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Abstract: Road markings that provide instructions for unmanned driving are important elements
in high-precision maps. In road information collection technology, multi-beam mobile LiDAR
scanning (MLS) is currently adopted instead of traditional mono-beam LiDAR scanning because
of the advantages of low cost and multiple fields of view for multi-beam laser scanners; however,
the intensity information scanned by multi-beam systems is noisy and current methods designed for
road marking detection from mono-beam point clouds are of low accuracy. This paper presents an
accurate algorithm for detecting road markings from noisy point clouds, where most nonroad points
are removed and the remaining points are organized into a set of consecutive pseudo-scan lines for
parallel and/or online processing. The road surface is precisely extracted by a moving fitting window
filter from each pseudo-scan line, and a marker edge detector combining an intensity gradient with
an intensity statistics histogram is presented for road marking detection. Quantitative results indicate
that the proposed method achieves average recall, precision, and Matthews correlation coefficient
(MCC) levels of 90%, 95%, and 92%, respectively, showing excellent performance for road marking
detection from multi-beam scanning point clouds.
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1. Introduction

Road markings are important elements of high-precision maps, which are increasingly being used
to manage and direct traffic activities in intelligent transportation [1,2]. Mobile LiDAR scanning (MLS)
systems are capable of rapidly acquiring dense and accurate 3D point clouds of road environments.
Over the past decade, mono-beam MLS systems equipped with mono-beam laser scanners, such as
Riegl scanners [3–5], have been widely used in road inventory and road mapping because of their
high-precision performance. However, they are too expensive to be applied by a wide range of
consumers. In recent years, multi-beam scanners, such as Velodyne scanners [6–8], have been being
gradually adopted for intelligent driving because of their low cost and multi-angle view. Point clouds
acquired by multi-beam MLS systems are often denser than those acquired by mono-beam MLS systems.
However, they are noisier because of a slightly lower precision of ranging and angle measurements and
internal errors among the multi-beam lasers. Thus, efficiently and accurately extracting road markings
with these devices is still a challenging task.

The feature image-based method is one of the most prevalent methods used. The 3D points are first
converted into 2D images, and then road markings are detected from the feature images. Yang et al. [9]
adopted an inverse distance weighted (IDW) interpolation to project point clouds onto a georeferenced
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feature image, after which the georeferenced feature image is segmented by discrete discriminant
analysis and the outlines of road markings are extracted based on semantic knowledge. Guan et al. [10]
applied a modified IDW interpolation to generate georeferenced intensity images and then segmented
the georeferenced intensity images using a weighted neighboring difference histogram and extracted
road markings using multi-scale tensor voting. Kumar et al. [11] used a range-dependent threshold and
binary morphological operations to extract road markings from the georeferenced intensity imagery.
Jung et al. [12] implemented the Laplace equation to generate raster images, after which lane markings
were separated by an expectation-maximization algorithm. Converting large volumes of 3D points
into 2D images can efficiently reduce computing complexity [13]. However, it may result in incomplete
and incorrect extraction [14].

To avoid the loss of accuracy caused by the aforementioned process of conversion, some researchers
organized unstructured MLS points into a specific data structure, after which road markings were
directly extracted by some rules. Yang et al. [15] organized MLS points into a k-dimensional (k-d)
tree structure and extracted road markings according to the neighbourhood intensities and intensity
gradients. However, the k-d tree organization method is time consuming. To reduce the size of the data
structure, Yu et al. [16] divided road surfaces into multi-segment blocks along the driving direction and
extracted road marking points using a threshold algorithm based on the optimal intensity value of each
block. Wang et al. [17] used a pass-through filter to select road markings from GPS trajectory-based
segmented blocks, but, in their method, points with low-intensity values at marking edges may be
missed. To extract the points at marking edges, Yan et al. [18] separated MLS points into different
scan lines according to angle field and then extracted road markings according to intensity gradient.
Scan lines are simple and reliable data structures, and numerous researchers prefer to use them.

Recently, deep learning-based methods have been proposed to recognize road markings due to
their powerful computation capacity. Soilan et al. [19] computed the geometric parameters and pixel
distribution of road markings, and then pedestrian crossings and five classes of arrows were extracted
by a two-layer feedforward network. Wen et al. [20] developed a pixel-level, U-net segmentation
network to extract road markings. Chen et al. [21] proposed a dense feature pyramid network-based
deep learning model, which was trained end to end to extract road markings. Cheng et al. [22]
rasterized road surfaces into intensity images, and then road marking was extracted using an intensity
threshold strategy based on unsupervised intensity normalization and a deep learning strategy.
Deep learning-based methods can achieve a high accuracy without human design features, but they
depend on training a bulk of labeled samples and are very time consuming. Generally, nondeep-learning
methods are employed to quickly detect road marking regions and then deep learning methods are
employed to accurately recognize the road marking type.

