
 International Journal of

Geo-Information

Article

A Novel Rapid Method for Viewshed Computation on
DEM through Max-Pooling and Min-Expected Height

Zhibin Pan 1, Jin Tang 2, Tardi Tjahjadi 3 , Zhihu Wu 2 and Xiaoming Xiao 2,*
1 School of Computer Science and Engineering, Central South University, 932 Lushan South Road,

Changsha 410083, China; panzhibin@csu.edu.cn
2 School of Automation, Central South University, 932 Lushan South Road, Changsha 410083, China;

tjin@csu.edu.cn (J.T.); wuzhihu@csu.edu.cn (Z.W.)
3 School of Engineering, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK;

t.tjahjadi@warwick.ac.uk
* Correspondence: xmxiao@csu.edu.cn

Received: 7 September 2020; Accepted: 23 October 2020; Published: 26 October 2020
����������
�������

Abstract: Viewshed computation of a digital elevation model (DEM) plays an important role in a
geographic information system, but the required high computational time is a serious problem for a
practical application. Hitherto, the mainstream methods of viewshed computing include line-of-sight
method, reference planes method, etc. Based on these classical algorithms, a new algorithm for
viewshed computation is proposed in this paper: the Matryoshka doll algorithm. Through a pooling
operation, the minimum expected height of the DEM is introduced as max-pooling with minimum
expected height in the viewshed computing optimization. This is to increase the efficiency and
adaptability of the computation of the visibility range. The experimental results demonstrate that the
algorithm has obvious advantages in computing speed, but with the accuracy only slightly reduced.
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1. Introduction

Viewshed computing determines the visual relationship between points on a certain geographic
observation point [1]. It has been widely used in various fields such as geographic information system
(GIS) [1], landscape management [2], landscape assessment [3], and navigation [4], among others [5].
For example, using viewshed analysis, it is possible to distinguish visible and invisible areas from
digital elevation models (DEMs) in mountainous areas, and to determine the scale of region for forest
practices to improve the effect of mountain scenery [6]. In recent years, with more research and
development in related theory and application, the existing methods have achieved good results.
However, there are also quite a few shortcomings. Current viewshed analysis algorithms are extremely
time-consuming, especially with large-scale spatial terrain data [7]. Another drawback is that these
algorithms do not make full use of the terrain features to simplify the corresponding computation.

In this paper, a new viewshed computation method is proposed, which considers the effect of
terrain on visibility, and introduces the concept of max-pooling operation and minimum expected
height to improve the efficiency of visual domain calculation. The contributions of this paper are as
follows. First, similar to deep learning, the max-pooling of DEM is introduced, and together with the
minimum expected height, the computational efficiency of viewshed is improved. As far as we know,
we are the first to introduce max-pooling in viewshed computation. Second, a simplified viewshed
algorithm named Matryoshka doll was developed.

The rest of this paper is structured as follows. In Section 2, we present the data structure for
the representation of a surface and review some important algorithms for viewshed computation.
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In Section 3, we describe the proposed algorithm and its implementation steps. Section 4 experimentally
compares the performance between the proposed algorithm and existing algorithms. Finally, the conclusions
and avenues for future research are presented in Section 5.

2. Related Work

2.1. Terrain Representation

In a GIS system, there are various representations of a surface, but the rectangle grids and
triangulated irregular network (TIN), as illustrated in Figure 1 [8], are the most commonly used.
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Figure 1. Different data representation between the digital elevation model (DEM) (a) and 
triangulated irregular (TIN) (b). DEM is raster data, while TIN is irregular triangular data. 

A DEM is a digital simulation of terrain using finite terrain elevation data (i.e., digital 
expression of terrain surface morphology), as illustrated in Figure 2. It uses a set of ordered 
numerical arrays to represent the ground elevation, which is widely used throughout 
geomorphology [9]. It is a branch of digital terrain models. All other terrain feature values can be 
derived from DEM. 

 
Figure 2. Example of DEM data. The DEM data of each area can be represented as a graph. Each 
point in the graph corresponds to a sampling point in the area. The gray level of a point represents 
its elevation value, where the larger the grey level (i.e., brighter), the higher the elevation. 

