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Abstract: High-resolution digital elevation models (DEMs) and its derivatives (e.g., curvature, slope,
aspect) offer a great possibility of representing the details of Earth’s surface in three-dimensional
space. Previous research investigations concerning geomorphological variables and region-level
features alone cannot precisely characterize the main structure of landforms. However, these
geomorphological variables are not sufficient to represent a complex landform object’s whole
structure from a high-resolution DEM. Moreover, the amount of the DEM dataset is limited, including
the landform object. Considering the challenges above, this paper reports an integrated model
called the bag of geomorphological words (BoGW), enabling automatic landform recognition via
integrating point and linear geomorphological variables, region-based features (e.g., shape, texture),
and high-level landform descriptions. First, BOGW semantically characterizes the composition of
geomorphological variables and meaningful parcels of each type of landform. Based on a landform’s
semantics, the proposed method then integrates geomorphological variables and region-level features
(e.g., shape, texture) to create the feature vector for the landform. Finally, BoGW classifies a
region derived from high-resolution DEM into a predefined type of landform by the feature vector.
The experimental results on crater and cirque detection indicated that the proposed BoGW could
support landform object recognition from high-resolution DEMs.

Keywords: bag of geomorphological words; landform recognition; high-resolution digital elevation
models; machine learning; semantic information

1. Introduction

The research on landform recognition enables mapping the historical trajectory, current condition,
and future tendency of terrain objects at different scales. High-resolution digital elevation model
(DEM) and its derivatives (e.g., curvature, slope, aspect) offer the possibility of representing the details
of the Earth’s surface in three-dimensional space that can support various applications including
vulnerability estimation of natural disaster [1], urban landscape [2], urban planning [3], ecological
sustainability [4], etc. Inrecent decades, anumber of landform classification systems have been proposed
to facilitate landform characterization, including the taxonomies of geomorphological variables and
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their corresponding explicit descriptions [5-10]. Although previous research investigations concerning
landform characterization acknowledged the significance of geomorphological variable in depicting
the main structure of land surfaces, point or linear geomorphological variables alone cannot precisely
characterize the structure of a regional landform (e.g., crater, cirque, etc.).

The first challenge originates from the heterogeneity between the point and linear
geomorphological parameters derived from the DEM dataset and the whole structure of a landform
object [11]. On another words, geomorphological parameters within different shapes are insufficient
to represent the landform that generally is ensembled by multiple fragments within a meaningful
organization. Up until now, few studies have reported an approach that exploited the semantics of
landform to facilitate landform object recognition from high-resolution DEMs.

Moreover, the limitations of geomorphological variables in landform characterization lead
to the emergence of a number of region-based geomorphological features such as shape, texture,
context, etc. [12-18]. Although many solutions have been proposed [12-17], several challenges remain
unsolved among landform characterization approaches. First, large-scale ground truth, or benchmark
high-resolution DEM dataset concerning landform objects, have not been available in the community of
geomorphology and terrain analysis. The lack of a well-prepared training dataset is a crucial obstacle
for implementing cutting-edge machine learning algorithms into landform object recognition [19].

Above all, landform object recognition from high-resolution DEMs faces two challenges:
(1) the heterogeneity between the point and linear geomorphological parameters and the whole
structure of a landform object, and (2) limited availability of a suitable DEM dataset regarding
landform objects. Thus, this paper reports an integrated model called the bag of geomorphological
words (BoGW), which enables automatic landform recognition via integrating point and linear
geomorphological variables, region-based features (e.g., shape, texture), and high-level landform
descriptions. The remainder of this manuscript is organized as follows. Section 2 reports the works
related to the focus of this paper. Section 3 presents the architecture and details of the proposed BoGW
including feature generation, codebook generation, and classification, respectively. Section 4 presents
the result of crater and cirque detection via BOGW. Section 5 provides the conclusions and perspective
related to our effort on geomorphological object detection from high-resolution DEMs.

2. Related Works

2.1. From Geomorphological Variables to Landform Object

As mentioned above, geomorphological variables alone cannot effectively deal with the
representation of landform object. For example, the ridge and depression shown in the left part cannot
represent the characteristics of a crater. In Figure 1, the crater is composed of several geomorphological
variables involving ridgelines and a depression. Moreover, ridgelines and depression are close to
circular, which refers to region-level parameters. Thus, the recognition on this crater object not only
detects ridgelines and depression from high-resolution DEMs, but also determines whether their
shapes are close to circular.