Previous detection methods performed well when extracting road markings from mono-beam
MLS points, but cannot effectively process multi-beam MLS data due to the dense and noisy features
of multi-beam point clouds. To overcome this limitation, this paper proposes an accurate method for
detecting road markings from noisy point clouds. The proposed method is focused on addressing the
following two objectives:

(1) Establishing an efficient and reliable strategy to reduce the number of point clouds to be processed,
including a pseudo-scan line-based organization data structure that could be used for road
marking extraction from dense 3D point clouds.

(2) Presenting a density-based adaptive window median filter to suppress noise in different
point-density and intensity-noise levels of MLS point clouds as well as a marker edge constraint
detection (MECD) method for road marking edge extraction.

The paper is structured as follows. The next section describes the related processes of the proposed
method. Section 3 analyzes extraction results of a quantitative evaluation and a comparative study.
In Section 4, a discussion is presented for describing the applicability of the proposed detecting method.
Conclusions are presented in Section 5.
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2. Method

The proposed method was divided into three steps: (1) Road surface extraction, (2) road marking
extraction, (3) road marking refinement. First, a nonroad point filter was applied to remove most
nonroad points and then the remaining points were partitioned into different pseudo-scan lines.
The road surface was precisely extracted using an extended moving fitting window filter. Road
markings were extracted directly using the marker edge constraint detection (MECD) method after
density-based adaptive window median filtering of intensity information. Finally, nonmarking points
were eliminated by a segmentation-based filter and a dimensionality filter. An overview of the
proposed method is illustrated in Figure 1.

Figure 1. An overview of the proposed detection method.

2.1. Road Surface Extraction

It is time consuming and difficult to extract the road surface and road markings from a bulk of
unstructured 3D points. As shown in Figure 2, the road surface was located under the POS (positioning
and orientation system) centres and the POS height, HPOS, which is the distance from a POS centre
to the road surface, remained almost unchanged during data acquisition. To reduce the number of
points, a nonroad point filter was applied based on the height difference, ∆h, between the trajectory
and each point. A point was removed if its ∆h fell in the range from [HPOS − Hth] to [HPOS + Hth].
The predefined threshold Hth is usually set to 0.5 m.

To simplify the data structure of point clouds and improve computational efficiency, the remaining
points were partitioned into a set of consecutive pseudo-scan lines by a width threshold, Wth,
perpendicular to the driving direction, as shown in Figure 2a. Meanwhile, each pseudo-scan line was
transformed into its corresponding local coordinate system. As shown in Figure 2b, the local coordinate
system was constructed as the right-handed system, and the points inside the local coordinate system
were arranged in decreasing order of their polar angles θi. In the subsequent processing, road points
and road marking points will be extracted, scan line by scan line, in the local coordinate systems.
Wth is usually set depending on the average distance interval between adjacent scan lines, such as
from 0.05 m to 0.1 m in our experiments.

In most road scenes, road surfaces are classified as two typical types. As shown in Figure 3a, road
surfaces I are directly bordered by curbs. As shown in Figure 3b, road surfaces II are not bordered by
curbs but are separated by drainage channels. In a pseudo-scan line, there is an elevation jump between
the road boundary and the curb of road surfaces I. Since the drainage channels cannot be scanned
completely, there is a horizontal distance jump or an elevation jump between the road boundary
and the curb of road surfaces II. The curbs or drainage channels are regarded as boundaries that
separate the road surfaces and pavements. Therefore, the road surface can be extracted by detecting
the jump features.
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Figure 2. Pre-processing for road surface extraction: (a) The POS (positioning and orientation system)
height, HPOS, from the POS centre to the road surface; (b) pseudo-scan lines rendered by random
colours; (c) local coordinate system of points inside a pseudo-scan line.

Figure 3. Two typical types of road surfaces: (a) Road surfaces I; (b) road surfaces II. The crosses are
drainage channel points that have not been scanned.

