International Journal of

ISPYS Geo-Information MD\Py

Article

An Efficient Row Key Encoding Method with ASCII
Code for Storing Geospatial Big Data in HBase

Quan Xiong 20, Xiaodong Zhang 134(, Wei Liu 1%, Sijing Ye 509, Zhenbo Du !, Diyou Liu {9,
Dehai Zhu %4, Zhe Liu 134 and Xiaochuang Yao 134*

1 College of Land Science and Technology, China Agricultural University, Beijing 100083, China;

xiong@cau.edu.cn (Q.X.); zhangxd@cau.edu.cn (X.Z.); devilweil@cau.edu.cn (W.L.);
tufangbobo@cau.edu.cn (Z.D.); diyouliu@cau.edu.cn (D.L.); zhudehai@cau.edu.cn (D.Z.);
liuz@cau.edu.cn (Z.L.)

Center for Spatial Information Science and Systems, George Mason University, 4400 University Dr, Fairfax,
VA 22030, USA

Key Laboratory of Remote Sensing for Agri-Hazards, Ministry of Agriculture, Beijing 100083, China
Key Laboratory of Agricultural Land Quality and Monitoring, Ministry of Natural Resources,
Beijing 100083, China

State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University,
Beijing 100875, China; yesj@bnu.edu.cn

* Correspondence: yxc@cau.edu.cn; Tel.: +86-188-1135-6282

check for
Received: 1 September 2020; Accepted: 22 October 2020; Published: 25 October 2020 updates

Abstract: Recently, increasing amounts of multi-source geospatial data (raster data of satellites and
textual data of meteorological stations) have been generated, which can play a cooperative and
important role in many research works. Efficiently storing, organizing and managing these data is
essential for their subsequent application. HBase, as a distributed storage database, is increasingly
popular for the storage of unstructured data. The design of the row key of HBase is crucial to
improving its efficiency, but large numbers of researchers in the geospatial area do not conduct
much research on this topic. According the HBase Official Reference Guide, row keys should be
kept as short as is reasonable while remaining useful for the required data access. In this paper,
we propose a new row key encoding method instead of conventional stereotypes. We adopted an
existing hierarchical spatio-temporal grid framework as the row key of the HBase to manage these
geospatial data, with the difference that we utilized the obscure but short American Standard Code
for Information Interchange (ASCII) to achieve the structure of the grid rather than the original grid
code, which can be easily understood by humans but is very long. In order to demonstrate the
advantage of the proposed method, we stored the daily meteorological data of 831 meteorological
stations in China from 1985 to 2019 in HBase; the experimental result showed that the proposed
method can not only maintain an equivalent query speed but can shorten the row key and save
storage resources by 20.69% compared with the original grid codes. Meanwhile, we also utilized
GF-1 imagery to test whether these improved row keys could support the storage and querying of
raster data. We downloaded and stored a part of the GF-1 imagery in Henan province, China from
2017 to 2018; the total data volume reached about 500 GB. Then, we succeeded in calculating the daily
normalized difference vegetation index (NDVI) value in Henan province from 2017 to 2018 within
54 min. Therefore, the experiment demonstrated that the improved row keys can also be applied to
store raster data when using HBase.

Keywords: geospatial big data; HBase; row keys; large scale; storage; GF-1 imagery

ISPRS Int.]. Geo-Inf. 2020, 9, 625; d0i:10.3390/1jgi9110625 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-5109-3812
https://orcid.org/0000-0001-6347-4973
https://orcid.org/0000-0002-8755-4115
https://orcid.org/0000-0002-8805-8914
https://orcid.org/0000-0002-7025-2137
https://orcid.org/0000-0002-8214-8345
https://orcid.org/0000-0001-8068-9415
http://www.mdpi.com/2220-9964/9/11/625?type=check_update&version=1
http://dx.doi.org/10.3390/ijgi9110625
http://www.mdpi.com/journal/ijgi

ISPRS Int.]. Geo-Inf. 2020, 9, 625 20f17

1. Introduction

The volume of the multi-source geospatial data from Earth observation systems, such as satellites,
meteorological stations and so on, is currently increasing quickly worldwide. Earth observation
systems have generated large amounts of data, which can reach to the range of petabytes; in the future,
the volume will probably reach the exabyte level or even greater than that [1]. The data have numerous
potential values, but we are usually able to only utilize a small part of them in a research domain
after filtering from large numbers of datasets; thus, it is necessary to store all observed data, as we
cannot predict which data we can utilize in a research before filtering. That is, large amounts of storage
resources are required to store multi-source geospatial data generated in short intervals. Therefore,
saving storage resources is an important issue globally. These data are not only large in volume but also
of various formats, such as raster data [2], textual data [3], vector data [4], etc.; therefore, storing and
organizing these data efficiently is essential for the subsequent applications of multi-source geospatial
data, such as data fusion [5-7], data assimilation [8-10] and so on.

To date, large numbers of research works have been conducted that have focused on using
different kinds of strategies or regulations to manage and organize these geospatial data. It seems that
most researchers have reached a consensus to some degree regarding the use of geospatial grids [11-14].
Theoretically, regarding different research scales, a grid can be divided into two categories: one category
is the discrete global grid, and the other is the local planar projection-based grid [15]. The discrete
global grid contains a regular polyhedron-based grid system [16-19], a sphere VORONOI-based grid
system [20,21] and a longitude/latitude line-based grid system [22-24]. This kind of grid can cover
the entire globe and has hierarchical and recursive characteristics, but it generally has an extremely
complicated computation process [25,26]. A local planar projection-based grid generally utilizes
a hierarchical square kilometer grid to manage geospatial data [13]. Although this kind of grid
has some distortions after being projected to a plane from a sphere, it can simplify the computing
process. Moreover, if the process of projection is completed by splitting the entire globe into zones
(e.g., split by longitudes) in advance and then projecting each zone to the plane, it can reduce this
distortion. This is why the Universal Transverse Mercator (UTM) projection consists of 3° UTM
and 6° UTM. In this work, we selected a kind of planar projection-based grid to achieve the logical
management of geospatial data, which will be illustrated in Section 2.1.