Figure 1. Different data representation between the digital elevation model (DEM) (a) and triangulated
irregular (TIN) (b). DEM is raster data, while TIN is irregular triangular data.

A DEM is a digital simulation of terrain using finite terrain elevation data (i.e., digital expression
of terrain surface morphology), as illustrated in Figure 2. It uses a set of ordered numerical arrays to
represent the ground elevation, which is widely used throughout geomorphology [9]. It is a branch of
digital terrain models. All other terrain feature values can be derived from DEM.
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A DEM is a digital simulation of terrain using finite terrain elevation data (i.e., digital 
expression of terrain surface morphology), as illustrated in Figure 2. It uses a set of ordered 
numerical arrays to represent the ground elevation, which is widely used throughout 
geomorphology [9]. It is a branch of digital terrain models. All other terrain feature values can be 
derived from DEM. 

 
Figure 2. Example of DEM data. The DEM data of each area can be represented as a graph. Each 
point in the graph corresponds to a sampling point in the area. The gray level of a point represents 
its elevation value, where the larger the grey level (i.e., brighter), the higher the elevation. 

Figure 2. Example of DEM data. The DEM data of each area can be represented as a graph. Each point
in the graph corresponds to a sampling point in the area. The gray level of a point represents its
elevation value, where the larger the grey level (i.e., brighter), the higher the elevation.

The regular rectangular grid is the dataset of elevation values at the plane coordinates position [10].
The advantage of the rectangular grid DEM is that its storage capacity is easy to compress and store,
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which makes it easy to use and manage [11]. On the other hand, since every point that constitutes
TIN is the original data, TIN avoids the loss of interpolation precision. Thus, it can better be used
to estimate the feature points and lines of the geomorphology, indicating the complex terrain more
accurately than the rectangular grid. However, TIN is less suited than DEM for some applications such
as the analysis of the surface’s slope and aspect in GIS. In addition to storing its three-dimensional
coordinates, the topology of the network is also set up. As a result, it is generally applied to a large
range of aerial photography to obtain numerical values.

2.2. Method for Computing Visibility

There are two main methods of viewshed computation: the line-of-sight (LOS) based viewshed
computation method and the reference planes method. At present, it is common to use the LOS
algorithm to compute the visibility of a terrain. The LOS algorithm only uses the simple geometric
relationship between points to judge terrain visibility. Pin [12] divided the visibility analysis based on
line of sight into three visibility analyses: point correlation, path correlation, and regional correlation.
Floriani et al. [13] proposed the key slope method, whereby calculating the slope between the point of
view and the target point, the maximum slope and dynamic update are computed, as illustrated in
Figure 3. This method also calculates the slope of each point, so that the efficiency of the algorithm
is low. Franklin et al. [14] proposed the concentric circle algorithm based on LOS, which improves
the calculation by introducing the fixed distance from the view point. The R3 method [15] is a more
accurate viewshed algorithm, which runs a separate LOS from the observer point to each point,
and determines whether any elevations on the LOS obstruct it. Its complexity is O(n3). R2 [16] is a
simplified version of R3, which reduces the accuracy but improves the efficiency of the algorithm.
The complexity of R2 is O(n2).
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Figure 3. Viewshed computation in the line-of-sight (LOS) algorithm. The algorithm draws a ray from
the viewpoint (i.e., the center point of the grid) to the target point (i.e., the outermost point intersected
by the ray), and the height of the reference point in the LOS is obtained by interpolation.

The reference planes algorithm [17] creates a reference plane that encloses a target point,
two auxiliary points, and the view point (as illustrated in Figure 4) to determine the visibility
of each target. Thus, the computational efficiency is higher than the LOS algorithm. The serial
algorithm proposed by Wu et al. [18] segments the high-resolution DEM data, and uses the reference
planes algorithm to determine the visibility of target points.
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Figure 4. Viewshed computation in the reference planes algorithm. The two adjacent points between
the view point (i.e., the center point of the grid) and the target point (i.e., the furthest green dot from
the view point) were selected as auxiliary points. The dotted lines encloses the three types of points
to form a reference plane. The relationship between the target and the plane determines whether the
target point is visible.