To extract road surface points, we developed an extended moving fitting window filter, as shown
Figure 3. In a pseudo-scan line, a point that is right underneath and closest to the trajectory should be
selected as a seed point. A certain number of points (usually define 20 points) are put into a fitting
window and then fitted as a straight line using a least-squares fitting algorithm. From the seed point
to the outer edges of the pseudo-scan line, the window is designed to slide point by point to detect
jump features. This filter will be applied to the other side of the pseudo-scan line either when two
adjacent points are determined as nonroad points or a jump in distance is detected in the current side.
Both criteria related to the jump features are defined as follows.

(1) Elevation jump criterion. Since the elevations of road points in a local area are almost unchanged,
a potential point is determined as a road point if the distance from the point to the fitted line is
smaller than the threshold Eth. Eth represents the elevation difference between points at the road
boundary and points at the curb, and is set here to 0.04 m.

(2) Horizontal distance jump criterion. The distance from the current point to the outmost point in
the window is calculated. The point is determined as a nonroad point if the distance is greater
than the threshold Dth. Dth represents the width of the drainage channel and is set here to 0.7 m
because the drainage channels are relatively narrow in the road environment of the datasets.
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2.2. Road Marking Extraction

2.2.1. Intensity Median Filtering

Pulse energy is greatly affected by scanning distance [23,24]. Generally, the intensity values
recorded by road marking points decrease with an increase in scanning distances. In the acquiring
principle of multi-beam MLS systems, different beams collect point clouds at nonconsecutive scanning
distances. As shown in Figure 4a, the intensity values of road marking points strongly fluctuate
in a pseudo-scan line. The unstable intensity makes it difficult to accurately detect marking edges.
Therefore, it is necessary to smooth the intensity values of road points.

Figure 4. Intensity information of road markings: (a) Intensity values of a road marking in a pseudo-scan
line before smoothing; (b) intensity values of a road marking in a pseudo-scan line after smoothing
using a density-based adaptive window median filter; (c) intensity gradients of a road marking in a
pseudo-scan line; (d) intensity statistics histogram of the smoothed road surface. Point #1 is the point
that is not fully smoothed, point #2 is the left-hand edge point, and point #3 is the right-hand edge
point. The intensity value at the red vertical line was chosen as the intensity threshold Ith.

The median filter is linear and uses the intensity median of points in the filtering window to
replace the intensity value of one point at the window centre to suppress noise. Since the densities
of points decrease away from the trajectory, the intensity values of points at marking edges may
be smoothed in low-density regions. We applied a density-based adaptive window median filter
to prevent over-smoothing. The size of the filtering window was changed adaptively according to
different densities of points in a local region by Equation (1):

Wsize =


Wmax − 2ζ
Wmax − ζ

Wmax

,
,
,

Pn ∈ (0, N1)

Pn ∈ [N1, N2]

Pn ∈ (N2,+∞)

(1)

where Wsize denotes the size of the filtering window. Wmax denotes the maximum size of filtering
window and was set here to 7. Pn denotes the number of points in a radius neighbourhood. N1 and N2

are two interval values of the number of points and were set to 10 and 15 in the experiments. ζ denotes
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the scale factor and was set to 2. As shown in Figure 4b, the intensity values of road marking points
became smooth, whereas the intensity values of points at marking edges remained after smoothing.

2.2.2. Marker Edge Constraint Detection

Road markings often show higher reflected intensity values than nearby road points because they
are made of white or yellow materials. In the past, some researchers used the intensity gradient to detect
road marking edges from scan lines [18]. Even though the road surface has been smoothed, there are
still some points that are not fully smoothed (see #1 in Figure 4) because of the complexity of multi-beam
MLS data. They may be mistakenly detected as road marking edge points. To accurately detect road
marking edges from pseudo-scan lines, we developed a marker edge constraint detector (MECD)
method by combining the intensity gradient with the intensity statistics histogram. The intensity
gradients of the points are estimated using Equation (2):

Gi = Ii − Ii−k (2)

where Gi denotes the intensity gradient of ith point in a pseudo-scan line. Ii−k and Ii denote the intensity
values of the (i− k)th and ith points, respectively. The k was empirically set to 3.