To map the gap between geomorphological parameters and landform object, we designed the
BoGW based on the relationship between the geomorphological variables and the whole landform object.
In detail, the first section of BOGW extracts a variety of geomorphological variables, and the second
section of BOGW discovers the way geomorphological variables semantically form a landform object.
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Figure 1. From geomorphological variables to landform object [14].

2.2. Bag-of-Words Model in Text and Image Analysis

Bag-of-words (BoW) is a model to discover the topic of text information with machine learning
techniques [20], widely used in natural language processing and information retrieval. The bag in this
model refers to a document that includes several words. Without considering the order of words in a
sentence, the frequency of each word in a bag is used as the feature for determining the topic of this bag
(document). BoW generally comprises two steps: designing a vocabulary list from documents then
creating a feature vector (or semantic matrix) for the representation of the document. Moreover, other
operations were taken to manage vocabularies, such as hashing word, n-grams, stopwords, and Term
Frequency—Inverse Document Frequency (TF-IDF).

The thought of BoW attracts the attention of studies on image processing and pattern analysis.
Image scene and object always contain multiple meaningful elements. Thus, based on the scope of BoW,
a model named bag-of visual words (BoVW) was proposed to represent the constitution of image scene
and object via local visual features [21]. The bag in BoVW refers to images and visual words refer to
the semantically grouped local features (e.g., scale-invariant feature transform-SIFT). BoVW generally
consists of three steps: detecting features via robust feature descriptors, generating a codebook to
organize the detected features, and classifying an image with the codebook by a generative learning
model or a discriminative learning model. The “code” in this codebook refers to the results derived by
feature descriptors, which is analogue to the word in a document).

Although BoW and BoVW had been employed in many applications in recent years, the thought
of BoW and BoVW had not adopted in terrain analysis yet. The thought of BoW and BoVW,
which decomposes an object into multiple parcels being easier to be recognized, inspire us to
design a model that also enables taking the advantages of BoVW in landform recognition based on
high-resolution DEMs. The details of our proposed BoGW are presented in Section 3.

3. Bag-of-Geomorphometric Words (BoGW) for Landform Recognition

Referring the workflow of BoW and BoVW, Figure 2 shows the architecture of
Bag-of-geomorphometric words (BoGW), which consists of three parts: (1) Semantics enriching:
enriching the semantics of landforms from the open linked data sources. (2) Feature generation:
creating a feature vector including geomorphological variables and region-level features. (3) Codebook
generation: generating a codebook to fuse geomorphological variables and region-level features
(quantitative parameters) and the semantics of landforms (qualitative weights). (4) Classification:
classifying each object into a predefined class based on the output of the codebook. In BoGW,
geomorphological words refer to geomorphological variables and region-based features including
shape, texture, etc. Bag refers to the cluster of geomorphological variables and region-based features.
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Figure 2. Architecture of BOGW.

Semantics enriching integrates the information derived from the existing terrain domain
ontologies, terrain taxonomies and open liked data sources (e.g., volunteered geographical information,
Wikipedia, etc.). The existing terrain ontologies and taxonomies might contain limited semantic
information. Thus, we design this step to enrich the content of semantics.

Feature representation creates a feature vector that includes geomorphological variables and
region-based features corresponding to elevation variation, elevation gradient, slope direction, etc.:
{featurey, featurey, ... , feature,}, where n is the number of features. The details of geomorphological
variables and region features are listed in Table 1 of next subsection.

Table 1. Example of multi-level strategy for extracting keywords.

Class Name Class Annotation (USTopographic) Selected Keywords
1

Circular-shaped depression at the summit of a (2
volcanic cone or one on the surface of the land (€]

circular-shaped
depression
volcanic cone

NS NSNS AN NI

Crater caused by the impact of a meteorite; a manmade (4) summit
depression caused by an explosion. (5) land surface
(6) manmade depression
Inherit Subclass Name Subclass Annotation Selected Keywords
Bomb Crater NA Bomb crater
Meteoric Crater NA Meteoric crater
Volcanic Crater NA Volcanic crater

Codebook generation aims to extract the semantics of each terrain class from the existing
taxonomy and enrich the semantics with external open data sources, such as Wikipedia and
online dictionaries. Then, we derive the keyword that supports to explicitly characterize terrain
classes from the enriched semantics. Moreover, since the significance of each keyword on
characterizing landform class varies, we quantitatively weight the priority of each keyword via
a weighting vector—{weight;, weight,, ... , weight,}—created by latent semantic analysis (LSA).
Finally, we combine the feature vector and the weighting vector into a new weighted feature
vector—{weight; X feature;, weight, X featurey, ..., weight, X feature,}. The weighted feature
vector is then used as the input feature for SVM-based classification.
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3.1. Feature Generation

3.1.1. Geomorphological Variable Extraction

We employ a spatial-contextual approach [14] to detect the geomorphological variables based on
aspect and curvature. This approach is exploited well due to its capability of detecting geomorphological
variables from both high- and low-resolution DEM.