2.3. Methods for Optimizing Visual Domain Algorithms

In recent years, applications of parallel computing in viewshed computation have emerged.
These mainly use the symmetry of DEM data and parallelization techniques to accelerate the
determination of the field of view. Ferreira et al. [19] designed parallel computation on grid terrains for
implementing the Van algorithm. Using the shared memory model, the parallel algorithm produces
different acceleration effects according to the number of the threads. For example, when 16 concurrent
threads are used, the algorithm can achieve up to 12 times speedup. Osterman [20] developed the
parallelization of the r.los algorithm. The parallel algorithm is promising for GIS systems because it
speeds up the execution times on the NVIDIA graphic cards.

The implementation of the LOS algorithm in [21] incorporates variable step size calculation,
where the further away a DEM point is from the observation point, the larger the step-distance used
to select the DEM points. Although this reduces computation, the step-distance strategy is relatively
simple by not considering the terrain factors, resulting in loss of details in complex terrain areas such
as hilly areas.

3. Proposed Method

Based on the classical viewshed algorithms, this paper proposed a new viewshed computation
method, which improved its computational efficiency as follows. First, based on the LOS algorithm
and the reference planes algorithm, the Matryoshka doll algorithm was proposed, which simplifies the
computation. Second, the max-pooling is introduced, and the concept of minimum expected height is
proposed, which improved the efficiency of the proposed algorithm according to the terrain information.

The flow chart of the proposed algorithm is shown in Figure 5. First of all, max-pooling was
applied to find the maximum value of each data block (described in Section 3.1). After selecting the
observation points, the altitude of the other DEM data was calibrated according to the curvature of
the Earth (described in Section 3.2). The Matryoshka doll algorithm was then used to compute the
viewshed corresponding to the observation points (described in Section 3.3). The calculation was
simplified by using the results of the previous max-pooling operation and the minimum expected
height of each area (described in Section 3.4).
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3.1. Elevation Data Pooling

Pooling is a common method of reducing dimension in deep learning. The common methods of
pooling are general pooling and overlapped pooling [22]. By calculating the maximum or average
of data in a sliding window, all the feature data in a sliding window are represented by one value,
thus reducing the feature dimension.

Based on the pooling in deep learning, this paper proposed an improved method by adding a
max-pooling operation. In DEM data, using a fixed-area (1 km × 1 km) sliding window, the maximum
pooling method, as illustrated in Figure 6, is used to calculate the maximum elevation value of an area.
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3.2. Digital Elevation Model (DEM) Data Correction

Since the Earth can be considered as a huge sphere, when the target is far away from the observation
point, the observation height of the target will be lower than its actual height on the Earth’s surface.
The effect is illustrated in Figure 7.

In many viewshed computation algorithms [23,24], since the detection scope is small,
the computational model simplifies a curved ground into a plane. This model is relatively simple,
and the detection range of the field of view cannot be greatly affected when it is small. If the scope
is large (such as on a mountain peak), the relative height of the distant target will be lower than its
absolute altitude. Some of the target points visible on the plane model are not visible on the spherical
model due to curvature effects, thus the error has a great influence on the results of the visual domain
calculation. In this paper, a method of height correction for distant targets was introduced.
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observed height on the Earth’s surface.

The Earth has an equatorial radius of 6378.1 km and a polar radius of 6356.8 km [25], with the
difference in the two radii of only 0.3%. In general applications, the Earth can be simplified to a perfect
sphere with a radius of 6371.0 km.

When the distance from the observation point to the target point is D, the real height of the target
point needs to be reduced by ∆h to account for the influence of the Earth’s curvature on the height of
the target point, where ∆h is determined as follows:

D2 + R2 = (R + ∆h)2

⇒ D2 = 2R · ∆h + ∆h2

⇒ ∆h = D2

2R+∆h
⇒ ∆h ≈ D2

2R

(1)

where R is the radius of the Earth. Table 1 shows the effect of distance and Earth curvature on height
estimation using Equation (1).

Table 1. The influence of the distance and Earth curvature on height estimation.

