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Abstract: Chinese address element segmentation is a basic and key step in geocoding technology,
and the segmentation results directly affect the accuracy and certainty of geocoding. However,
due to the lack of obvious word boundaries in Chinese text, the grammatical and semantic features
of Chinese text are complicated. Coupled with the diversity and complexity in Chinese address
expressions, the segmentation of Chinese address elements is a substantial challenge. Therefore,
this paper proposes a method of Chinese address element segmentation based on a bidirectional
gated recurrent unit (Bi-GRU) neural network. This method uses the Bi-GRU neural network to
generate tag features based on Chinese word segmentation and then uses the Viterbi algorithm to
perform tag inference to achieve the segmentation of Chinese address elements. The neural network
model is trained and verified based on the point of interest (POI) address data and partial directory
data from the Baidu map of Beijing. The results show that the method is superior to previous neural
network models in terms of segmentation performance and efficiency.

Keywords: Chinese address element; Bi-GRU neural network; address segmentation; Viterbi

1. Introduction

With the rapid development of technologies such as the internet and big data and the emergence
of location-based services [1], the public’s demand for location data is increasing rapidly. According
to statistics, approximately 70% of the world’s web pages contain location information. However,
most of this information is expressed in the form of text [2], which leads to a lack of spatial coordinate
information. Therefore, we urgently need tools to convert textual addresses into spatial coordinates
and to provide the public with location-based services and big data analysis capabilities based on
spatial locations. To date, geocoding is the most effective and commonly used method to establish a
connection between textual addresses and spatial coordinates [3].

Geocoding is a coding method based on spatial positioning technology, which provides a way
to map unstructured text addresses to geographic coordinates [4]. We can use geocoding technology
to establish the relationship between nonspatial information and spatial information in the reference
scope of geospatial space. Therefore, geocoding has a wide range of applications in the field of
urban spatial positioning and spatial analysis, such as disaster emergency response and disaster
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management [5], disease investigation and prevention [6], and crime scene location [7]. It realizes
the space coordinate conversion process of textual addresses through address element segmentation,
address standardization, address matching, and space positioning [8]. Among these steps, Chinese
address element segmentation refers to the process of splitting unstructured Chinese addresses into
address elements [9]. The segmentation process references the process of Chinese word segmentation,
which divides Chinese addresses into words and marks them according to the expression characteristics
of address elements to achieve the purpose of address element segmentation. This is a basic and
critical step in geocoding, and the segmentation results directly affect the accuracy and certainty of
geocoding [10]. Unfortunately, due to the diversity and complexity in the way Chinese addresses are
expressed, Chinese address element segmentation is an extremely complicated process. The specific
reasons are as follows:

(1) Due to China’s vast land area, numerous nationalities, and large geographic and cultural
differences, Chinese addresses exist in a state of disorder, lacking uniform standards and causing
confusion. Therefore, to date, China has not established an authoritative and reliable unified
Chinese address naming standard that covers the whole country. Currently, with the advent
of the big data era, Chinese address expression has become more complex and diverse [11].
This exacerbates the abovementioned disorder and confusion. This situation complicates the
segmentation of Chinese address elements.

(2) Unlike English sentences, where spaces are present as natural dividing lines between words,
Chinese sentences can be defined only by various punctuation marks. The Chinese address
segmentation step is much more difficult than for most other languages where spaces are
natural delimiters.

(3) Due to China’s unique place-name and address management system and the diversity and
complexity of Chinese addresses [12], government departments at all levels, planning departments,
and transportation departments have lacked reliable, standard, and unified address information
resources for a long time. For example, in the address naming management of Beijing, the naming
of administrative divisions at all levels is managed by the Civil Affairs Department of Beijing,
the naming of roads is managed by the Traffic and Planning Department of Beijing, and the
naming plates for house, buildings, units, and household (rooms) plates is managed by the Beijing
Public Security Bureau. It is difficult to achieve unified address expressions due to the different
address naming standards and management oversight of multiple departments [13]. This also
makes the management of addresses more difficult, and the accuracy of segmentation for different
types of address elements varies greatly.

In recent years, with the rapid development of deep learning and natural language processing
technologies, Chinese word segmentation based on neural networks has also achieved satisfactory
results. In particular, the recurrent neural network (RNN) and its improved network have
achieved substantial breakthroughs in the accuracy and segmentation efficiency of Chinese word
segmentation [14,15]. Among them, the gated recurrent unit (GRU) neural network has the
characteristics of a simple network structure and easy training processes [16]. Therefore, referring to the
Chinese word segmentation model based on a neural network, this paper proposes a method of Chinese
address element segmentation based on the bidirectional GRU (Bi-GRU) neural network. This method
first performs Chinese word segmentation on the input Chinese address sequence. Secondly, the word
feature vector is generated through text vectorization as the input of the neural network. Then, each tag
feature vector is generated through the neural network. Finally, the Viterbi algorithm is used for tag
inference and word segmentation. This study provides basic support for the conversion of spatial
information and nonspatial information and the application of location-based services. At the same
time, this study provides a new idea and a new method for address element segmentation.