There also are a great number of researchers who are paying attention to solutions regarding the
storage of such massive data; among these, a distributed file system, such as the Hadoop Distributed
File System (HDFS), is a possible option [27-31]. HDFS is a sub-core program of the Hadoop program
from the Apache Software Foundation, which is a non-profit organization that aims to support open
source software programs. However, HDEFS is designed for large datasets and will incur large stresses
for the master node if we store massive small files, because the master node needs to store a metadata
for each small file stored in the slave node [32]. In order to solve this problem, HBase, which is a
database based on HDFS, was developed [33]. The database is famous for its flexibility for storing
large amounts of unstructured data and the ability to expand to unlimited columns and rows, which
can solve the problem of storing massive small files [34]. In this work, as mentioned above, we selected
a grid strategy to organize data, which means that our geospatial data that need to be stored are
presented as a large number of small files. Therefore, we decided to use HBase to store our geospatial
data, in the same manner as some other researchers. Regarding the efficient use of HBase, the design of
the row keys is one of the essential issues. HBase stores data as a pattern of key values, which means
that there is always a row key that needs to be stored together with a value that we want to store [35].
Thus, row keys are meant to be kept as short as is reasonable while still being useful for the required
data access, which can save large amounts of storage resources and improve the efficiency, but most
researchers do not pay attention to this problem. It is worth noting that a short key that is useless for
data access is not better than a longer key with better get/scan properties; we should expect tradeoffs
when designing row keys [36]. In fact, most researchers are simply interested in designing their row

ISPRS Int.]. Geo-Inf. 2020, 9, 625 30f17

keys to include the information that they think they need and rarely notice the problem of the excessive
length of row keys [14,37-40].

In this work, we proposed a method to solve this problem. We used ASCII codes to substitute the
original geospatial codes, which can shorten the length of the row keys of the HBase. We also designed
experiments to test the effect of saving storage resources and compared the time consumption of
queries. The proposed method can provide a new concept for the design of row keys for all researchers
when they intend to utilize HBase to store their data.

This paper is organized as follows. Section 2 introduces the spatial grid strategy we selected,
the original row key obtained by the spatial grid strategy and our improved method to shorten the
original row key. Section 3 demonstrates the effect of the proposed method. Finally, Sections 4 and 5
discuss the experimental results and list future work.

2. Methodology

Based on our previous research and knowledge, we decided to select and utilize the Raster
Dataset Clean and Reconstitution Multi-Grid (RDCRMG) [13] as the spatial index grid to clip, store and
organize our multi-source data. In this section, in order to make it easier for readers to understand
the design of the row keys later in the paper, the partition and coding strategy of the RDCRMG
is presented. According the structure of the RDCRMG, the original spatio-temporal design of the
table in the HBase is explained; then, a more functional table structure is elaborated to address the
shortcomings of the original table. Meanwhile, the improved spatio-temporal design method of the
row keys based on the ASCII codes is also proposed.

2.1. Spatial Index Multi-Grid

2.1.1. Spatial Reference

The RDCRMG spatial reference is the World Geodetic System 1984 (WGS 84)-based Universal
Transverse Mecator (UTM) 6° strip division projection coordinate system, which has the following
peculiarities: firstly, there is a significant capability to improve the management efficiency because
of the explicit spatial mathematical foundation, partitioning rule and conversion algorithm for the
grid code and spatial coordinates; secondly, the system can maintain consistency when subdividing
the spatial data into extent grids, and it is impossible for data to belong to one grid and other grids;
thirdly, compared with other projections (e.g., the conical or azimuthal projection, the Gauss-Kruger
projection), higher accuracy can be maintained and less distortion on the boundary of the projection
zone; lastly, the system is helpful when conducting data-intensive calculation, as it provides the
possibility to compute in parallel according to its small grids instead of computing the entirety of
the data.

2.1.2. Partition and Coding

The RDCRMG splits the entire geographic area (e.g., China) into several zones with 6° longitude.
In the each zone, the RDCRMG contains a hierarchical grid strategy that is composed of 100 km
grids and 10 km grids (there is another layer in the RDCRMG—the 1 km grid—but in order to
highlight the research in this paper, we ignored the 1 km grid to make the structure more simple).
These two levels of square grids are generated with strict nested relationships, as shown in Figure 1.
The grids in the same level have the uniform size, shape and orientation, and there is no seam
between two adjacent grids. Therefore, while storing geographic data, the data should be split or
cropped into small blocks according the boundary of the grids which are overlapped with these data.
Furthermore, the RDCRMG adopts the row—column structure rather than the quad-tree structure,
because the RDCRMG focuses on data extraction efficiency, lower query algorithm complexity and
higher organizational pattern consistency.

ISPRS Int.]. Geo-Inf. 2020, 9, 625 40f17

b). hu'ndred kilometer gridsilayer

[—

a). the whole area split by 6° longitudes c). ten kilometer grids layer

Figure 1. Raster Dataset Clean and Reconstitution Multi-Grid (RDCRMG) grid partition. (a) The whole
area split by 6° longitudes. (b) The 100 km grid layer. (c) The 10 km grid layer.

In terms of grid coding, the 100 km grid code is composed of four digits: the first two digits
refer to the y-coordinate of the grid’s southwest vertex (unit: km), and the last two digits represent
the x-coordinate. When using a code to calculate the coordinates of a 100 km grid, we only need to
multiply the two parts by 100 km. For example, as Figure 1b shows the y-coordinate and x-coordinate
of the 100 km grid’s southwest vertex (A) are 4400 (km) and 300 (km), respectively. Therefore, the grid’s
code is 4403. Due to the limit of the distortion and spatial scale, the maximum of the 100 km grid’s first
two digits is 59, and the range of the 100 km grid’s last two digits is from 00 to 09. As regards the 10 km
grid, two additional digits are used to represent the position. The two digits” incremental direction is
consistent with a z curve from southwest to northeast within a 100 km grid (from 00 to 99). As shown
in Figure 1c, the y-coordinate and x-coordinate of the southwest vertex (B) are 4460 (km) and 430 (km),
respectively, and the code of the corresponding 10 km grid (the red square in the figure) is 440363.

Moreover, the RDCRMG stores the data by the directory name and file name to generate a logical
storage path of each data block without any metadata, as shown in Figure 2. Root directories are
named after the spatial coordinate system WKID (the spatial reference system’s well-known ID) and
correspond to different UTM projection strips. Then, other subdirectories are named after the 100 km
code, 10 km code and year. Eventually, the file blocks are stored in directories by year. The file block
also has its own specific name codes, as shown in Figure 3. Data type codes are used to distinguish
different data, such as GF1IWFV (001), Sentinel 2 (002) and crop classification (005). A random code is
used to avoid overriding files with the same name in the form of letters or figures.

ISPRS Int.]. Geo-Inf. 2020, 9, 625 50f17

32649
WKID

Coding 32650

4403

100 KM
Coding 4404
10KM 63
Coding 64
2018
Year
2019
4l 44046420190520016001000
Data fil
ata tie 4 44046420190601016001000
Figure 2. RDCRMG-based file block storage path.

* %k 3k ok * 3k * %k 3k

100 KM| |10 KM Recording Spatial [|Data type[|Random
code code date Resolution|| code code

Figure 3. RDCRMG-based file block name code structure.