Distance (km) 1 2 5 10 15 20 30

Height error (m) 0.078 0.314 1.96 7.85 17.66 31.4 70.6

Due to the characteristics of DEM data, it can be divided into eight sub-regions with complete
symmetry in eight directions: East (E), South (S), West (W), North (N), Northeast (NE), Southeast (SE),
Southwest (SW) and Northwest (NW) [23] as illustrated in Figure 8. Thus, according to this geometric
feature, the data of one region can be processed, and the calibration data can be copied to the other
regions with the corresponding distance relationship between the data points.
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3.3. Minimum Expected Height

Many methods of computing viewshed [7,8] calculate the profile curvatures between all DEM
points and observation points. This is computationally inefficient since many calculations are
unnecessary. For example, if a plain is located behind a big mountain, then all points on the plain
cannot be observed, and thus no calculations are needed. Furthermore, in mountainous areas or plain
areas, the farther the elevation data points, the lower the probability of them being observed. Thus,
some algorithms put forward the variable step-distance [21] in computing LOS, whereas the distance
between the elevation points becomes greater, so the step size parameter of the elevation point is also
gradually increased, thus reducing the computation. However, this method does not take into account
the terrain, which only improves certain efficiency in the plain areas. Thus, in areas such as hills that
have more drastic elevation change, there will be a certain error between the visible boundary and the
real boundary calculated by the simplified operation, resulting in a reduction in accuracy.

Due to the obstruction by obstacles, when the LOS algorithm detects a certain area, there is a pitch
angle. Since the LOS will pass through a series of DEM points in the region, the required height of
points in the LOS in the area of the region are calculated, which correspond to the minimum height of
the visible points in the region as illustrated in Figure 9. The minimum expected height of the first
point in the area is called the minimum expected height.

When the maximum height of the area is less than the minimum expected height, not all points in
the region can be observed. This means that the points in the region can be ignored, and the points in
the next unit area can be examined directly as illustrated in Figure 10. As each region passes through
more than one LOS, this method can greatly expedite the computation of the visibility area.

Since the highest altitude on Earth is the 8848 m of Mount Qomolangma, commonly known as
Mount Everest, when the minimum expected height of a region is greater than 8848 m, then in the
environment of the Earth, the follow-up region is considered completely invisible in theory, and the
following detection is stopped.
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Figure 10. Regional maximum height and minimum expected height. LOS-1 and LOS-2 represent the
LOS of different observation points, and they have different minimum expected heights in the same
region. When LOS detects an area bounded by the parallelogram, it calculates the minimum expected
height first, and then compares it with the maximum value in the area. If the minimum expected height
is smaller than the regional maximum, it can go directly to the next area.

3.4. Matryoshka Doll Algorithm

The point of LOS near the observation point is calculated several times, thus the efficiency of the
algorithm is much lower than that of the reference planes algorithm. In this paper, an improved LOS
algorithm is proposed, drawing on some lessons of reference planes, which can greatly reduce the
number of repeated comparisons, thus improving the efficiency of the algorithm.

Due to the particularity of DEM data, it can be divided into eight structural symmetric sectors,
each of which is similar to a Pascal’s triangle. Each layer of the triangle has one more point than the
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previous layer, and a point in the upper layer affects whether two adjacent points on the next layer are
visible. According to the reference planes algorithm, each target object point is visible relative to the
two auxiliary points between the object and the observer, as illustrated in Figure 11. The reference
planes algorithm uses the two auxiliary points (i.e., the green and white circles) together with the
observer point to form a plane to determine whether the target object point is visible. However, in the
process of the algorithm calculation, the two auxiliary points play different roles for different angles
of observation.
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Figure 11. Visibility judgment: the visibility between the observation point and the target object point is
related to the height of the two auxiliary points between them. When the angle of observation (denoted
by the dotted arrow) is different, the weights of visibility of the two reference points are different.

Based on the LOS algorithm and reference planes algorithm, a new algorithm named the
Matryoshka doll algorithm, as illustrated in Figure 12, was proposed, which can quickly calculate the
visibility of a certain sector of an area.
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Step 3

 
(b) Second loop 

 
(c) Third loop 

Figure 12. The steps in the proposed Matryoshka doll algorithm. Only one cycle of calculation for
each part of the data is shown, and Step 1 selects the current judgment point (see algorithm). (a) is a
schematic diagram of step 1 of the algorithm, and only the outermost dark blue nodes are involved in
the calculation of this step. (b) is the schematic diagram of the second step and the green nodes on the
second layer participate in the calculation of this step. (c) is similar to the previous two steps, only the
light blue nodes participate in the calculation.

