddy fields due to the better sensitivity of the VH-backscatter in the planting stage of the paddy
with the harmonic fitted NDVI data were also identified as the second most important variable, and
followed by FMNDWI and VV Polarization as the third and fourth-best datasets. The result justifies
the importance of multi-sensor mapping for paddy fields. Together, VH polarization and FNDVI
contributed from 50.9 to 51.1% of the model importance in RF, while a combination of VH, FNDVI,
FNDWI, and VV polarization summed up to 88.3% of the RF model. The identification of FNDVI as
the second important variable also showed the ability of the harmonic function to retain important
temporal information, which is needed for mapping paddy fields. In addition, although GEE provided
good computational capability using big remote sensing data, the lingering memory limit could be one
problem that should be taken into account, especially for mapping by using larger datasets for large
areas. Therefore, future studies wanting to employ time-series variables for mapping paddy fields by
using GEE could focus on the identified important variables in our study. In terms of accuracy, the RF
models with 50 (RF50) and 80 (RF80) trees showed a better ability for classifying paddy fields than the
CART models, with a PA of 93.48% and 91.63%, and a UA of 85.66% and 85.76%, correspondingly. The
lower UA indicated more omission error for the misclassification of dryland farming and periodically
flooded riparian areas to be identified as a paddy field in some parts of the study area, although it
is possible that some of the dryland farming areas could have been planted with paddy, especially
during the rainy season. In the future, this study could benefit from exploration with deep learning
analysis for time-series data to better exploit the temporal dimension in identifying paddy fields.
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Appendix A

Table A1. Complete error matrix for the RF and CART classification.

RF_50

Class
Reference

UA
Paddy Field Non-Paddy Field Water Body Total

Paddy Field 860 144 0 1004 85.66

Non-Paddy Field 60 932 4 996 93.57

Water Body 0 18 982 1000 98.20

Total 920 1094 986 3000

PA 93.48 85.19 99.59

OA 92.47

RF 80

Paddy Field 843 140 0 1004 83.96

Non-Paddy Field 77 937 3 1017 92.13

Water Body 0 17 983 1000 98.30

Total 920 1094 986 3000

PA 91.63 85.65 1.00

OA 92.10

CART

Paddy Field 744 133 0 1004 74.10

Non-Paddy Field 176 957 60 1193 80.22

Water Body 0 8 926 1000 92.60

Total 920 1098 986 3000

PA 80.87 87.16 0.94

OA 87.57
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