2.2. Spatio-Temporal HBase Table Based on RDCRMG

2.2.1. The Structure of a HBase Table

Before introducing our spatio-temporal HBase table, we present the structure of a general HBase
table from the logical perspective and physical perspective. The logical structure is shown in Table 1.
It contains the row key, column family, column, timestamps and value. Moreover, timestamps (t1, t2,
t3, t4) are used to rank data values; if we keep the default set, this will be the exact time at which we
save the data.

Table 1. The logical structure of the HBase table.

RowKe Column-Family-A Column-Family-B Column-Family-C
y Column-A | Column-B | Column-A | Column-B | Column-C Column-A
£2: xx td: xx
Key001 tl: yy t3: yy
t2: nnn
t4: xx
Key002 t3: xx f:yy
3: xxx t4: xx t2: kk
Key003 tl: yy t3:yy tl: yy
t2: nnn

The physical structure is shown in Figure 4. For an HTable, each HRegion server manages some
HRegions. HRegion contains the HStore, and the number of the HStore depends on the number of the
column family. Then, each HStore is composed of MemStore and StoreFile. With an increasing data
volume, a large HRegion has to be split into two small HRegions to meet the restrictions of the data
volume for each HStore.

ISPRS Int.]. Geo-Inf. 2020, 9, 625 6of 17

HRegion Server

- HRegion
HStore Hstore Hstore

HRegion Server

HRegion Server

Figure 4. The physical structure of the HBase table.
2.2.2. The Design of the Row Key

The design of the row key is pivotal for the HBase table structure. HBase’s first-level index is
its row key, which means that, with regard to the spatio-temporal data, it would be better to store
spatio-temporal information in the row key rather than the column family or columns. Otherwise,
it would take more time for HBase to query data with the entered spatio-temporal conditions [36].
Therefore, we deliberately put spatio-temporal information regarding the data into the row keys.
As mentioned above, the RDCRMG has three scale layers: 100 km, 10 km and 1 km. In this paper,
we only discuss the HBase design for the 10 km spatio-temporal grids; similarly, we can achieve the
HBase table for other scale grids with the same strategy.

From Figures 2 and 3, we can gather the information we need for the design of the row keys.
The location information is the WKID code, the 100 km code and the 10 km code, and the time
information is the recording date. Considering that our application is more likely to query time series
data, we decided to combine that information together, as shown in Figure 5.

% 3k %k k Xk %k 3k %k ok * %k

WKID 100 KM code 10 KM code

Figure 5. The structure of the original row key.

The combination of the WKID, 100 km code and 10 km code is able to ensure a unique space;
meanwhile, the recording date limits the sole time. Thus, a row key represents a unique time and
space. Moreover, the location information is in front of the time information, which guarantees that
the time series data of a geospatial grid is stored in one physical block or adjacent blocks. In this way,
region servers can more simply find the related spatio-temporal data of a 10 km grid. In order to make
citation more convenient in the next sections, we refer to this kind of row key as the original row key,
and this method is termed the original row key encoding method.

ISPRS Int.]. Geo-Inf. 2020, 9, 625 7 of 17

2.2.3. The Design of the Column Family

Theoretically, an HBase table can contains more than one column family, and each column family
can have a large number of columns. However, HBase will create an HStore for each column family;
that is, if we build up a few column families, when HBase has to conduct the split operation to reduce
the volume of some data regions, all HStores must also be split. In a real application, we could not
control the data volume for each column family, meaning that some HStores would increase rapidly
to cause the HBase to split the regions, but some HStores which were small would also be split into
numerous new HStores, and thus the HRegion server would have to manage more HStores. Besides the
split operation, the flush operation from the MemStore would also lead to more I/O consumption
because of the increased number of column families. Therefore, in this study, we only adopt one
column family with a large number of columns to save data.

2.3. Improved Spatio-Temporal Model

The main idea of the improved spatio-temporal model is to use the ASCII code to substitute the
original code.

According to the official instructions of HBase [36], it would be better to shorten the lengths of
the row keys and other qualifiers along with the names of the column families, columns and so on.
Therefore, if we could shorten the lengths of these labels, we might save more storage resources and
speed up data retrieval. The ASCII code table is shown in Table 2. In fact, in our approach, we would
not use all ASCII codes, because some characters are hard to print manually with our keyboard.
Thus, we only use the chars from

"o "~

(space) to "™"; the corresponding decimals are from 32 to 126.

Table 2. The American Standard Code for Information Interchange (ASCII) Code Table (Dec represents
decimal number).

Dec Character Dec Character Dec Character Dec Character
0 NUL (null character) 32 space 64 @ 9 ‘
1 SOH (start of header) 33 ! 65 A 97 a
2 STX (start of text) 34 " 66 B 98 b
3 ETC (end of text) 35 # 67 C 99 C
4 EOT (end of transmission) 36 $ 68 D 100 d
5 ENQ (enquiry) 37 % 69 E 101 e
6 ACK (acknowledge) 38 & 70 F 102 f
7 BEL (bell (ring)) 39 ’ 71 G 103 g
8 BS (backspace) 40 (72 H 104 h
9 HT (horizontal tab) 41) 73 I 105 i
10 LF (line feed) 42 * 74] 106 j
11 VT (vertical tab) 43 + 75 K 107 k
12 FF (form feed) 44 , 76 L 108 1
13 CR (carriage return) 45 - 77 M 109 m
14 SO (shift out) 46 . 78 N 110 n
15 SI (shift in) 47 / 79 (@) 111 o
16 DLE (data link escape) 48 0 80 p 112 p
17 DC1 (device control 1) 49 1 81 Q 113 q
18 DC2 (device control 2) 50 2 82 R 114 r
19 DC3 (device control 3) 51 3 83 S 115 s

20 DC4 (device control 4) 52 4 84 T 116 t
21 NAK (negative acknowledge) 53 5 85 U 117 u

ISPRS Int.]. Geo-Inf. 2020, 9, 625 8 of 17

Table 2. Cont.

Dec Character Dec Character Dec Character Dec Character
22 SYN (synchronize) 54 6 86 \Y% 118 A
23 ETB (end transmission block) 55 7 87 Y 119 w
24 CAN (cancel) 56 8 88 X 120 X
25 EM (end of medium) 57 9 89 Y 121 y
26 SUB (substitute) 58 : 90 Z 122 z
27 ESC (escape) 59 ; 91 [123 {
28 FS (file separator) 60 < 92 \ 124 |
29 GS (group separator) 61 = 93] 125 }
30 RS (record separator) 62 > 94 " 126 -
31 US (unit separator) 63 ? 95 _ 127 DEL

2.3.1. Row Key Based on ASCII Code

The structure of the proposed row key is shown in Figure 6. In this part, we refer the reader
to Section 2.1.2 and Figure 5 for an explanation of the transformation of the original code and the
ASCII code.