The remainder of this paper is organized as follows: Section 2 reviews the related work and
introduces the gated recurrent unit (GRU) neural network, Jieba word segmentation, and Chinese
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address elements. Section 3 introduces the segmentation model and segmentation process of Chinese
address elements. Section 4 introduces the experimental data, evaluation criteria, and experimental
results. Section 5 discusses the experimental results and explains related issues. Section 6 concludes
with a summary of this paper and introduces the next research direction.

2. Related Works

2.1. Previous Works

Chinese address element segmentation is one of the applications of Chinese word segmentation in
place-name addresses. However, because Chinese expressions have no obvious word boundaries, Chinese
word segmentation is not as easy as English and Spanish word segmentation [17]. Second, Chinese,
like other languages, presents the problem of polysemy due to different contexts, which makes Chinese
word segmentation more difficult. With the continuous development of natural language-processing
technology, substantial breakthroughs have been made in Chinese word segmentation technology.
Currently, the most commonly used Chinese word segmentation methods are as follows:

(1) The dictionary-based string-matching method matches the strings to be segmented with a
dictionary library one by one according to a certain strategy. According to the different directions
of string matching, the matching strategies can be divided into three types: forward maximum
matching, reverse maximum matching, and bidirectional maximum matching. This method is
easy to implement, has high segmentation accuracy, and is fast, so it is the most widely used.
Many scholars have improved the word segmentation performance of this method by improving
the dictionary structure. For example, Wang et al. [18] used the double-array trie tree algorithm to
preferentially process nodes with more branch nodes to improve the efficiency of the dictionary
search and reduce the necessary data storage space. Li et al. [19] and Mo et al. [20] used a
double-character hash indexing mechanism to improve the accuracy of word segmentation and
shorten the segmentation time. However, the dictionary-based string-matching method fails to
address the identification of ambiguous words and unregistered words.

(2) The word segmentation method is based on semantic rules. The main idea of this method is
to use the principles of word formation, part-of-speech features, and semantic databases to
construct specific rules based on semantics. For example, Li et al. [21] proposed a Chinese
address segmentation method based on a combination of rules and statistics. This method uses
statistical methods to extract address information from the original address corpus and uses
a rule-based method to segment Chinese addresses. Zhang et al. [22] constructed an address
element feature database based on different types of address elements and performed Chinese
address segmentation based on a database of these character features. The advantage of this
method is that it is strongly pertinent to and has high segmentation accuracy for certain types
of words. However, artificial tagging and feature extraction are required, and there are some
problems, such as sparse features and poor adaptability.

(3) The word segmentation method is based on conventional machine learning. The main idea of
this method is to train a model on the tagging of characters and consider the frequency and the
contextual information of words. Therefore, this method offers a favorable learning ability and
performs well regarding the recognition of ambiguous words and unregistered words. Among the
most commonly used models are the maximum entropy model [23,24], hidden Markov model
(HMM) [25,26], and conditional random field (CRF) model [27,28]. The above three models
require large amounts of artificial tagging data for training and are easily affected by manual
feature selection.

(4) The word segmentation method is based on a neural network. The main idea is to simulate the
operation of the human brain, distribute processing, and establish a numerical calculation model.
This process stores the implicit method for understanding word segmentation into the neural
network and achieves the correct word segmentation result through the self-learning and training
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of internal weights. The neural network can automatically learn features and avoid the limitations
of conventional manual feature extraction. For example, Chen et al. [29] used a long short-term
memory (LSTM) neural network, because a general neural network cannot learn long-distance
dependence relationships. Chen et al. [30] proposed a gated recursive neural network (GRNN)
that fuses the complex features of contextual characters and a supervised layered training method
to achieve a better word segmentation model.

All the above Chinese word segmentation methods or Chinese address element segmentation
methods take a single character as the minimum segmentation unit. They recombine character sequences
into word sequences or address elements according to certain specifications. Since Chinese characters
represent the smallest semantic unit that constitutes Chinese words, Chinese word segmentation can
only be based on characters as the smallest segmentation unit [31]. This also makes the Chinese word
segmentation method based on the neural network use characters as the model input. However,
Chinese address elements are different from Chinese words, which usually consist of one or more
words. For example, if we use “莲花池 (Lianhuachi)” and “西路(West Road)” to directly represent
address elements, the practical meaning is lost. Only a combination of the two words forms a complete
address element. These words that constitute the address elements are exactly the word sequences
generated by Chinese word segmentation. Therefore, based on Chinese word segmentation, this paper
proposes a method of Chinese address element segmentation based on a Bi-GRU neural network.

2.2. GRU Neural Network

An RNN is a kind of neural network with a memory function that is suitable for sequence
data modeling. However, classic RNNs experience the issues of gradient explosion and gradient
disappearance, and these algorithms cannot handle long-distance dependence problems. For this
reason, in 1997, Hochreiter et al. [32] proposed an LSTM neural network, a special RNN that performs
better on longer sequences. Chao et al. [33] proposed the GRU neural network based on LSTM neural
networks. They combined the forget gate and input gate in an LSTM neural network into a single
“update gate” and combined the cell state and hidden state. The GRU neural network is a circular
network structure that determines the current output information through the input information
at the current moment and the output information at the previous moment. Therefore, the output
information at each moment in the GRU neural network depends on past information. Therefore,
its chain attribute is closely related to the sequential labeling problem and is applied to the Chinese
word segmentation task.