Figure 3 illustrates the principle of this method. In Figure 3, red cell is a pixel (CP) in a DEM,
to be determined whether it belongs to a geomorphological variable. Orange cells are its adjacent
pixels (AP), and gray cells are the its neighboring pixels (NP) over multiple distances. d and i denote
the distance and the index of direction, respectively. This spatio-contextual approach measures the
aspect difference and elevation difference between the red pixel (CP) and its neighboring pixel (NP)
at each direction axis over multiple distances, and the aspect difference and elevation difference
between one of its adjacent pixel (AP) and this AP’s neighboring pixel (NP) at each direction axis
over multiple distances. Direction set includes east-west direction axis, north—-south direction axis,
northeast—southwest direction axis, and northwest-southeast direction axis. Then, the results of aspect
difference and elevation difference are fused to determine whether this red pixel belongs to a predefined
geomorphological variable.

i=4 i=1 i=2
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Figure 3. Principle of spatio-contextual approach for geomorphological variable extraction.
3.1.2. Region-Based Feature Detection
The approach for region-based feature extraction are summarized as follows,

(1) Moment measures the elevation variation, and includes the first raw moment (mean), the second
central moment (variance, or standard deviation), the third central moment (skewness), and the
fourth central moment (kurtosis). The expressions for these four moments are shown in the
following equation,

N
mean = Y, Vi /N
k=1

N
std_dev = \/I%] X Y (Vi — mean)? 1)

k=1
skew = mean®/std_dev®
kurt = mean*/std_dev*

where V denotes the elevation of a pixel in DEM, N refers to the number of pixels in the whole
DEM or a local region of DEM.

(2) Slope represents the steepness of land surface over vertical and horizontal dimensions.
Curvature represents the “slope” of slope. In details, profile curvature describes the convex and
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concave of a slope over vertical dimension, and platform curvature describes the convex and
concave of a slope over horizontal dimension.

(3) Local binary pattern (LBP) [22] calculates the direction of each pixel based on histogram of
gradient (HOG). Unlike the LBP in computer vision that measures the gradient of intensity, this
paper calculates LBP based on the gradient of elevation [14]. Assuming that the direction of one
pixel is represented by a vector—[d1, d2, d3, d4, d5, d6, d7, d8], where d1-d8 respectively refers to
the difference between the center pixel and its neighboring pixel in eight directions. If the center
pixel is lower, similar or higher than its neighboring pixel, the value of d* would be accordingly
assigned to —1, 0 and 1, respectively.

A previous work acknowledged that the pattern generated by LBP could provide more
details [15]. In Figure 4, if two pixels respectively belong to summit and cliff. The aspect of
these two pixels is equal—315°, meaning that aspect alone cannot distinguish their difference.
Meanwhile, the LBP pattern of these two pixels (Figure 4(A2,B2)) are different: [-1,0,1,1,1,0,—1,—1] and
[-1,-1,-1,-1,-1,-1,-1,-1], respectively.

110m | 120m | 130m X | =h || A& 110m | 135m | 150m 1|0 |1

120m | 150m | 130m 3 -1 120m | 135m | 150m 3 1

130m | 120m | 120m 3 |a | a 120m | 135m | 140m 1|0 |1
(A1) (A2) (BL) (B2)

Figure 4. (A1): elevation; (A2): LBP pattern for (A1). (B1): elevation; (B2): LBP pattern result for (B1).

The approaches for detecting the following region-based features are based on the result of
geomorphological variable extraction.

(4) Hough circle transform focuses on determining whether a circular exists in the result of
geomorphological variable extraction. This feature is helpful to detect circle landforms, such as
crater, volcano, etc. Through defining the minimal and the maximal radius, Hough circle
transform supports to identify all possible circles.