X X X X X X X X X

100KM grid y 10KM grid 1 ‘fearl Month

WKID 100KM gridx 10KM grid 2 Year2 Day

Figure 6. The structure of the proposed row key.

The first symbol represents WKID. The Universal Transverse Mercator (UTM) projection is coded
every 6° from west to east; the first zone number is 32,601 and the last zone number is 32,660, and so
we use an ASCII code to represent these zones instead of five numbers. The approach used for the
transformation is to use the last two numbers of each zone and to add 32; then, the corresponding
ASCII code is obtained. For the 32601 zone, we use 01 + 32 to get 33 and then transform the number to
the ASCII code, "!". Therefore, we could use the symbol ("!") to substitute 32,601. Moreover, the reason
for adding 32 is that it is difficult to print the first 32 symbols of the ASCII code directly—particularly
as we would sometimes need to operate data manually—and thus we decided to add 32 to make it
easier to print the symbol.

The second symbol represents the first two digits of the 100 km grid (100 km grid y), and the
third symbol is the last two digits of the 100 km grid (100 km grid x). For 100 km grid y, the original
code is 00 to 59, which means from equator to 60° N, and so we add up the numbers and 32 to obtain
an ASCII code with a range from " " (space) to "[". As regards the 100 km grid x, we utilize "1" to "8"
instead of the original code, which is from 01 to 08.

The fourth and fifth symbol are the 10 km code. The range of each symbol is from "0" to "9". There
is no change compared to the original code.

We split the information regarding the year into Yearl (the first three digits of the year) and Year2
(the last digit of the year), as the sixth and seventh symbols show. The value range of Year2 is obviously
from 0 to 9, and so we only need to use the same ASCII char (from "0" to "9") to present it. Regarding
Year1, we run into difficulty because it always over 190 and obviously exceeds the range of the ASCII
Code Table. Thus, we decide to use a new method to substitute this value. For example, 190 is divided
into 19 and 0, and then 19 minus 15 is performed to get 4; next, we combine 4 with 0 to get 40, and the

"o

ISPRS Int.]. Geo-Inf. 2020, 9, 625 90f17

corresponding ASCII char is "(". Basically, this method has its own positive and negative aspects;
the advantage is that we successfully reduce the number of digits from 3 to 2, meaning that the code
is able to be found in the ASCII Code Table. The restriction is that we can only use this method to
deal with numbers from 182 to 276, meaning that we can only store data produced from 1820 to 2769.
As regards the month and day, we add them and add 31, respectively, to get the ASCII code.

2.3.2. Columns Based on ASCII Code

Changing the length of the row key is not the only way to shorten the lengths of the key—value
pairs. From Figure 7, we can see that the key—value pairs consist of three parts: length information,
key and value. In the length information part, both KeyLength and ValueLength are constants;
they occupy 4 bytes, respectively. In the key and value parts, the lengths of some information are
variable, which means that, if we want to shorten the lengths of the key—value pairs, reducing the
lengths of these parameters is essential. The row key mentioned above is one of these parameters,
but not the only one. We should also pay attention to the lengths of the family and the qualifier
(the column name). We have discussed the fact that we only use one column family in Section 2.2.3;
thus, we utilize one ASCII char "T" to name our Column Family. "T" is the acronym of the word
"type"—which means that we would store different types of data in this column family.

‘ 4 ‘ 4 ’ 2 variable 1 variable| variable 8 ‘ 1 variable
KeyLength | ValueLength ‘ RowKey Length |RowKey | Family Length | Family | Qualifier | Timestamp ‘ Type Value
’ Key Value _|

Figure 7. The structure of the key—value pairs.

With respect to naming the columns, there are some differences between meteorological station
data and remote sensing imagery. For meteorological station data, we could create a column named
"M" to store the station ID, longitude and latitude, or other information about this station. We could
acquire 12 daily meteorological indicators from stations, including the average atmospheric pressure,
average temperature, rainfall and another 21 indicators. Therefore, according to the useful range of
the ASCII code mentioned above, we decide to combine "M" and another character to name each
indicator’s column; this character ranges from "!" to "8" in the ASCII Code Table. That is, the name of
the column used to store the average atmospheric pressure is "M!"; the name of the column used to
store the average temperature is "M""; and so on; the last column’s name is "M8".

For remote sensing imagery, we decided to use four characters (ABCD) to store metadata and
three characters (EFG) to store imagery. Regarding "ABCD," we put the character "a" into the first
place (A), meaning that this column is for metadata. The character in the second place (B) begins
from """—meaning where the imageries come from; for example, " " represents GFIWFV, "I" represents
Sentinel2, """ represents Landsat8 and so on. The third place (C) is designed for the cloud percentage of
each cropped image, and the range is from "0" to "9"; for instance, "0" means the cloud percentage is [0%,
10%), "1" shows ghat the cloud percentage is [10%, 20%) and so on. The last place (D) has two values:
"A"and "B." "A" means that the name of this cropped image is stored, while "B" means that the original
imagery from which this cropped image came from is recorded. Regarding "EFG," the character in the
first place (E) is "b"—meaning that this column is for image data. The meanings of F and G are the
same as B and C, respectively. For example, if we crop an original GFIWFV image (e.g., the name is
GF1_WEFV1_E78.2_N39.6_20180816_L1A0003394802) into large numbers of small, cropped images, one
of these small cropped image’s names is 44036320180816016001000, and its cloud percentage is 25%.
When we store this small cropped image, "GF1_WFV1_E78.2_N39.6_20180816_L1A0003394802" would
be stored in the column named "a 2B"; "44036320180816016001000" would be stored in the column
named "a 2A"; and the real image named 44036320180816016001000.tif would be stored in the column

mm

ISPRS Int.]. Geo-Inf. 2020, 9, 625 10 of 17

named "b 2." For example, if we acquire new meteorological data and GF1WFV remote sensing data
of spatio-temporal grid A (the spatial grid is 32650440363, the date is 20180816), these data would be
stored in HBase as shown in Figure 8.

T
M M e M8 az2A a2B b2
GF1_WFV
Information of Average sunshine 4403632018 1_E78.2%_ ’4@
RL36338'/ |metecrological | atmosphere | - - . 0816016001 | N3S.6\ 20 |mml | . ..
station pressure 000 180816\ _L 440363201
1A0003392 | gne160160
802 01000 tif

Figure 8. How the data of code 3265044036320180816 would be stored in the HBase Table.