A GRU neural network has two control gates, a reset gate and an update gate, as shown in
Figure 1. The reset gate determines how much information needs to be forgotten in the hidden state of
the previous moment. When the value of the reset gate is closer to 0, the information of the previous
moment is forgotten. When the value is closer to 1, the hidden information of the previous moment
is retained in the current memory information. The update gate determines how much information
in the hidden state at the previous moment will be brought into the current hidden state. When the
value of the update gate is closer to 0, the information in the hidden state at the previous moment is
forgotten. When the value is closer to 1, the information is retained in the current hidden state.

In Figure 1, zt is the update gate, rt is the reset gate, h̃t is the candidate hidden state of the currently
hidden node, ht is the current hidden state, xt is the input of the current neural network, and ht−1 is the
hidden state at the previous moment. The detailed calculation formula is as follows:

zt = σ(wzxxt + uzhht−1) (1)

rt = σ(wrxxt + urhht−1) (2)

h̃t = tan(whxxt + rt � uhhht−1) (3)

ht = (1− zt) � h̃ + zt � ht−1 (4)
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where σ is the activation function sigmoid, which ranges from 0 to 1, � is the Hadamard product of
the matrix, w and u are the weight matrices that need to be learned, and zt and rt range from 0 to 1.
In Chinese address element segmentation, the reset gate acts on ht−1 to record all important information,
also known as memory content. As shown in Formula (3), the reset gate is composed of vectors from 0
to 1. Therefore, after the Hadamard product is obtained, the reset gate determines how much of the
hidden state in the previous time should be forgotten in the current memory content. The current input
information is then added and placed in the activation function. Therefore, h̃t records all important
information through the reset gate and input information. The update gate determines the currently
hidden state ht by acting on ht−1 and h̃t and passes it to the next unit. As shown in Formula (4), the first
term through (1− zt) determines what information needs to be forgotten, and the corresponding
information in the memory content is updated at this time. The second term of the formula determines
how much information of ht−1 is retained in the current hidden state. Therefore, ht decides to collect
the required information at h̃t and ht−1 through the update gate.

Figure 1. Gated recurrent unit (GRU) neural network unit structure. xt is the current input, zt is the
update gate, rt is the reset gate, h̃t is the candidate hidden state of the currently hidden node, ht is the
current hidden state, xt is the input of the current neural network, and ht−1 is the hidden state at the
previous moment. σ is the activation function sigmoid. h̃t records all important information through
the reset gate and input information.

Each hidden layer in the neural network has a separate update gate and reset gate. The layers
produce different dependent relationships based on the current input information and the information
from the previous moment.

2.3. Jieba Word Segmentation

With the development of natural language processing technology, increasingly numerous Chinese
word segmentation tools have become available. Jieba word segmentation is widely used due to
its active community, simplicity, and rich functionality. This method achieves word segmentation
by first scanning the sentence with an efficient word map based on the prefix dictionary and then
generating all possible word formations in the sentence. Next, a directed acyclic graph is constructed
according to the segmentation position. Then, dynamic programming is used to find the path with the
maximum probability, and the maximum segmentation combination based on the word frequency is
found. Finally, for unregistered words, an HMM based on the ability of Chinese characters to form
words is used for segmentation.

2.4. Chinese Address Element

Chinese addresses necessitate abstract coding methods with a description of the spatial location
through the organization of natural language and address expression models [8]. This can be
expressed as:

A =
{
xi ∈ A|P

(
xi, x j

)
, ∅, xi , x j

}
(5)
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where A is the Chinese address, xi is the Chinese address element, and P(xi, x j) is the spatial
constraint relationship between the address elements and cannot be empty. The spatial constraint
relationship refers to the topological constraint between the geographical entities corresponding to the
address elements.

Chinese address elements, as the smallest semantic unit in a Chinese address, describe a certain
area or geographic entity. According to the Chinese address structure and address mode, address
elements can be divided into three types. The administrative division elements mainly include the five
administrative divisions of province, city, county (district), town, and village (community); the detail
address elements can include roads, house numbers, communities, building numbers, unit numbers,
etc.; and supplemental address elements can include the names of various institutions or words that
indicate spatial orientation. Each type has specific word-formation rules, which can be expressed as
“proprietary words plus general words” [22]. Among them, general words are “feature words” that
indicate the level or type of address elements, usually at the end of the address elements. Proprietary
words are the remaining part of the address element after removing the general words. For example,
“Lianhuachi” in “Lianhuachi West Road” is a proprietary word, and “West Road” is a general word.
Therefore, in the segmentation of Chinese address elements, using words as the smallest segmentation
unit conforms to the word-formation rules of address elements. This article summarizes the “feature
words” of various types of address elements through the statistical analysis of a large amount of
address data, as shown in Table 1.

Table 1. Feature words for address element types.

Type Feature Words

Administrative division Province/City/District/County/Town/Village/Community/etc.
Detail address Road/Street/Alley/Hutong/No./Yard/Auxiliary Road/etc.

Supplemental address Square/Building/Hotel/Park/Intersection/East/Near/Inside/etc.