The algorithm is demonstrated in a sub-region, and its steps are as follows:
STEP 1. The root node is selected as the current judgment point of determining the visibility of

the target point.
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STEP 2. Use the LOS algorithm to calculate the visibility of points in the lower level and at
45◦ directions.

STEP 3. Use the judgment point and two neighborhood points to form a reference plane,
and calculate the visibility of the middle point of the subsequent two layers under the judgment point.

STEP 4. Take the intermediate point of the two layers below the current judgment point as the
new judgment point, and repeat step 2 until the last layer of data is processed.

Since the Matryoshka doll algorithm calculates the visibility of points from the outer to inner
layers as illustrated in Figure 13, and is similar to the Matryoshka doll structure, as shown in Figure 14,
it was called the Matryoshka doll algorithm.
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Figure 14. Matryoshka doll: The doll is composed of multiple hollow wooden dolls. As the calculation
order is similar to the structure of the toy, the proposed algorithm was named the Matryoshka
doll algorithm.

3.5. Determining the Range of Visual Fields by Fork Multiplication

The traditional LOS viewshed computation compares the elevation between the points on the
LOS and the observation point in order to determine their visibility, similar to the slope comparison
and the zenith angle comparison. Cohen [26] proposed the method of multiplication, and then put
forward the incremental method. The specific idea is to determine the occlusion relation between
LOS points by the result of the vector cross product. In this paper, the method of Cohen [26] was
used to combine the vector cross product and the increment method effectively. The increment of the
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vector cross product is used to determine the visible point and the elevation increment to address the
non-visible point. The combined operation significantly reduces the required operation time.

Let Veye denote an observation point, while P1 and P2 are topographic points on a terrain.

As illustrated in Figure 15, two vectors,
→

VeyeP1 and
→

VeyeP2, can be used to determine whether the

direction of the vector
→

P1P2 is left or right with respect to
→

VeyeP1 by the vector cross product. P2 can be

seen relative to Veye, if and only if the direction of
→

P1P2 is toward the left relative to
→

VeyeP1, otherwise it
will not be visible using (

P1 −Veye
)
×

(
P2 −Veye

)
=
(
U1 −Ueye

)
·

(
H2 −Heye

)
−

(
U2 −Ueye

)
·

(
H1 −Heye

)
= U1 ·

(
H2 −Heye

)
−U2 ·

(
H1 −Heye

) (2)
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Figure 15. Visibility determination using the vector cross product method. It is only necessary to

determine the direction of rotation of
→

P1P2 relative to
→

VeyeP1 to determine whether P2 is visible,
where Veye is the observation point, and P1 and P2 are topographic points on the terrain.

Let U∗ denote the distance from a point * to observation point, and H∗ is the elevation of the
point *. To test each point using Equation (2) only requires two multiplications and three subtractions.
The method of the vector cross product is used for visibility determination, and its complexity is O(n).

Since the invisible points located below the LOS have geometrical local continuity, the invisible
points are processed by incremental computation in the vertical direction to search for the obscured
concave area. When the vector cross product encounters a non-visible point, it is converted to an
obscured area pattern in a valley to determine the elevation of subsequent points. Each subsequent
topographic point is not visible as long as the height does not correspond to the LOS point, until a visible
point reappears. Suppose Pi is visible and the next point Pi+1 is not, the algorithm determines that the
Pi+1 point is not visible. The deciding criterion from Veye to Pi is the slope of LOS, in other words,

M =
H1 −Heye

U1 −Ueye
=

H1 −Heye

U1
(3)

Since the step length in the H direction is 1, the height of the corresponding LOS on the top of Pi+1

is h = hi + m. Thus, we only need to add the slope at the height of the current point to test visibility,
and then confirm the visibility by comparing the height. Therefore, the traversal calculation in the
obscured area is only an addition. The complexity of viewshed computation is further reduced with
further examination of the obscured area in the valley of the terrain.
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4. Experiment and Analysis

Three experiments were designed to analyze the required computational time and accuracy of
the proposed algorithm using two datasets of different spatial resolutions. For the 10 m resolution,
we used DLR (DLR is the abbreviation of Deutsches Zentrum für Luft- und Raumfahrt, and the STRM
X-SAR DEM created by the German Aerospace Center DLR), and for the 30 m resolution, we used
ASTER-GDEM (Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital
Elevation Model) V2. The experiments were carried out in two areas (each area was about 40 km2,
as shown in Figure 16) located in the suburb of Changsha City, China.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 12 of 18 