3. Results

3.1. Experiment Design

In this paper, we designed three experiments to demonstrate that the proposed row key encoding
method is efficient for meteorological station textual data and remote sensing imagery. The first
experiment made a comparison between the original row key encoding method and the proposed
row key encoding method to demonstrate whether the proposed method could save storage resources.
The second experiment compared the data query efficiency of these two methods. The last experiment
involved a simple application which produced each GF-1 image’s NDVI layer in Henan Province,
China from 2017 to 2018; this experiment could preliminarily demonstrate that the proposed row key
encoding method is able to be used for the subsequent spatio-temporal calculation.

3.2. Row Key Compression Efficiency

In order to explore the advantages and disadvantages of the proposed row key encoding method
in compression, we used two different kinds of data: meteorological station textual data and remote
sensing imagery.

For meteorological data, we stored daily meteorological indicators of 831 meteorological stations
in China from 1985 to 2019. Then, we adopted four patterns to make a comparison, including the
key—value volume based on the original row key encoding method, the key—value volume based on
the proposed row key encoding method, the key volume based on the original row key encoding
method and the key volume based on the proposed row key encoding method; the result is shown
in Figure 9. Obviously, four lines in the figure almost increase linearly with the increase of the rows;
meanwhile, the proposed row key encoding method could reduce resource consumption irrespective
of the key volume or the key—value volume compared with the original method. For the whole
meteorological data (7,946,627 rows) stored in the HBase, we could save 1874 MB of storage resources,
and the compression percentage of the key was 29.41%, while the compression percentage of the row
key was 52.63%. The compression percentages of the key and row key were relatively stable, but the
compression percentage of the key—value pairs had a strong relation with the volume of data stored in
each column of the HBase table. For this experiment, the compression percentage of the key—value
pairs was 20.69%, which demonstrates that the proposed method is able to save more storage resources
when we store meteorological station textual data in HBase.

ISPRS Int.]. Geo-Inf. 2020, 9, 625 11 0f 17

—— KV + ORK
25001 —.— KV + PRK
— K+ ORK
50004 —— K+ PRK
)
=
= 1500 -
Q
S
>
S 1000 -
>
500 A
0 - — -

10,000 50,000 100,000 300,000 1,000,000 2,500,000
Rows

Figure 9. The compression efficiency with meteorological station textual data (KV: key-value; K: key;
ORK: the original row key; PRK: the proposed row key).

For remote sensing imagery, we calculated the volumes of the value and the row key of different
rows, as Figure 10 shows.

70004 —:= V [160
v
v L 140
6000 - v
_ P _
g (' I 120 m
= 5000 - 4
S L 100
£ £
S 4000 - 5
(@] 80 =
> S
5 3000 A L 60 3
© 4
= 2000 - - 40
— K+ ORK L 20
1000 1 ——- K+ PRK
T T T T T 0
200 400 600 800 1000

Rows

Figure 10. The compression efficiency with remote sensing imagery (V: value; K: key; ORK: the original
row key; PRK: the proposed row key).

We can see that the proposed method hardly affects the key—value pairs’ volume, because the
volume of remote sensing imagery is far larger than the volume of the key or the row key (the unit of

ISPRS Int.]. Geo-Inf. 2020, 9, 625 12 of 17

the key volume is kilobytes (KB), the unit of the value volume is megabytes (MB)). In fact, the proposed
method affects the length of the row key or the key and thus affects all key—value pairs, so if there is
a large volume difference between the value and the key, this method would not have satisfactory
efficiency in terms of compressing the key—value pairs’ volume. However, for the compression
percentage of the key, the mean is 28.57%, which means that, if there are numerous rows and columns,
it would also save large amounts of of storage resources; of course, this is limited to the comparison of
the storage resources that the remote sensing imagery needs to occupy. Moreover, the speed of the
change of volume as the rows increase is somewhat different to that in Figure 10 but nearly the same
as in Figure 9. That is because the amount of meteorological station textual data that needs to be stored
each day for each meteorological station is a constant, so the HBase table would have a stable increase
of rows and columns. However, the amount of the remote sensing imagery which needs to be stored is
variable for each row; therefore, the HBase table would have a stable increase for rows and an unstable
increase for columns. For remote sensing imagery in this experiment, the range of the columns for
each row is from three to nine.

3.3. Data Query Efficiency

In this experiment, we explore the query efficiency of the proposed row key encoding method
and the original method with two query types: one is a random query and the other is a region query.
The experimental data are daily meteorological station textual data from 831 meteorological stations in
China from 1985 to 2019.

3.3.1. Random Query

In the same computer cluster, we randomly selected 562 rows of data and 1126 rows of data and
then calculated the time consumption of queries for different rows of data based on these two different
row key encoding methods; the result is shown in Table 3. From the result, we can see that the time
consumptions of the random queries for these two methods are almost equivalent. However, their time
consumptions are far greater than the query efficiency of some relational databases; for example,
MySql. This kind of spatio-temporal index is therefore not a good choice for a random query.

Table 3. The efficiency of the random query for different methods (ORK: the original row key; PRK:

the proposed row key).
Rows | Method Timel (ms) Time2(ms) Time3 (ms) Time4 (ms) Time5(ms) Mean (ms)
562 ORK 90,837 89,452 89,775 90,451 88,451 89,793
PRK 87,978 89,799 89,951 88,121 90,453 89,260
1126 ORK 183,206 191,340 187,665 184,562 186,785 186,711
PRK 189,969 187,543 184,568 185,465 185,461 186,601

3.3.2. Region Query

According to the design of the row key, any 10 km grid’s temporal data are supposed to be stored
in the same data region or some adjacent data regions. Therefore, for the different row key encoding
methods, we randomly selected a 10 km grid to calculate the time consumption of the query with
different time lengths. The result is shown in Figure 11. We also considered the time consumption of
the decoding for the proposed row key encoding method in the result. Through the lines corresponding
to the mean time in the figure, we can see that, although when using the proposed method, the row
key has to decode the obscure ASCII code, the proposed method still needs less time for the query
compared with the original method. If we query a longer date, we can save more time by using
the proposed method, but for each query, there are some variations in terms of time consumption,
as shown by the blue and red rectangles in the figure. When we analyze the time consumptions of the
region query and the random query, we can see that this kind of spatio-temporal index is not efficient

ISPRS Int.]. Geo-Inf. 2020, 9, 625 13 of 17

for a random query but is useful for a region query. The last data period, 19850101-20130418, contains
around 9700 rows of data and the mean time consumption is about 1.39 s, which is again faster than
the random query.