3. Chinese Address Element Segmentation

The Chinese word segmentation task is usually considered a sequence tagging task. This task
uses corresponding tags for each character in Chinese sentences and performs word segmentation
based on these tags [34]. Currently, the mainstream tag sets in sequence tagging tasks are two-tag sets,
three-tag sets, four-tag sets, and six-tag sets, as shown in Table 2.

Table 2. Four cited mainstream tagging methods.

Tagging Method Tag Set

two-tag set {B, I}
three-tag set {B, I, O}
four-tag set {B, M, E, S}
six-tag set {B, M1, M2, M, E, S}

B represents the beginning of the word, I represents other parts except the beginning of the word, M, M1, and M2
represent the middle of the word, E represents the end of the word, S and O represent single-character words.

Generally, the more characters in the tag sets, the more accurate the tagging is. However,
words consisting of five or more characters in short texts similar to Chinese addresses account for very
few words. Common Chinese words are composed of four or fewer characters [35]. Therefore, it is
difficult for tags M1 and M2 to play a role in the tagging of the six-tag set, and many unnecessary
feature functions are generated [36]. Therefore, in this article, a four-tag set is chosen to label the
address elements. Among them, tag B indicates that the word is the beginning word of the address
element, tag M indicates that the word is the middle word of the address element, tag E indicates
that the word is the end word of the address element, and tag S indicates that the word is a complete
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address element. Additionally, the transition weight matrix A and the initial tag vector π are used to
better represent the dependency between tags and the initialization of tags.

In this paper, based on the Chinese word segmentation neural network model, the Bi-GRU neural
network is used for the segmentation of Chinese address elements. The model mainly includes the
following four steps, as shown in Figure 2.

(1) Chinese word segmentation: The Chinese address sequence is divided into several independent
words by using the Chinese word segmentation tools and the characteristics of the address
elements. These independent words are used as the input to text vectorization.

(2) Text vectorization: The feature vector representation of each word is found through a lookup
table, and these feature vectors are used as the input of the neural network.

(3) Neural network: The Bi-GRU neural network is used to generate the tag feature representation of
each word and serve as the input of the tag inference.

(4) Tag inference: The Viterbi algorithm is used to find the maximum possible tag combination as the
final tag sequence.

Figure 2. Chinese address element segmentation model based on the bidirectional GRU (Bi-GRU)
neural network. The colored tag represents the final tag of the input word. B represents the beginning
of the address element, M represents the middle of the address element, E represents the end of the
address element, and S represents the single word address element.
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3.1. Chinese Word Segmentation

In addition to Chinese characters in Chinese addresses, some non-Chinese characters, such as
numbers, English letters, and special characters, often appear. Therefore, based on Jieba word
segmentation, the following treatments are carried out for these characters:

(1) Numbers generally indicate information such as the house number, building number, unit number,
floor number, and room number. The processing method combines the number with the prefix
and suffix to modify it into one word, such as “甲2号 (No.2 A)” in “前门大街甲2号 (No.2 A
Qianmen Street)” as a word.

(2) English letters are generally combined with prefixes and suffixes to indicate a specific geographic
entity, such as “望京SOHO中心 (Wangjing SOHO Center)”. The processing method combines all
adjacent English letters into one word.

(3) Special characters are generally expressed as additional descriptive information or some default
information. In “东城区天坛路1号(天坛公园北门) (No. 1 Tiantan Road, Dongcheng District
(The north gate of the temple of Heaven Park))”, the information in brackets is the additional
description of the previous address information. In the processing method, for special characters
that bracket information, the brackets and the information inside are deleted, and special symbols
other than brackets are treated as words.

3.2. Text Vectorization

Neural network model word segmentation first requires a feature vector of a specific dimension
to represent characters. This feature vector can describe the semantic relevance between characters
and becomes the input of the neural network as a character feature. We perform Chinese word
segmentation on all addresses in the training dataset and generate a dictionary D of size |D|. Then,
we use the bidirectional encoder representation from the transformers (BERT) [37] model for each word
c ∈ D to generate the corresponding feature vector Vc ∈ Rd, where d is the dimension of the feature
vector (the hyperparameters we need to set). Then, we stack the feature vectors of all the words into an
embedding matrix M ∈ Rd×|D|.

Formally, assuming a given word sequence c[1,n], for each word ci(1 ≤ i ≤ n) with an associated
index in the embedding matrix, the corresponding feature vector Vc ∈ Rd can be retrieved through a
lookup table. The text vectorization layer in the model can be regarded as a simple projection layer,
where the feature vector representation of each word can be retrieved in the lookup table through
its index.

3.3. Bi-GRU Neural Network

A Bi-GRU neural network is a GRU neural network enhanced with a two-layer structure.
This two-layer structure provides the output layer with the complete contextual information of the
input information at every moment. The basic idea of the Bi-GRU neural network is that the input
sequence is passed through a forward neural network and a backward neural network, and then,
the outputs of the two are connected in the same output layer. Figure 3 shows the two-layer Bi-GRU
neural network used in this article in a time series expansion form.