(5) Contour approximation aims at detecting rectangle shape from the result of geomorphological
variable extraction. Rectangle landform could be seen in the land surface formed by carving and
deposition, such as canyon, Karst, etc.

Above of all, the structure of the features vector is shown as follows,

Fy= [fDmOWl'flep/sthprstlprfDCHVU]/ yey )

where y is the index of terrain category. fD;om refers to the moment feature carrying four kinds of
moments: dim(fDmom) = 4. Fipp refers to the LBP pattern map, which containing the LBP of every pixel
over eight directions: dim( f lep) = 1. fDgyp refers to the binary result of Hough transform and contour
approximation. If the circle or rectangle shape can be detected, f Dy, is 1, otherwise 0. fDgj, and fDeuro
respectively refers to the result of slope and mean curvature.

3.2. Codebook Generation

In practice, not all items in the feature vector of Equation (1) are useful to recognize specific
landform classes. Previous works proved that the performance of machine learning in classification
heavily relies on sparse features being helpful for the representation of data [23]. Thus, codebook
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generation aims at selecting the sparse features fitting for representing each landform class. Figure 5
shows the workflow of codebook generation, which composes of four steps: selecting the keywords
from ontologies and open external data resources, filtering irrelevant keywords, collecting the keywords
by latent semantic analysis, and assigning priority of each keyword.

Terrain domain € Enriching |

ontology semantics |

Keywords

* \ 4

Thesaurus | Wikipedia dic(()i::::::ieg
Synonyms ’ Documents
Filter

Original and extend
keywords

Figure 5. Workflow of codebook generation.

3.2.1. Keyword Selection by Ontology and Open Data Resources

People define and categorize the landforms based on high-level explicit descriptions, rather
than pixel-level features or linear features derived from DEMs. The domain concept that defines the
characteristics of landforms have been proposed in ontologies, classification system, and open linked
sources, such as landform ontology [24,25], geological ontology [26], hydrogeology ontology [27],
and topography ontology [28].

However, formal definitions for objects, features, events and phenomena in ontologies and
classification systems are always limited to specific background within a given period. Thus, besides
semantic information in terrain domain ontologies, we attempt to extend the scope and amount of
semantic information from three external open linked resources: online dictionaries (Dictionary and
Webster Merriam), Wikipedia, and Thesaurus. Wikipedia is a free online encyclopedia, created and
edited by volunteers around the world and hosted by the Wikimedia Foundation. The information
from Wikipedia has been employed in many fields [29-31]. In comparison to the information from
other resources, the origins of definitions and introductions in Wikipedia are labelled. Moreover,
these origins are from educational materials, peer-reviewed literature, and books. These make the
information stored in the Wikipedia reliable than the information from other volunteered resources.

First, we derive keywords (words and phrases) from the annotation and definition of each
landform class in domain ontologies and taxonomies. An example of keyword extraction is shown in
Table 1. The class name and class annotation are from USTopographic [28]. Two sentences “caused
by the impact of a meteorite” and “caused by an explosion”, are not selected as the keyword, since
they express a dynamic action along with time changes, which is impossible to recognize from DEM.
Specifically, prepositions, definite articles, indefinite articles are all removed here. The details of
operations on removing irrelevant keywords are introduced in Section 3.2.3.

Then, the keywords derived from domain ontologies and taxonomies shown in Table 1 are used to
collect all sentences that contain these keywords from online dictionaries and Wikipedia. Table 2 shows
an example of extending crater-related keywords from online dictionaries (Dictionary). All keywords
derived from USTopographic in Table 1 are marked as black bold text. Moreover, we label different
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types of keywords extracted from sentences collected from Dictionary as different colors, to clearly
illustrate the origins of each keywords.

Table 2. Keyword extraction result regarding “Crater” from Dictionary.

Sentences Collected from Dictionary Based on the Keywords in Table 1

1. The cup-shaped depression or cavity on the surface of the earth or other heavenly body marking the
orifice of a volcano.

2. Also called impact crater, meteorite crater (on the surface of the earth, moon, etc.), a bowl-shaped
depression with a raised rim, formed by the impact of a meteoroid.

3. (On the surface of the moon) A circular or almost circular area having a depressed floor, almost always
containing a central mountain and usually completely enclosed by walls that are often higher than those of
a walled plain; ring formation; ring.