According to the design of RDCRMG, the code for the spatial grid is before the time series code,
which means that we choose to store the time series data of a grid continuously rather than the
neighboring grid. Therefore, this kind of efficient region query would work on time series but not
neighboring grids in the spatial dimension. If we want to obtain the best efficiency for the spatial
query of a neighboring grid, we should invert the code order of the space and time series, which could
bring the neighboring grid of a certain date into the same region.

1600 4 —-= mean time based on ORK
—-= mean time based on PRK
) [multi queries' times based on ORK P 7
£ 14001 — multi queries' times based on PRK P2
c s 7
R R 7
1200 A A~
= s
= R
2 1000 - e /7—'
o 7 7~
O e P
s Rt
2 s00- _ET
= _ T
600 -

8
19850103-39% 0o

011990002

The range of date

Figure 11. The efficiency of the region query with different methods (ORK: the original row key; PRK:
the proposed row key).

3.4. Application to Spatio-Temporal Calculation

In this experiment, we stored some of the GF-1 imagery in Henan Province, China from 2017 to
2018 into HBase with the proposed row key encoding method. We set some parameters, including the
spatial range (Henan Province), the time period (from 2017 to 2018), the data type (the GF-1 imagery),
the calculation model (NDVI) and the cloud percentage of imagery (we used two cloud proportions:
filter1l: 0-100% and filter2: 0-50%). Then, we adopted the Map-Reduce paralleled calculation mode
to determine the NDVI layers in time series in Henan Province with different cloud percentage
conditions; the result is shown in Figure 12. Moreover, when we set a cloud percentage filter—for
example, 0-50%—that meant that HBase would try to provide the imagery with the lowest cloud
percentage within 0% to 50% per day and per spatial 10 km grid. The purpose of this design is to
provide the imagery with less cloud contamination for large amounts of subsequent spatio-temporal
calculation as far as possible. That is also the reason that the column names for remote sensing imagery
were designed, as mentioned in Section 2.3.2. HBase would scan a row’s columns from left to right;
therefore, for example, the column named "b 2" (where the cloud percentage was (20%, 30%)) would
be sorted before the column named "b 4" (where the cloud percentage was (40%, 50%)). Thus, HBase is
able to find the column named "b 2" faster than the column named "b 4"—which is exactly the desired
outcome. Of course, if clouds are the object of research, this design should be inverted. From Figure 12,

ISPRS Int.]. Geo-Inf. 2020, 9, 625 14 of 17

we can see that, even though we set no restriction on cloud percentage, there were only 67 days
which had NDVI layers. This is because the GF-1 remote sensing satellite’s visit period is four days,
and we downloaded most of the images but not all of them. Furthermore, we can see that if we set the
cloud percentage to less than 50%, there are more days with a lack of a corresponding NDVI layer,
which is reasonable. The time required for both of these calculations is around 54 min. This experiment
could preliminarily demonstrate that the designed spatio-temporal index is effective for subsequent
spatio-temporal calculation.

mmm the NDVI could be calculated on cloud's filterl
mmm the NDVI could be calculated on cloud's filter2

vvv

70121
80627

ﬂﬂﬂ
NNN

Figure 12. The time distribution of the normalized difference vegetation index (NDVI) results based
on different filters of cloud percentage (filterl: the cloud percentage is between 0 and 100%; filter2:
the cloud percentage is between 0 and 50%).

4. Discussion

The proposed row key encoding method could shorten the length of the row key, which is critical
to saving more storage resources for HBase, which needs to repeatedly store the row key for each
column. The more columns each row has, the more storage resources would be saved. In this paper,
our data are large-scale spatio-temporal data, which means that when we put the data into a real
application, the table must have a large number of columns as there are large amounts of multi-source
spatio-temporal data. Therefore, this method would have its own prospective application. However,
its efficiency depends on how much information the original row key has and how long the length of
the original row key is. If the original row key is extremely simple and there is no way to use a short
string to substitute a long string for some information, this method would not have a satisfactory effect.

From the results, we could see that the efficiency of the random query was unsatisfactory but
the efficiency of the region query was acceptable. This has nothing to do with the proposed row key
encoding method but is related to the original spatio-temporal index. There is no design which could
fit every application; for our subsequent applications, we would need to fetch spatio-temporal data
for long time series, and so the efficiency of the region query was more important to us. If it desired
that the efficiency of the random query should be improved, a hash function should be used with the
addition of "salt" for the original index, which would allocate data to each data node in a disordered
manner. However, this kind of method usually has a negative effect on the region query (although one
could also build some second level index tables (auxiliary index tables)).

We also briefly explored other methods to see whether they would save more storage resources
or improve the efficiency of the query. One of the typical methods is "prefixtree," which is a kind of
key encoding method. A prefix tree is also known as a Trie; it is used to optimize search complexities.
We implemented four groups of experiments: the original row key encoding method and non-prefixtree,
the proposed row key encoding method and non-prefixtree, the original row key encoding method
and prefixtree and the proposed row key encoding method and prefixtree. We found that the prefixtree
method would have a greater apparent efficiency for the experimental data used in this paper compared
with the proposed row key encoding method. However, the test showed that the result of the
combination of these two methods was best in terms of the efficiency of saving storage and the

ISPRS Int.]. Geo-Inf. 2020, 9, 625 15 of 17

efficiency of the query. The reason for this is that these two methods are not contradictory; they
optimize the key of HBase in different dimensions. The "snappy" method could also save storage
resources, but this method always acts on the value of the HBase table (especially when the values
are large and not precompressed) rather than the row key or the key, and so this method exceeds the
scope of research in this paper. In the future, we aim to pay attention to how to compress the value
stored in the HBase’s columns.

There is another issue for the spatio-temporal index used in the paper. We attempted to store the
adjacent data in terms of space and time in the same data region or the adjacent data region, which is
useful for a region query, but it also caused a hotspot issue for storage and query. We also attempted
to utilize the presplit policy and automatically split policy to solve the hotspot issue for storage,
which seemed to be preliminarily effective. We would like to address this problem in the future.

5. Conclusions

In order to save more storage resources and improve the speed of query for HBase, we proposed
a method with shorter ASCII characters to shorten the length of the original row key created by the
Raster Dataset Clean and Reconstitution Multi-Grid (RDCRMG). The results show that our method
could not only save storage resources when it comes to the key of the HBase (with a compression
ratio of 29.41%), but also that it could have excellent efficiency for a region query compared with the
original row key. This method changes the conventional thought behind the design of the row key
policy. For other applications, researchers are also able to use shorter ASCII characters to substitute
longer information according to the method proposed in this paper. Moreover, when long keys
(compared to the values) or many columns are used, we could simultaneously use the prefixtree
method and the proposed method to reduce the key’s data volume and improve the speed of the
region query. We also used the map-reduce paralleled calculation mode to fetch spatio-temporal
data from the HBase and accomplished the NDVI calculation for Henan Province from 2018 to
2019. Thus, we could preliminarily demonstrate that our designed spatio-temporal storage model is
effective for subsequent spatio-temporal application. Based on this, we will be able to integrate more
spatio-temporal calculation models into our research.