Among them, in the Bi-GRU neural network of each layer, the forward layer calculates the output
of the hidden layer at each time from forward to backward, and the backward layer calculates the
output of the hidden layer at each time from backward to forward. The output layer superimposes
and normalizes the output results of the forward layer and backward layer at each moment:

→

h1
t = f

(
w

x
→

h1
xt + w→

h1
→

h1

−→

h1
t−1 + b→

h1

)
(6)

←

h1
t = f

(
w

x
←

h1
xt + w←

h1
←

h1

←−

h1
t+1 + b←

h1

)
(7)
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→

h2
t = f

(
w→

h1
→

h2

→

h1
t + w→

h2
→

h2

−→

h2
t−1 + b→

h2

)
(8)

←

h2
t = f

(
w←

h1
←

h2

←

h1
t + w←

h2
←

h2

←−

h2
t+1 + b←

h2

)
(9)

yt = g
(
w→

h2 y

→

h2
t + w←

h2 y

←

h2
t + by

)
(10)

where
→

h1
t ∈ RH and

→

h2
t ∈ RH are the output vectors of the hidden layer of the forward layer in the first

and second layers of the Bi-GRU neural network at time t, H is the number of units in the GRU cell,
←

h1
t ∈ RH and

←

h2
t ∈ RH are the output vectors of the hidden layer of the backward layer in the first and

second layers of the Bi-GRU neural networks at time t, yt ∈ RT is the score of the corresponding word
on each label at time t, T is the number of tags, xt is the neural network input at time t, f (·) is GRU
neural network processing, g(·) is the activation function, where g(x)i =

exi∑n
k=1 exk , and w and b are the

weight matrices that need to be learned.

Figure 3. The Bi-GRU neural network unit structure.

3.4. Tag Inference

The tag inference is based on the tag score and the tag transition matrix to find the most likely
group of all tag combination sequences. As the cost of an exhaustive search is extremely high, we use
Viterbi-based thinking for searching. We find the most likely sequence combination by calculating the
local optimal probability and backtracking the backward pointer.

For an input sequence c[1,n] of the neural network model defined at time t(1 ≤ t ≤ n), the local
optimal probability of tag i is δt(i), and the backward pointer is ϕt(i). The calculation formula is
as follows:

When t = 1:
δt(i) = πi + y(1,i) (11)

When 1 < t ≤ n:
δt(i) = max

j

(
δt−1( j) + a ji + y(t,i)

)
(12)

ϕt(i) = argmax
j

(
δt−1( j) + a ji

)
(13)

where πi is the probability that tag i is the first tag of the sequence, a ji is the transition probability that
tag j transfers to tag i, where the larger the value of a ji is, the greater the probability that tag j transfers
to tag i, and y(t,i) is the score of word ct on tag i at time t. ϕt(i) points to a certain tag j at the previous
time that generated the optimal tag i at time t.
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From this, the optimal path to the current time can be determined, and the pointer can be
pointed. Therefore, the final tag it at time t can be inferred from the local optimal probability at time n.
The derivation formula is as follows:

it =

argmax(δt(i)) t = n

ϕt+1(it+1) 1 ≤ t < n
(14)

4. Experiments

The main parameters of the experimental environment are as follows: the CPU is an Intel(R)
Xeon(R) CPU E5-1620 v4 @ 3.50 GHz with 16 GB memory, the deep-learning framework is TensorFlow
1.2.1, the development language is Python 3.6, the Chinese word segmentation tool is the precise mode
in the Jieba word segmentation tool, and the text vectorization tool is the BERT service bert-as-service
provided by Tencent AI Lab.

The experimentation in this paper is mainly divided into two groups. The first group uses single
characters as the input of the neural network. The second group uses words as the input of the neural
network. We compare the differences between the segmentation performance and efficiency of four
neural networks: Bi-GRU, Bi-LSTM [14], GRU [15], and LSTM [29].

4.1. Datasets

The experimental datasets used in this article were acquired by the use of web crawler technology
to obtain point of interest (POI) data and part of the directory data from the Baidu map (https:
//map.baidu.com) of Beijing, China. The POI data were preprocessed after they were obtained. First,
we removed the POI data of repeated addresses and non-Chinese addresses and then performed
manual address element segmentation on the addresses in the POI data, as shown in Tables 3 and 4.
A total of 189,305 pieces of sample data were ultimately generated (approximately 1.34% of addresses
contained misspelled address elements). Among them, 80% of the data was used as model training
data (20% of the training data was used for cross-validation data in hyperparameter settings), and 20%
of the data was used as model testing data.

Table 3. Examples of point of interest (POI) address data.

Chinese Address English Address

北京市西城区车公庄大街甲4号 No.4 A Chegongzhuang Street Xicheng District Beijing City
北京市朝阳区亮马桥路31号院附近 Near Yard 31 Liangmaqiao Road Chaoyang District Beijing City

北京市海淀区颐和园路5号北京大学内 Inside Peking University No. 5 Yiheyuan Road Haidian District
Beijing City

北京幸福北里29号楼 Building 29 Xingfu Beili Beijing

Table 4. Examples of manual segmentation of POI address elements.