4. Impact crater is a depression in the ground believed to have been caused by a meteorite

The bowlike orifice of a geyser

6. The hole or pit in the ground.

o

Keywords Extracted from above Sentences

Impact crater, impact of a meteoroid;

Meteorite crater, meteorite;

Cup-shaped, bowl-shaped, circular area, almost circular area, bowl-like;

Depression, cavity, depression with a raised rim, depressed floor, hole, central mountain completely
enclosed by walls higher than a walled plain, central mountain completely enclosed by ring formation, ring
formation, ring;

Surface of the earth, in the ground, on the surface of the moon;

Surface of other heavenly body marking the orifice of a volcano;

Orifice of a geyser;

L s

® NG

Hole, pit.

Another resource supporting to enrich keywords is from the synonyms of each keyword given
by Thesaurus. The synonym of Thesaurus has been used in previous cases, such as information
query [32,33], and information retrieval [34]. In this paper, we rank the derived keywords in term of
relevance, and remove the synonym that carries lower priority in the ranking result.

3.2.2. Keywords-Based Text Post-Processing and Filtering

The keyword extracted from ontologies, dictionaries and Wikipedia may contain suffix and prefix,
such as multi-, semi-, -based, -shaped, -driven, -like, etc. we define the n-grams as the word that prefix
or suffix connects with. For example, bowl-shaped is defined as a keyword: bowl. Moreover, for other
n-grams that contain multiple words without prefix and suffix, we divide this kind of n-grams into
two words. For example, shock-metamorphic effects are defined as two keywords: shock effects and
metamorphic effects.

Besides sulffix, prefix and n-grams, the content included in some keywords might be meaningless
for LiDAR-based landform recognition. Table 3 summarizes a list of these keywords to be removed
with multiple categories.

Table 3. List of irrelevant keywords.

Categories Items
Stopword auxiliary verb, modal word, proposition
Action the rate of, experiences from, verb+ing, cause, active, processes, ...

formed by, during, forming, formed from, are formed, formed following,

P .
rocess formed through, comes from, continue to, gradually, . ..
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Table 3. Cont.

Categories Items

example of, indicate, such as, for example, such include, such, in these cases,

Example e s
specific space, specific number, . ..

since (specific period), recently, new, no longer, when, where, specific

Specific time and location .
geographical name, . ..

Causality caused by, as a result of, due to, because of, because, ...
Irrelevance in contrast to, old, young, ...

Invisibility buried, bury, underground, undersea, . ..
Repeating

3.2.3. Weighted Feature Vector Generation

We perform statistics on the frequency of each keyword on the results accessed by text
post-processing and filter. The frequency of keywords is organized as a weighted vector, which is
shown in the following equation,

Wy, = [WDmom/ Wlep/ ZUDshp/ WDslp/ WDcurU]/ yeY 3)

where WD 0, lebp, sthp, stlp and wD.y» provides weight for Do, lep, Dshpr Dslp and Dy,
respectively in Equation (2). Then, the weighted feature vector shown in Figure 1 is expressed
as follows,

WE, = [WDmom X Do, Wlep X lep/ ZUDshp X Dshp/ WDslp X Dslp/ WDy X Dcurv]/ yey 4)

3.3. Mapping between Feature Generation and High-Level Abstract

Table 4 lists the details of geomorphological variables and region-based features. The column titled
Data attribute lists the data that supports detect feature detection. The column titled High-level abstract
includes the keyword for characterizing landform that geomorphological variables and region-based
features may represent.

Table 4. Data, properties, feature descriptors and semantics for terrain representation.

Data Attributes Geomorphological Variables (Features) = High-Level Abstract (Keywords)

Valleyline Channel
Ridgeline Cirque
Aspect, elevation Peak Summit
Pit Depression point
Data Attributes Region-Based Features High-Level Abstract (Keywords)
Elevation Elevation variation Elevated rim
Slope Elevation gradient Very sharp slope
Elevation Form/structure Depression, rim, ...
Elevation Direction South-west, ...

Aspect Shape Circular, rectangular circle, ...
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3.4. Classification

The classification section aims to learn the weighted features of landform classes, and predicting
whether a detected region belongs to a landform class. The input features for training and text follows
the structure of the weighted feature vector shown in Equation (4). The following table summarizes
the workflow of classification:

Training Portion:

Step Al. Labeling the minimal bounding box (MBB) of multiple objects belonging to a predefined landform
class based on high resolution DEMs.

Step A2. Calculating the frequency of keywords for this predefined landform class, and creating a referenced
weight vector.