Author Contributions: Conceptualization, Quan Xiong; methodology, Quan Xiong; software, Wei Liu, Zhenbo
Du and Quan Xiong; validation, Sijing Ye, Quan Xiong and Wei Liu; formal analysis, Zhe Liu; investigation,
Quan Xiong; resources, Sijing Ye and Zhenbo Du; data curation, Diyou Liu; Writing—original draft preparation,
Quan Xiong; Writing—review and editing, Quan Xiong and Xiaochuang Yao; visualization, Wei Liu; supervision,
Xiaodong Zhang; project administration, Dehai Zhu; funding acquisition, Xiaochuang Yao. All authors have read
and agreed to the published version of the manuscript.

Funding: This research is supported by the National Key Research and Development Program of China
(project No. 2018YFE0122700) and the National Earth Observation Data Center.

Acknowledgments: The paper is funded by the China Scholarship Council.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ASCII American Standard Code for Information Interchange
GF-1 GaoFen No.1

NDVI Normalized Difference Vegetation Index

UTM Universal Transverse Mercator

HDFS Hadoop Distributed File System

RDCRMG Raster Dataset Clean and Reconstitution Multi-Grid
WGS 84 World Geodetic System 1984
WKID Spatial Reference System’s Well-Known ID

ISPRS Int.]. Geo-Inf. 2020, 9, 625 16 of 17

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Nativi, S.; Mazzetti, P.; Santoro, M.; Papeschi, F.; Craglia, M.; Ochiai, O. Big data challenges in building the
global earth observation system of systems. Environ. Model. Softw. 2015, 68, 1-26. [CrossRef]

Zhu, X.; Cai, F; Tian, J.; Williams, T. Spatiotemporal fusion of multisource remote sensing data: Literature
survey, taxonomy, principles, applications, and future directions. Remote Sens. 2018, 10, 527.

Wei, X,; Duan, Y,; Liu, Y,; Jin, S.;; Sun, C. Onshore-offshore wind energy resource evaluation based
on synergetic use of multiple satellite data and meteorological stations in Jiangsu Province, China.
Front. Earth Sci. 2019, 13, 132-150. [CrossRef]

Yao, X.; Li, G. Big spatial vector data management: A review. Big Earth Data 2018, 2, 108-129. [CrossRef]
He, W.; Yokoya, N. Multi-Temporal Sentinel-1 and-2 Data Fusion for Optical Image Simulation. ISPRS Int.].
Geo-Inf. 2018, 7, 389. [CrossRef]

Tan, Z.; Yue, P; Di, L.; Tang, J. Deriving high spatiotemporal remote sensing images using deep convolutional
network. Remote Sens. 2018, 10, 1066. [CrossRef]

Ghamisi, P; Rasti, B.; Yokoya, N.; Wang, Q.; Hofle, B.; Bruzzone, L.; Bovolo, F; Chi, M.; Anders, K,;
Gloaguen, R.; et al. Multisource and multitemporal data fusion in remote sensing: A comprehensive review
of the state of the art. IEEE Geosci. Remote Sens. Mag. 2019, 7, 6-39. [CrossRef]

Zhuo, W,; Huang, J.; Li, L.; Zhang, X.; Ma, H.; Gao, X.; Huang, H.; Xu, B.; Xiao, X. Assimilating soil moisture
retrieved from Sentinel-1 and Sentinel-2 data into WOFOST model to improve winter wheat yield estimation.
Remote Sens. 2019, 11, 1618. [CrossRef]

Huang, J.; Sedano, F; Huang, Y,; Ma, H.; Li, X,; Liang, S.; Tian, L.; Zhang, X.; Fan, J.; Wu, W. Assimilating a
synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat
yield estimation. Agric. For. Meteorol. 2016, 216, 188-202. [CrossRef]

Huang, J.; Tian, L.; Liang, S.; Ma, H.; Becker-Reshef, I.; Huang, Y.; Su, W.; Zhang, X.; Zhu, D.; Wu, W.
Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS
data into the WOFOST model. Agric. For. Meteorol. 2015, 204, 106-121. [CrossRef]

Lewis, A.; Oliver, S.; Lymburner, L.; Evans, B.; Wyborn, L.; Mueller, N.; Raevksi, G.; Hooke, J.;
Woodcock, R.; Sixsmith, J.; et al. The Australian geoscience data cube—foundations and lessons learned.
Remote Sens. Environ. 2017, 202, 276-292. [CrossRef]

Yao, X.; Li, G; Xia, J.; Ben, J.; Cao, Q.; Zhao, L.; Ma, Y.; Zhang, L.; Zhu, D. Enabling the Big Earth Observation
Data via Cloud Computing and DGGS: Opportunities and Challenges. Remote Sens. 2020, 12, 62. [CrossRef]
Ye, S.; Liu, D.; Yao, X.; Tang, H.; Xiong, Q.; Zhuo, W.; Du, Z.; Huang, J.; Su, W.; Shen, S.; et al. RDCRMG:
A Raster Dataset Clean & Reconstitution Multi-Grid Architecture for Remote Sensing Monitoring of
Vegetation Dryness. Remote Sens. 2018, 10, 1376.

Han, D,; Stroulia, E. Hgrid: A data model for large geospatial data sets in hbase. In Proceedings of the
2013 IEEE Sixth International Conference on Cloud Computing, Santa Clara, CA, USA, 28 June-3 July 2013;
pp- 910-917.

Ye, S. Research on Application of Remote Sensing Tupu-Take Monitoring of Meteorological Disaster for
Example. Ph.D. Thesis, China Agricultural University, Beijing, China, 2016.

Zhou, M.; Chen, J.; Gong,]J. A pole-oriented discrete global grid system: Quaternary quadrangle mesh.
Comput. Geosci. 2013, 61, 133-143. [CrossRef]

Dutton, G. Universal geospatial data exchange via global hierarchical coordinates. In Proceedings of the
International Conference on Discrete Global Grids, Santa Barbara, CA, USA, 26-28 March 2000; Volume 3,
pp- 1-15.