Chinese Address English Address

北京市/西城区/车公庄大街/甲4号 No.4 A, Chegongzhuang Street, Xicheng District, Beijing City
北京市/朝阳区/亮马桥路/31号院/附近 Near, Yard 31, Liangmaqiao Road, Chaoyang District, Beijing City

北京市/海淀区/颐和园路/5号/北京大学/内
Inside, Peking University, No. 5, Yiheyuan Road, Haidian District,

Beijing City
北京/幸福北里/29号楼 Building 29, Xingfu Beili, Beijing

Regarding the directory data, we used keywords such as roads, residential areas, office buildings,
parks, and schools to obtain directory data for some roads, residential areas, office buildings, parks,
and schools from the Baidu map of Beijing. Each record in the directory data corresponds to an address
element in Chinese addresses. Therefore, manual segmentation is not required, and the information
can be directly used as a training sample for the model. Additionally, the administrative division is an

https://map.baidu.com
https://map.baidu.com


ISPRS Int. J. Geo-Inf. 2020, 9, 635 11 of 19

essential address element in each address, and this element is relatively stable and does not change
frequently. Therefore, each administrative division of Beijing can also be used as a supplementary
training sample. The above directory data and administrative division data total 28,262.

4.2. Evaluation Criteria

For experimental evaluation criteria, the classification evaluation method of machine learning is
used. This method uses three indicators, the precision (P), recall (R), and F1-score (F1), to evaluate the
segmentation results. The precision refers to the proportion of correctly segmented address elements
with respect to all segmented address elements, the recall refers to the proportion of correctly segmented
address elements to all standard address elements, and the F1-score refers to the weighted harmonic
average of the precision and recall. The calculation formula of each indicator is as follows:

P =
|A∩ B|
|B|

(15)

R =
|A∩ B|
|A|

(16)

F1 =
2P ∗R
P + R

(17)

where A is the standard set of address elements, and B is the segmented set of address elements.

4.3. Hyperparameters

To obtain a favorable performance from a neural network, the setting of the hyperparameters is
extremely important. The main hyperparameters of this experiment are shown in Table 5. In the text
vectorization layer of the model, the window size is the number of characters contained in the longest
address in the address datasets. The word vector dimension is a commonly used character embedding
dimension [38,39]. In the neural network layer, the number of hidden units and the number of neural
network layers represent a compromise between the model training speed and model performance [40].
The dropout rate and batch size are selected through comparative experiments to determine the optimal
value. In the label inference layer, after tag statistics are acquired for the character training dataset
and the word training dataset, the tag transition matrix A and the vector initialization vector π are
obtained, as shown in Equations (18) and (19).

A1 =

B M E S
0 0.90 0.10 0
0 0.40 0.60 0

0.96 0 0 0.04
1 0 0 0


B
M
E
S

π1 =


1
0
0
0


B
M
E
S

(18)

A2 =

B M E S
0 0.23 0.77 0
0 0.23 0.77 0

0.71 0 0 0.29
0.48 0 0 0.52


B
M
E
S

π2 =


0
0
0
1


B
M
E
S

(19)

where A1 and π1 are the tag transition matrix and initialization vector when single characters are the
input. A2 and π2 are the tag transition matrix and initialization vector when words are the input.

The dropout rate is intended to prevent overfitting by discarding some hidden layer nodes in
the network [41]. From Figure 4, we can see that, during the network model training, the F1 value
of each neural network increases with the increasing dropout rate. The convergence speed of the
network model is faster with the increasing dropout rate. To verify the overfitting effect of each
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dropout rate, we cross-validate the model during the training process, and the results obtained are
shown in Table 6. Table 6 shows that when the dropout rate is not set—that is, when the dropout rate
is 1—each neural network achieves its lowest F1 value on the testing set. When the dropout rate is 0.7,
each neural network achieves its best F1 value on the testing set: that is, the overfitting effect is the
best. In summary, the dropout rate of the text experiment is set to 0.7.

Table 5. Hyperparameter settings.

Hyperparameters Value

Window size 32
Word vector dimension 200

Hidden unit number 128
Neural network layers 2

Batch size 2000
Dropout rate 0.7

Figure 4. The comparison of different dropout rate hyperparameters for each neural network. LSTM:
long short-term memory.

Table 6. The results for different dropout rates in each neural network on the cross-validation data.
LSTM: long short-term memory.

Dropout Rate
Neural Network

Bi-GRU Bi-LSTM GRU LSTM

0.2 96.57% 95.85% 89.73% 90.20%
0.5 98.34% 99.03% 90.52% 91.21%
0.7 99.20% 99.07% 91.73% 92.16%
1.0 90.82% 91.34% 85.76% 89.54%

The bold font indicates the optimal dropout rate for different neural networks.
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The batch size is the number of samples selected for one iteration of training of the neural network,
and its size affects the optimization and speed of the model. From Figure 5, we can see that, when the
batch sizes are 500 and 1000, the convergence speed of each network model is the fastest. However,
the training error of the model is high, and the oscillations are large. When the batch size is 3000,
the training error of the network model decreases. However, a local optimal situation occurs during
the training process, and the F1 indicator peaks at the end of each round of training. When the batch
size is 2000, although the convergence speed is slower than those of the 500 and 1000 batch sizes,
the descent direction is accurate, the oscillations are small, the training error becomes lower, and there
are no local optima. Therefore, the batch size of the text experiment is set to 2000.

Figure 5. Comparison of different batch size hyperparameters for each neural network.