Step A3. Creating a referenced feature vector based on the MBBs of this predefined landform class.

Step A4. Creating a referenced weighted feature vector via combining the referenced weight vector and the
referenced feature vector. The structure of referenced weighted feature vector is shown in Equation (4).

Test Portion:

Step T1. Detecting geomorphological variables with the spatiocontextual approach reported in [14].

Step T2. Generating multiple MBBs based on the result of geomorphological variable detection.

Step T3. Creating the feature vector for each MBB received by Step T2.

Step T4. Creating a referenced weighted feature vector for each MBB received by Step T2, through combining
the referenced weight vector gained by Step A2 and the feature vector generated by Step T3.

Prediction Portion:

Conducting classification via SVM classifier: the training data is the weighted feature vector obtained by
Step A4, and the test data is the weighted feature vector obtained by Step T4.

4. Experimental Analysis

Based on the high-resolution DEMs, we selected crater, cirque and cliff as the landform class to
be detected in the experimental section. Our previous work [14] found that some commonly-used
approaches for moderate spatial resolution DEM could not perform well on high-resolution DEM.
The results shown in Reference [14] proved that the traditional algorithms for crater detection without
additional processing could not effective extract the whole structure of craters. In our experiment,
we also found that the crater and cirque structure were not available on the high-resolution DEM used
in the experiment. Thus, this paper only reported the performance of our method.

The domain ontology and taxonomy is USTopographic, and the open-linked data source includes
Dictionary, Merriam Webster, and Wikipedia. In the first part of the experiment, we extracted all
information regarding crater, cirque and cliff from the USTopographic and open-linked data sources
and then semantically organized the information to enrich the semantics in USTopographic. In the
second part, we provided the detection results on crater, cirque and cliff via BOGW.

4.1. Enriching Semantics

We showed the result of building enriches semantics taking a crater as an example. The workflow
includes three steps introduced in Section 4: extracted keywords from the USTopographic, derived
sentences and documents from open-linked data sources (Dictionary, Merriam Webster, and Wikipedia)
based on the extracted keywords, and selected useful sentences and documents.

Table 5 lists the frequency of keywords. Keywords were respectively extracted from the
USTopographic (Table 1), and Dictionary, Merriam-Webster and Wikipedia (Table 2). The irrelevant
keywords shown in Table 3 were filtered, and the remaining keywords were matched with features
(Table 4). The details of the mapping between keywords and features are listed in Table 5. Specifically,
the term “crater” was strongly relevant to “basin” and “depression” with respect to USTopographic,
Dictionary, Merriam-Webster, and Wikipedia. Thus, we viewed basin and depression as two keywords
for the representation of crater.
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Table 5. Frequency of keywords involving craters.

Crater
Keywords estures © Detochon Approsches  Treauency  Weight
circular/cup/bowl/cauldron-shaped shape Hough transform 32 0.24
Curvature-based
hole/pit/sinkh'ole/cira.llar openings/ form spatio-contextual approach [14] 39 0.30
depression/cavity/vent
ridgeline Spatio-contextual approach [14]
lower ta}zg//gleals:}]sziggsndmg valleyline Spatio-contextual approach [14] 24 0.18
erfcolg;zlde/tsii]l{ 53:3:1}; d shape Hough transform 8 0.06
raised rim/ring formation ridgeline Spatio-contextual approach [14] 5 0.04
volcanic crater 5 0.04
caldera 4 0.03
meteoric crater 3 0.02
strara dip 3 0.02
basin ridgeline Spatio-contextual approach [14] 3 0.02
bomb crater 3 0.02
impact crater 2 0.02
Cirque
Keywords Frequency Weight
dov}::r)\lkll(i)l‘iv ;is(;ze}c);gjg:;sj:i;’me ridgeline Spatio-contextual approach [14] 6 0.29
crest of mountain, mountainside slope Slope—ba;;grigiﬁci—lzo]ntextual 4 0.19
bowl-shaped, amphitheatre-like shape Hough transform 5 0.24
blunt end of valley, valley valleyline Spatio-contextual approach [14] 2 0.10
steep-wall, steep cgpped section, Cliff Slope-based spatio-contextual 3 0.14
steep cliffs approach [14]
partially surrounded on three sides shape Hough transform 1 0.05