ISPRS Int. J. Geo-Inf. 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/ijgi 

determines that the 1+iP  point is not visible. The deciding criterion from eyeV  to iP  is the slope of 

LOS, in other words, 

1

1

1

1

U
HH

UU
HH

M eye

eye

eye −
=

−
−

=  (3) 

Since the step length in the H direction is 1, the height of the corresponding LOS on the top of 

1+iP  is mhh i += . Thus, we only need to add the slope at the height of the current point to test 
visibility, and then confirm the visibility by comparing the height. Therefore, the traversal 
calculation in the obscured area is only an addition. The complexity of viewshed computation is 
further reduced with further examination of the obscured area in the valley of the terrain. 

4. Experiment and Analysis 

Three experiments were designed to analyze the required computational time and accuracy of 
the proposed algorithm using two datasets of different spatial resolutions. For the 10 m resolution, 
we used DLR (DLR is the abbreviation of Deutsches Zentrum für Luft- und Raumfahrt, and the 
STRM X-SAR DEM created by the German Aerospace Center DLR), and for the 30 m resolution, we 
used ASTER-GDEM (Advanced Spaceborne Thermal Emission and Reflection Radiometer Global 
Digital Elevation Model) V2. The experiments were carried out in two areas (each area was about 40 
km2, as shown in Figure 16) located in the suburb of Changsha City, China.  

 
(a) 

 
(b) 

Figure 16. Images display the terrain of the experimental areas. (a) A relatively flat region with some 
low elevation hills; and (b) a mountainous region. 

First, we used the Matryoshka doll algorithm and R3 algorithm to calculate the visibility area at 
the same observation point of the same data, and verified the reliability of the algorithm. Second, we 
used the Matryoshka doll algorithm and an existing algorithm to test the two different areas, and 
compared the required computational time of each algorithm. Additionally, the optimization effect 
of max-pooling and minimum expected height was tested on mountainous and plain terrains, 
respectively. Third, the difference in accuracy between the proposed algorithm and the traditional 
method was determined on DEM datasets with different resolutions and different terrains. 

The R3 algorithm, an exact but time-consuming method [14], was adopted for computing the 
viewshed to enable comparison of the accuracy of the computation results of the Matryoshka doll 
algorithm. Figure 17 shows the effect of the algorithm. Although some details are partially missing 
in the results of the proposed algorithm, the two results were similar.  

Figure 16. Images display the terrain of the experimental areas. (a) A relatively flat region with some
low elevation hills; and (b) a mountainous region.

First, we used the Matryoshka doll algorithm and R3 algorithm to calculate the visibility area
at the same observation point of the same data, and verified the reliability of the algorithm. Second,
we used the Matryoshka doll algorithm and an existing algorithm to test the two different areas,
and compared the required computational time of each algorithm. Additionally, the optimization
effect of max-pooling and minimum expected height was tested on mountainous and plain terrains,
respectively. Third, the difference in accuracy between the proposed algorithm and the traditional
method was determined on DEM datasets with different resolutions and different terrains.

The R3 algorithm, an exact but time-consuming method [14], was adopted for computing the
viewshed to enable comparison of the accuracy of the computation results of the Matryoshka doll
algorithm. Figure 17 shows the effect of the algorithm. Although some details are partially missing in
the results of the proposed algorithm, the two results were similar.
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4.1. Analysis of Computational Time

Several algorithms were tested on the 10 m-resolution DEM dataset with different ranges, and the
computational time required by various algorithms are shown in Figure 18. First, it can be seen that
due to the low number of interpolation, the proposed algorithm and the reference planes algorithm
required less time. On the other hand, due to the interpolation algorithm, the approximate method
R2 [14] required a much longer time with high-resolution data.
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The performance of the optimization algorithm was tested in mountainous regions and plains,
respectively. The results are shown in Figure 19. Since the mountainous terrain is complex and many
sub-regions need to be contrasted, the performance of the algorithm was not obvious. On the other
hand, due to the single terrain, many sub-regions in plane fit the optimization conditions, and the
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It can be seen that the Matryoshka doll algorithm was better than the existing viewshed computation
method in terms of the required computational time. Moreover, the new optimization method can
simplify the computation on various terrains, especially in the plain terrain.