The same parameters are used for the Bi-GRU, Bi-LSTM, CRF, and LSTM neural networks so that
the training speed and performance of the four models can be compared.

4.4. Results

Through experiments, the results of the segmentation of the address elements and the training
times of the Bi-GRU, Bi-LSTM, GRU, and LSTM neural networks for different inputs are shown in
Tables 7 and 8. We compare the segmentation indicators of all neural networks, as shown in Figure 6.

Table 7. The segmentation results of each neural network are compared for different input models.
Precision (P), recall (R), and F1-score (F1).

Neural Network
Character Input Word Input

P R F1 P R F1

Bi-GRU 97.81% 97.69% 97.75% 99.22% 99.10% 99.16%
Bi-LSTM 97.69% 97.88% 97.78% 99.14% 99.11% 99.12%

GRU 91.15% 85.81% 88.40% 94.62% 91.87% 93.22%
LSTM 90.65% 86.56% 88.56% 93.99% 91.92% 92.94%

The bold font indicates the neural network with the largest value of segmentation indicators for different input models.
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Table 8. The training time of each neural network is compared for different input models.

Neural Network Character Input Word Input

Bi-GRU 517 s/epoch 521 s/epoch
Bi-LSTM 562 s/epoch 567 s/epoch

GRU 269 s/epoch 270 s/epoch
LSTM 292 s/epoch 293 s/epoch

The bold font in the first row indicates the one with a shorter training time for the two bidirectional neural networks
(Bi-GRU and Bi-LSTM) in different input models. The bold font in the third row indicates the one with shorter
training time for the two unidirectional neural networks (GRU and LSTM) in different input models.

Figure 6. Segmentation results of each neural network for different input models. Precision (P), recall
(R), and F1-score (F1).

• Single character input

From Table 7, we can see that of the network models with single character input, the segmentation
precision based on the Bi-GRU neural network is the highest at 97.81%. The segmentation recall and
F1-score based on the Bi-LSTM neural network are the highest at 97.88% and 97.78%, respectively.
However, the difference between the F1-scores of the two bidirectional neural networks is only 0.03%,
so the segmentation performance of the two can be considered to be almost the same. The segmentation
F1-scores of the GRU and LSTM neural networks are both lower than 89%, only 88.40% and 88.56%,
respectively. As can be seen from Figure 6, the segmentation indicators based on the unidirectional
neural network GRU and LSTM are lower than those based on the bidirectional neural network Bi-GRU
and Bi-LSTM.

From the segmentation efficiency in Table 8, we can see that of the network models with single
character input, the Bi-GRU neural network is 8.70% faster than the Bi-LSTM neural network on average
per round of training. According to the 30 rounds of training in this paper, the Bi-GRU neural network
is approximately 22 minutes faster than the Bi-LSTM neural network. The GRU neural network is
8.55% faster than the LSTM neural network per round of training on average. The unidirectional GRU
and LSTM neural networks are nearly twice as fast as the corresponding bidirectional neural networks
Bi-GRU and Bi-LSTM on average per round of training.

• Word input

Table 7 shows that, of the network models with word input, the precision and F1-score based on
the Bi-GRU neural network are the highest at 99.22% and 99.16%, respectively. The segmentation recall
based on the Bi-LSTM neural network is the highest at 99.11%. Similarly, the F1-score difference of the
two bidirectional neural networks is only 0.04%, so the segmentation performance of the two can be
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considered to be almost the same. The segmentation indicators based on the GRU and LSTM neural
networks exceed 90%, among which, F1 reached 93.22% and 92.94%, respectively. However, it can
be seen from Figure 6 that their segmentation indicators are still lower than the bidirectional neural
networks Bi-GRU and Bi-LSTM.

From the segmentation efficiency in Table 8, we can see that, of the network models with word
input, the Bi-GRU neural network is, on average, 8.83% faster than the Bi-LSTM neural network per
round of training. The GRU neural network is, on average, 8.52% faster than the LSTM neural network
per round of training. Similarly, the unidirectional neural networks GRU and LSTM are, on average,
much faster than the corresponding bidirectional neural networks Bi-GRU and Bi-LSTM per round
of training.

• Comparison

In terms of segmentation performance, the network models with word input perform better in
various indexes of segmentation compared to those of the network models with single character inputs.
The precision values of the Bi-GRU, Bi-LSTM, GRU, and LSTM neural networks increase by 1.41%,
1.45%, 3.47%, and 3.34%, respectively. The recall values increase by 1.41%, 1.23%, 6.06%, and 5.36%,
respectively. The F1-scores increase by 1.41%, 1.34%, 4.83%, and 4.39%, respectively.

In terms of segmentation efficiency, the two input models are almost the same. Among them,
the Bi-LSTM neural network yields the largest difference in average training time per round, which is
only five seconds. The Bi-GRU neural network generates a difference of four seconds. The LSTM
and the GRU neural networks both yield a difference of one second. Therefore, the network models
with single character inputs and the network models with word inputs offer almost equivalent
segmentation efficiency.