The content included in Table 5 revealed some phenomena. First, three keywords included in the
USTopographic—circular-shaped depression, volcanic cone summit and land surface—were ranked
in the primary, the secondary and the quaternary keyword. This means that domain ontology and
taxonomy could provide professional and commonly used terms to formally describe a landform class.
Moreover, some irrelevant keywords, such as rock, contain top, volcano flack, etc., and the top-ranked
keywords (e.g., hole/pit/sinkhole/circular openings, raise rim/ring formation), were commonly
observed in the domain ontology and taxonomy, and open-linked data resources. This indicates that
characteristics of a landform class were generally defined by similar descriptions from miscellaneous
resources. This phenomenon further proved that the information from both professionally established
ontologies and taxonomies and volunteered dataset were useful to support landform recognition
and classification. Moreover, Table 5 listed the keywords-associated geomorphological variables
and features used for crater and cirque, and corresponding algorithms for detecting those variables
and features. Thus, according to the results listed in Table 5, the WF of crater and cirque are shown
as follows,

WF ater = [0.24 X (Dgpyp1 = 1),0.06 X (Dgpyp = 1),0.3 X (Deuro < 0)]
WEirgue = [0.24 X (Dgip1 = 0),0.05 X (Dgyp = 0),0.19 X (Dgpp1 € [15,25)),0.14 X (Dgpp € [25, 90))]
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where Dy and Dgppo respectively denotes the circular shape and closed circular shape. Dqjpy and
Dqy respectively denotes the slope and cliff.

Furthermore, we organized the extracted keywords of crater as semantics via creating triple
stores [35]. Figure 6 compared the conceptual hierarchy from the existed ontology and the enrich
semantics. The triple store enclosed by orange rounded rectangles denoted the keyword that defined
the relationship between crater and other landform classes, and the triple store enclosed by yellow
rectangles denoted the keyword that characterized the crater class. The information derived by
discovering relevant documents from open-linked data resources could effectively enrich the semantics
of a landform class, and further provides more features for this landform characterization.
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Figure 6. Semantics of “Crater” by USTopographic and the enrich semantics.
4.2. Crater and Cirque Detection

To verify the contribution of enrich semantics and the performance of BoOGW in landform object
detection from DEM, we illustrated the detection results on crater and cirque detection based on
a large-scale DEM dataset accessed from the 3D Elevation Program established by U.S. Geological
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Survey [36]. The experimental dataset mainly covers Sunset Crater Volcano National Monument,
which locates in the north of Flagstaff in U.S. State of Arizona. Sunset Crater Volcano National
Monument is an important place where enables observing and studying young volcanic craters and
cirques. Figure 7 shows the location and visualization of the experiment dataset. A number of craters
are obviously visible in the National Map and TIN data. The extent of DEM is a rectangular area
has top-left coordinate (35.430462963, —111.573981482), and right-bottom coordinate (35.2937037037,
—111.248425926) projected with coordinate system GCS_North_American 1983. To detect craters and
cirque more accurate, we used a DEM with 1m spatial resolution, the dimensionality of 3516 x 1477.

/

Las Vegas
veg

)
Phoeni

Tucson Visualization of experimental dataset (National Map)

Arizona

| High: 2722.82
Visualization of experimental dataset (TIN) =
North of Flagstaff Low : 1474.48

Figure 7. Location and visualization of experimental dataset.

As shown in Table 4, ridgeline refers to a fundamental element of crater and cirque. Thus,
we detected ridgelines with the spatio-contextual approach. Here, we selected 0.46 as the threshold of
elevation difference in the method. Figure 8A shows the result of ridgeline detection. The detected
ridgelines were labeled as red lines, and the background was a curvature map. A majority of ridgelines
belonging to the rims of craters and cirques could be detected. Suffering from the rough terrestrial
surface which high resolution DEM always represents, some ridgelines were not linear and extensive.
However, a further correction for these disconnected ridgelines was not given. We found that many
ridgelines were not represented as a linear feature, which were different from the representation
observed in a low-resolution DEM.

Then, we calculated the MBB that encloses the result of geomorphological variable (ridgeline)
detection. Moreover, considering that the rims of a crater might be detected as different strings of
ridgelines, we created each similar MBB at multiple scales. Figure 8B shows the result of multi-scales
MBB. Black lines referred to detected ridgelines. Red boxes, orange boxes and blue boxes respectively
denoted the MBB built with small, medium and big scale.
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(A)

(B)

Figure 8. (A) Result of ridgeline detection with a spatio-contextual approach [15]. (B) Result of MBB
generation over multiple scales.