From the left-hand side to the right-hand side along a pseudo-scan line, the double edges of a road
marking are defined as: The marking edge entering the road marking is called the left-hand edge and
the marking edge leaving the road marking is called the right-hand edge. The left-hand edge point,
such as point #2 in Figure 4, is a road marking point. Its intensity gradient is a positive value, and its
intensity value is greater than the intensity values of its nearby nonmarking points. The right-hand
edge point, such as point #3 in Figure 4, is a nonmarking point. Its intensity gradient is a negative
value, and its intensity value is lower than the intensity values of the nearby road marking points.
The MECD method is formulated as Equation (3):

Pi ∈ Left− hand , i f Gi > Pth&Ii > Ith

Pi ∈ Right− hand , i f Gi < Nth&Ii < Ith
(3)

where Pth and Nth denote a positive gradient threshold and a negative gradient threshold. They are
identified based on the intensity difference between marking edge points and surrounding road
points. Ith denotes an intensity threshold indicating the minimum intensity value of road marking
points. In most road scenes, the proportion of road markings in the whole road surface is very small.
To estimate the minimum intensity value, an intensity statistics histogram is counted based on the
intensity information of the smoothed road surface. And a low-rate intensity value (i.e., value at the
red vertical line in Figure 4) is chosen as Ith.

To simplify double edges detection, the MECD method is normalized as the Equation (4).

f lag =


1
−1
0

,
,
,

i f
i f
i f

Pi ∈ Left− hand
Pi ∈ Right− hand

others
(4)

where the left-hand edge points, the right-hand edge points, and the other points are normalized into
flag values with 1, −1, and 0, respectively. In pseudo-scan lines, each pair of left-hand edge points and
right-hand edge points, respectively, correspond to a pair of flag vales with 1 and −1 after normalizing
and the points between each pair of flag vales with 1 and −1 are extracted as road marking points.

2.3. Road Marking Refinement

To eliminate nonmarking points that do not connect to road markings, a segmentation-based
filter was applied. All points were first grouped into individual segments using Euclidean distance
clustering. A nonmarking segment can only be partitioned into a few pseudo-scan lines. If the
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line number of scan lines contained in a cluster is less than a predefined line number threshold Mth,
automatically estimated by Equation (5), the cluster is determined as noise and eliminated.

Mth = INT(
Lmin

Wth
) + 1 (5)

where Lmin represents the length of the shortest road marking in the datasets along the driving direction.
Wth is the width threshold of the pseudo-scan line generation mentioned in Section 2.1. In most road
environments, the shortest road marking is the stop line with a length of 0.2 m, and thus Lmin is usually
set to 0.2 m.

In a radius neighbourhood, the real marking points are structured into a 2D plane while the
nonmarking points are structured into a 1D line. A dimensionality filter proposed by Lalonde et al. [25]
is applied to eliminate the final remaining nonmarking points. A point is determined as noise and
eliminated, if its linearity, according to the eigenvalues [λ1,λ2,λ3] of the covariance matrix, is greater
than a linearity threshold Lth. Lth is usually set to 0.95.

3. Result

To test the performance of the proposed method, two datasets acquired by a multi-beam MLS
system were employed in the experiments. The installed system consisted of a low-cost Velodyne
VLP-16 laser scanner, an integrated navigation system (Global Positioning System/Inertial Measurement
Unit, GPS/IMU), and a wheel-mounted distance measurement indicator (DMI). The datasets were
scanned in a highway region. Dataset I presents a drainage channel at the right-hand side of road
boundary, and it covers a road with length of 72 m, 1.7 million points, and a density of 762 points/m2.
Dataset II absents obvious raised curbs at road surface boundary, and it covers a road with length of
46 m, 0.9 million points, and a density of 915 points/m2. As can be seen in Figure 5, the reflected laser
pulse intensities of multi-beam MLS points were very inconsistent and the point clouds distributed
unevenly on the road surface.

Figure 5. Overviews of the two datasets: (a) Dataset I rendered by the intensity attribute; (b) a detailed
view of dataset I; (c) dataset II rendered by the intensity attribute; (d) a detailed view of dataset II.

3.1. Parameter Sensitivity Analysis

The positive gradient threshold Pth, negative gradient threshold Nth, and intensity threshold Ith

in the MECD method are three key parameters whose thresholds with different values will affect the
performance of the proposed method. The multi-beam MLS data (i.e., dataset II) were firstly tested
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using a set of parameter configurations to demonstrate the relations between road marking extraction
and the thresholds.

Pth describes the sensitivity of detecting the left-hand edge using the MECD method. The road
markings extracted using Pth with different values are illustrated in Figure 6a–c. It can be observed
that the bigger Pth was, the fewer nonmarking points were extracted (see #1 and #2 in Figure 6), but a
few road marking points (see #3 in Figure 6) were missed when Pth= 6. To validate the sensitivity of
Nth used to detect the right-hand edge, we tested the performance of the MECD method with different
values of Nth, as shown in Figure 6d–f. It is shown from #4 to #6 in Figure 6 that the right-hand edge
points were gradually correctly detected when Nth was increased from −6 to −2. Ith with different
values was selected from the intensity statistics histogram to validate the sensitivity of road marking
extraction. The test results are shown in Figure 6g–i. It can be seen that fewer nonmarking points
(see #7 and #8 in Figure 6) were mistakenly extracted with a bigger Ith, but many road marking points
(see #9 in Figure 6) were missed.