4.2. Accuracy Analysis

According to [14], R3 is an exact method and R2 has the best performance with respect to accuracy
of the approximation methods. Therefore, referring to [27], the result of R3 was used as the ground
truth to determine the accuracy of the proposed algorithm by comparing the difference with R2 and
the reference plane.

The experiment was divided into two groups. The first group was performed on the DEM data
of different resolutions, and the second group was performed on different terrains of the same DEM.
In order to make the results comparable, the difference and intersection sets, as illustrated in Figure 20,
were introduced into the evaluation of the results.
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and (b) the intersection set (A∩B).

The accuracy of the proposed algorithm was analyzed by comparing the number of visible points
determined by the two algorithms at the same observation point. The shape dissimilarity between
them was calculated using

Di f f erent Rate =
N∗visible −NR3

visible

NR3
visible

(4)

and the similarity between them was calculated using

Similar Rate =
N∗visible ∩NR3

visible

NR3
visible

(5)

where N∗visible denotes the sum of the data points that can be observed by the algorithm at a certain
point in the dataset. Small value of the different rate means high accuracy. The similar rate is the ratio
of correct visible points over the truth-visibility points, where a large value means high accuracy. It can
be seen that the sum of similar rate and different rate is not necessarily equal to 1. This is because at
the checkpoint, the number of visible points by R3 is not equal to those of other algorithms. Figures 21
and 22 show the comparison results. For Figure 21, the first six terrain points used were the 10 m
resolution DEM data, and the latter six terrain points were the 30 m resolution DEM data. Figure 21
also shows that the proposed method has good performance in both resolution datasets.
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Figure 21. The influence of DEM resolution on the algorithms: (a) influence of DEM resolution on the
different rate of each algorithm; and (b) influence of DEM resolution on the different rate of each algorithm.
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Figure 22. The influence of terrain on the algorithms: (a) influence of terrain on the Similar Rate of
each algorithm; and (b) influence of terrain on the Different Rate of each algorithm.

For Figure 22, the first six terrain points were on the plain, and the latter six terrain points were on
the mountainous region. Figure 22 also shows that the proposed method has good performance in
different terrains.

Both Figures 21 and 22 show that the accuracy of the proposed algorithm is related to the DEM
data resolution and the terrain involved. Figure 23 illustrates how the proposed algorithm uses the
existing DEM data points to approximate the data points on LOS. The accuracy of the algorithm is
positively correlated with DEM resolution, and is inversely proportional to the level of terrain change.
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5. Conclusions

Based on the commonly-used algorithm of viewshed computation, this paper proposed the
Matryoshka doll algorithm. By adding max-pooling and introducing the minimum expected height,
the algorithm improves the computational efficiency according to the terrain. Additionally, the accuracy
of the proposed algorithm is related to the resolution of the DEM and the terrain.

The main advantage of our proposed method is that the Matryoshka doll algorithm with
max-pooling and minimum expected height increases the efficiency of the viewshed computation
significantly, especially in the plane terrain because the expected height increases gradually, but the
maximum height of each sub-region is relatively small. Furthermore, since the proposed algorithm
automatically determines the visual range according to the characteristics of the Earth’s surface
including radius and highest altitude, it can be used on other celestial bodies such as the moon and
Mars. However, the radius of the moon and Mars are smaller than the Earth’s, so the influence of
curvature on the height needs to be recalculated, and the influence in these places should be more
obvious, especially for the Moon. The proposed method has some limitations. The proposed method
could not adapt to the multi-resolution DEM dataset such as the NED (National Elevation Dataset)
dataset [28] with 10 m resolution and 30 m resolution subset, because it is only valid for single
resolution data.

Improving the efficiency of the algorithm by parallel computing based on GPU is our future
research work. In addition, the algorithm could use the global maximum value (the highest altitude
of the Earth) as the parameter to terminate the computation, and then select the maximum value of
the region as the termination parameter according to the location and other parameters, thus further
improving the efficiency of the algorithm.
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