In Table 3, crater and cirque shared some similar keywords, such as depression, bowl-shaped,
partially enclosed, etc. Moreover, Figure 9 visualized the similarity between crater and cirque with
satellite imageries. Red ellipse denoted the ideal rims of a crater, and cyan line was the ridgeline
invisible from the satellite image. Figure 9A showed a crater that had a flat boundary in its southeastern
part, where was labeled as a cyan curve. Such cater that had a breach in the surrounding rim, could
also be seen in the experimental dataset. The object in Figure 9B seemed approximately to be a hollow,
rather than crater, since it had a wide and flat bottom area. Figure 9C showed a crater that had similar
characteristics to the object shown in Figure 9B, having a breach in the surrounding rim, ambiguous
depression, and flat bottom. The features listed in Table 4 and the objects shown in Figure 9 indicated
that crater and cirque might be difficult for distinguishing in case of some detected objects. Thus,
we evaluated the proposed BoGW model for landform recognition without distinguishing crater
and cirque.

(A) (B) ©)

Figure 9. Illustration on the exampled crater and crater-like landform. (A) the crater seems like a
cirque; (B) the crater seems like a hollow; (C) The crater seems like a cirque.

Then, we calculated the weighted feature vector based on the area enclosed by each MBB. Then,
we used an SVM classifier to classify the category of each MBB. Specifically, if the MBBs that were
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classified into crater or cirque overlapped each other, we selected the MBB that had the smallest size as
the final detection result.

Figure 10 showed the result of crater and cirque detection. Red boxes, yellow boxes, and cyan boxes
were the true positive detection, false-negative detection, and false-positive detection, respectively.
To illustrate the detection results clearer, we superimposed the detection results onto a satellite image
and a curvature map, respectively. User’ accuracy and producer’s accuracy were 84% and 93%,
respectively. The visual assessment and accuracy indicated that the proposed BoGW could support
landform object detection from high-resolution DEMs. Moreover, we also found that the proposed
BoGW generally produced much higher recall than precision in detecting crater and cirque.

Detection results (satellite image)

Detction results (curvature map)

Figure 10. Visualization of detection results.

The reason accounting for these phenomena might include three parts. First, previous works
reported that the algorithm for detecting circular shape of geomorphological variables could effectively
extract a majority of objects being similar to crater and cirque. This means that few irrelevant objects
were cleared away, which led to a high producer’s accuracy, or recall. Moreover, we believed that this
result posed the significance of shape in landform detection. Second, the existing approach for detecting
shapes, such as Hough transform and approximation contour, might be confronted with the challenge
of detecting the exact shape of geomorphological variables from high-resolution DEMs. For example,
much false-negative detection occurred due to the difficulty of distinguishing bend linear features
and curve features. Finally, the accuracy of geomorphological variable detection from high-resolution
DEM played a key role of landform object detection. It leaded to the fact that user’s accuracy was
much lower than producer’s accuracy. Table 6 quantitatively evaluates the detection results.
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Table 6. Quantitative evaluation on detection results.

True False
Positive 59 4
Negative 0 12
Precision 0.9365
Recall 0.7887

5. Conclusions

A variety of classification systems on geomorphological variables have been the fundamental
parameter for landform characterization. However, geomorphological variables cannot effectively
support representing a landform object, which is always represented by a regional feature instead
of a point or linear one. Previous efforts on landform detection with regional features, such as
template-based methods, object-based segmentation, machine learning algorithms, have several
challenges to bridge the gap between the features derived from a DEM and the descriptions on the
landform. Applying the thought of BoOVW for visual recognition, this paper proposes a new algorithm
called BoGW, aiming at representing the landform object via DEM-derivative features and descriptions
semantically defined by human beings.

In comparison with the object detection from satellite imageries, landform object detection
from DEM lacks massive ground truth dataset that represents the characteristics of landform classes.
Moreover, the role of semantics has always been ignored in landforms recognition from remote sensing
data. This paper accomplished an analysis of how semantics impact and facilitate landform object
detection from high-resolution DEMs, and integrate the geomorphological variables and semantic
descriptions to facilitate landform object detection.

In the future, building benchmark dataset regarding high-resolution DEMs is pressing, to fully
take the advantages of deep learning techniques in DEM processing. Moreover, the integration
of convolutional neural networks (or recurrent neural networks) and explicitly programed rules
(e.g., knowledge graph) that aim to exploit high-level data features and knowledge would be worthy
of further attention.
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