Goodchild, M.F,; Guo, H.; Annoni, A.; Bian, L.; De Bie, K.; Campbell, E; Craglia, M.; Ehlers, M.;
Van Genderen, J.; Jackson, D.; et al. Next-generation digital earth. Proc. Natl. Acad. Sci. USA 2012,
109, 11088-11094. [CrossRef]

Cheng, C.; Song, X.; Zhou, C. Generic cumulative annular bucket histogram for spatial selectivity estimation
of spatial database management system. Int. |. Geogr. Inf. Sci. 2013, 27, 339-362. [CrossRef]

Lukatela, H. Hipparchus. Data Structure: Points, Lines and Regions in Spherical Voronoi Grid.
Proceedings Auto-Carto. 1989, 9, 164-170.

Wang, L.; Zhao, X.; Zhao, L.; Yin, N. Multi-level QTM Based Algorithm for Generating Spherical Voronoi
Diagram. Geomat. Inf. Sci. Wuhan Univ. 2015, 40, 1111-1115.

http://dx.doi.org/10.1016/j.envsoft.2015.01.017
http://dx.doi.org/10.1007/s11707-018-0699-7
http://dx.doi.org/10.1080/20964471.2018.1432115
http://dx.doi.org/10.3390/ijgi7100389
http://dx.doi.org/10.3390/rs10071066
http://dx.doi.org/10.1109/MGRS.2018.2890023
http://dx.doi.org/10.3390/rs11131618
http://dx.doi.org/10.1016/j.agrformet.2015.10.013
http://dx.doi.org/10.1016/j.agrformet.2015.02.001
http://dx.doi.org/10.1016/j.rse.2017.03.015
http://dx.doi.org/10.3390/rs12010062
http://dx.doi.org/10.1016/j.cageo.2013.08.012
http://dx.doi.org/10.1073/pnas.1202383109
http://dx.doi.org/10.1080/13658816.2012.698017

ISPRS Int.]. Geo-Inf. 2020, 9, 625 17 of 17

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

Li, D; Shao, Z. Spatial information multi-grid and its functions. Geospat. Inf. 2005, 3, 1-5.

Li, D.R,; Xiao, Z.F; Zhu, X.Y.; Gong,].Y. Research on grid division and encoding of spatial information
multi-grids. Acta Geod. Cartogr. Sin. 2006, 1, 52-56.

Li, D.; Shao, Z.; Zhu, X.; Zhu, Y. From digital map to spatial information multi-grid. In Proceedings of the
2004 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2004), Anchorage, AK, USA,
20-24 September 2004; Volume 5, pp. 2933-2936.

Bjerke,].T.; Grytten,] K.; Haeger, M.; Nilsen, S. A Global Grid Model Based on "Constant Area" Quadrilaterals.
ScanGIS Citeseer 2003, 3, 238-250.

Bjorke,].T.; Nilsen, S. Examination of a constant-area quadrilateral grid in representation of global digital
elevation models. Int. J. Geogr. Inf. Sci. 2004, 18, 653-664. [CrossRef]

Ghemawat, S.; Gobioff, H.; Leung, S.T. The Google file system. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, Bolton Landing, NY, USA, 19-22 October 2003.

Palankar, M.R.; Jamnitchi, A.; Ripeanu, M.; Garfinkel, S. Amazon S3 for science grids: A viable solution?
In Proceedings of the 2008 International Workshop on Data-Aware Distributed Computing, Boston,
MA, USA, 25 June 2008; pp. 55-64.

Eldawy, A.; Mokbel, M.E. Spatialhadoop: A mapreduce framework for spatial data. In Proceedings of the
2015 IEEE 31st International Conference on Data Engineering, Seoul, Korea, 13-17 April 2015; pp. 1352-1363.
Alarabi, L.; Mokbel, M.F,; Musleh, M. St-hadoop: A mapreduce framework for spatio-temporal data.
Geolnformatica 2018, 22, 785-813. [CrossRef]

Borthakur, D. The hadoop distributed file system: Architecture and design. Hadoop Proj. Website 2007, 11, 21.
Liu, X.; Han, J.; Zhong, Y;; Han, C.; He, X. Implementing WebGIS on Hadoop: A case study of improving
small file I/O performance on HDFS. In Proceedings of the 2009 IEEE International Conference on Cluster
Computing and Workshops, New Orleans, LA, USA, 31 August—4 September 2009; pp. 1-8.

Khetrapal, A.; Ganesh, V. HBase and Hypertable for Large Scale Distributed Storage Systems; Department of
Computer Science, Purdue University: West Lafayette, IN, USA, 2006; Volume 10.

Apache HBase. The Apache Software Foundation. 2012. Available online: http://hadoop.apache.org
(accessed on 8 August 2020).

Kaplanis, A.; Kendea, M.; Sioutas, S.; Makris, C.; Tzimas, G. HB+ tree: Use hadoop and HBase even your
data isn’t that big. In Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca,
Spain,13-17 April 2015; pp. 973-980.

Team, A.-H. Apache Hbase Reference Guide; Apache, Version; 2016; Volume 2. Available online: https:
/ /hbase.apache.org/book.html (accessed on 8 August 2020).

Liu, Y,; Chen, B.; He, W,; Fang, Y. Massive image data management using HBase and MapReduce.
In Proceedings of the 2013 21st International Conference on Geoinformatics, Kaifeng, China, 20-22 June 2013;
pp- 1-5.

Wang, L.; Cheng, C.; Wu, S.; Wu, E; Teng, W. Massive remote sensing image data management based
on HBase and GeoSOT. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), Milan, Italy, 26-31 July 2015; pp. 4558—-4561.

Nishimura, S.; Das, S.; Agrawal, D.; El Abbadi, A. Md-hbase: A scalable multi-dimensional data
infrastructure for location aware services. In Proceedings of the 2011 IEEE 12th International Conference on
Mobile Data Management, Lulea, Sweden, 6-9 June 2011; Volume 1; pp. 7-16.

Wang, L.; Chen, B.; Liu, Y. Distributed storage and index of vector spatial data based on HBase.
In Proceedings of the 2013 21st international conference on geoinformatics, Kaifeng, China, 20-22 June 2013;

pp- 1-5.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/13658810410001705334
http://dx.doi.org/10.1007/s10707-018-0325-6
http://hadoop.apache.org
https://hbase.apache.org/book.html
https://hbase.apache.org/book.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Spatial Index Multi-Grid
	Spatial Reference
	Partition and Coding

	Spatio-Temporal HBase Table Based on RDCRMG
	The Structure of a HBase Table
	The Design of the Row Key
	The Design of the Column Family

	Improved Spatio-Temporal Model
	Row Key Based on ASCII Code
	Columns Based on ASCII Code

	Results
	Experiment Design
	Row Key Compression Efficiency
	Data Query Efficiency
	Random Query
	Region Query

	Application to Spatio-Temporal Calculation

	Discussion
	Conclusions
	References