5. Discussion

5.1. Analysis of the Experimental Results

From the above experimental results, we formulated the following conclusions:

(1) Regardless of whether the network models utilize single-character input or word input,
the bidirectional neural networks Bi-GRU and Bi-LSTM offer better segmentation performances
than the unidirectional neural networks GRU and LSTM, because a bidirectional neural network
can calculate the state before and after each moment from forward and backward directions,
respectively. Therefore, this type of network can better consider the past information and future
information of the address sequence.

(2) The network models with word input of the above four kinds of neural networks demonstrate
better segmentation performances than the corresponding network models with single-character
inputs. Chinese address elements are composed of words and are the results of Chinese word
segmentation. Therefore, using words as the input of the neural network model conforms to the
word-formation rules of Chinese address elements.

(3) In the case of the same segmentation performance, the Bi-GRU neural network is faster than
the Bi-LSTM neural network in segmentation efficiency, because the Bi-GRU neural unit directly
transmits the hidden state to the next neural unit, whereas the Bi-LSTM neural unit needs to
use the memory cell state to package the hidden state and transmit it to the next neural unit.
Additionally, when calculating the current hidden state value, the Bi-GRU neural unit needs to
output only the value of one parameter at the previous time in addition to the current input,
whereas the Bi-LSTM neural unit requires two parameters, the memory cell state value, and the
output value of the hidden node at the previous moment.

(4) The network models with word inputs of the above four kinds of neural networks have better
segmentation performances and the same segmentation efficiency as the corresponding network
models with single-character inputs, because, regardless of whether single-character input or
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word input is used, the calculation in the neural network is a feature vector generated after text
vectorization. Therefore, the dimensionality of the vector affects the efficiency of segmentation,
not the input characters and words.

5.2. Segmentation Issues

Although the method in this paper achieved good segmentation results in the experiment,
some segmentation problems still exist. There are two main reasons for these problems: the smallest
segmentation unit and address spelling errors. The former accounted for approximately 35.2% of all
incorrectly segmented addresses, and the latter accounted for approximately 52.6%. The remaining
12.2% of problems were attributed to many other reasons, including special characters, small sample
sizes, and human error generating erroneous samples.

The segmentation method of Chinese address elements proposed in this paper is based on the
results of Chinese word segmentation and uses words as the smallest segmentation unit. Therefore,
the Chinese word segmentation results directly affect the accuracy of the address element segmentation.
Our commonly used Chinese word segmentation tools are based on the principle of “Chinese word
formation”, and the segmentation of address elements can be regarded as the recombination of word
sequences. Therefore, the result of Chinese word segmentation is not the word contained in the address
element. For example, the result of the Chinese word segmentation of “甘家口西白堆子(Ganjiakou,
Xi, Baiduizi)” is “甘家口/西白/堆子(Ganjiakou, Xibai, Duizi)”, and the correct address element is
“甘家口/西/白堆子(Ganjiakou, Xi, Baiduizi)”. Therefore, the words “Xibai” and “Duizi”, as the smallest
segmentation unit, cannot be recombined into the address element “Baiduizi”.

Incorrect address spellings and address abbreviations in Chinese address expressions also affect the
correct segmentation of address elements. Common misspellings of addresses are mostly homophonic
spelling errors, such as “广安门(Guanganmen)” being incorrectly spelled as “光安门(Guanganmen)”
and “箭厂胡同(Jianchang Hutong)” being incorrectly spelled as “建厂胡同(Jianchang Hutong)”.
Common address abbreviations are mostly for administrative divisions and roads. For example,
“海淀区(Haidian District)” and “海淀街道(Haidian Street)” in administrative divisions are abbreviated
as “海淀(Haidian)”, and “莲花池西路(Lianhuachi West Road)” is abbreviated as “莲池西路(Lianchi
West Road)”. These incorrect address element descriptions are not only prone to ambiguity, but they
also generate inaccurate model training features.

6. Conclusions

Geocoding technology, as a bridge between spatial information and nonspatial information,
plays a crucial role in today’s era of big data. The segmentation of Chinese address elements is
one of the core techniques of geocoding. Focusing on the problems of the existing segmentation
methods and the characteristics of Chinese address elements, this paper proposes a Chinese address
element segmentation method based on a Bi-GRU neural network. Chinese word segmentation
technology is used to perform Chinese word segmentation on address sequences in advance to
generate the input of the neural network model. The experiment is based on the POI address data
and some directory data in the Baidu map of Beijing for training and testing. The experimental
results show that the bidirectional neural network is superior to the unidirectional neural network
in segmentation performance. Moreover, when the Bi-GRU and Bi-LSTM neural networks have the
same segmentation performances, the segmentation efficiency of the Bi-GRU neural network is higher,
while the segmentation efficiency of the Bi-LSTM neural network is relatively low. Additionally,
each neural network demonstrated a better segmentation performance with word input than with
single-character input.

In Chinese address expressions, according to the order in which these address elements appear
in the address, there is a strong spatial constraint relationship between them—namely, a hierarchical
subordination relationship. However, this article starts from the perspective of natural language,
thus ignoring the spatial constraint relationship between address elements. In this paper, unstructured
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Chinese addresses are segmented into independent and complete address elements. However, they do
not have any semantic information, so it is impossible to determine the composition and meaning of
their representation in the address. Therefore, the semantic annotation of address elements is an area
that necessitates further study.
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