Figure 6. Road markings extracted by the marker edge constraint detector (MECD) method with
different thresholds: (a) Pth = 2; (b) Pth = 4; (c) Pth = 6; (d) Nth = −6; (e) Nth = −4; (f) Nth = −2; (g) Ith = 8;
(h) Ith= 10; (i) Ith = 12. Pth, Nth, and Ith denote the positive gradient threshold, the negative gradient
threshold, and the intensity threshold.

The higher the thresholds were set, the higher the precision of the MECD method. This is because
the method can correctly identify road marking points with high-intensity values as marking edge
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points. However, a few road marking points, especially low-intensity marking points at marking edges,
may be ignored if they were set too large. To completely extract road markings and suppress noise,
the algorithm parameters of the MECD method used in the experiments were set to Pth = 2, Nth = −2,
and Ith = 10.

3.2. Experiments

In pseudo-scan line-based local coordinate systems, the moving fitting window filter was applied
to extract road points. The road surfaces extracted from the two datasets are illustrated in Figure 7a,b.
The yellow points are road points, and the white points are nonroad points. The filter is reliable and
can extract the road surfaces completely. Note that there are four segments (see #1, #2, #3, and #4 in
Figure 7) in the outer edges of multi-beam MLS data. The points inside the segments were directly
removed after seed point selection because seed points and road marking points were absent.

Figure 7. Extraction results of the two datasets: (a,b) Extracted road surfaces; (c,d) extracted road
markings; (e,f) refined road markings.

The MECD method extracts road marking points by detecting each pair of double edges from
pseudo-scan lines. Road markings extracted from the two datasets are shown in Figure 7c,d,
where various types of road markings, including arrows, rectangles, and hatch road markings,
were successfully extracted. As can be seen, the method was able to extract road markings completely
correctly from multi-beam MLS data, which proved its effectiveness and robustness for road marking
extraction. However, we found a few failures in which some road marking points, especially road
markings at the right-hand side of road surface (see #5 in Figure 7), were missed. This is because the
laser pulse energy decreases with an increase in scanning distance. Those road markings were far
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away from the laser scanner and, thus, their intensity values were very low and were almost equal to
those of nearby road points. A lot of nonmarking points (see #6 in Figure 7) were mistakenly extracted
from the road boundary of dataset II because the boundary was covered with a bulk of weeds.

The segmentation-based filter and dimensionality filter were applied to eliminate nonmarking
points in the extracted road markings. The filters eliminated the nonmarking points by identifying
the spatial characteristics of the nonmarking segments. The refinement results are illustrated in
Figure 7e,f. Almost all of the nonroad marking points were eliminated from the extracted road
markings. The results indicate that the proposed method is effective for road marking refinement.
However, a part of the noises, such as nonroad marking points in #7 in Figure 7, were not eliminated.
This is because the nonroad marking points were distributed sparsely and showed irregular spatial
characteristics and, thus, it was hard to eliminate them sufficiently.

3.3. Comparative Study

Our method was compared with an existing method proposed by Yu [16]. The two methods both
directly extract road markings from mobile LiDAR point clouds in contrast to feature image-based
methods, which ensures fairness of comparison. For Yu’s method, the road surface was divided into a
set of segments, and then the road marking points were extracted from each segment using Otsu’s
threshold algorithm and noise was removed using a spatial density filter. The road markings extracted
by Yu’s method from the road surface of the two datasets are shown in Figure 8.

Figure 8. Road markings extracted by Yu’s method [16]: (a) From dataset I; (b) from dataset II.

As seen from the results of the comparative study in Figure 7e,f and Figure 8, Yu’s method missed
a bulk of road marking points (see #1 in Figure 8), especially road marking points with low-intensity
values at marking edges. This is because these marking points’ intensity values were lower than the
Otsu thresholds in their corresponding segments. In addition, there were more nonmarking points in
the exit lane (see #2 in Figure 8) in the results extracted by Yu’s method. This is because the reflected
laser pulse intensities also depended on material abrasion. The vehicles were only allowed to drive in
the exit lane at low speed. The exit lane was less worn and, thus, the intensity values of the road points
were relatively higher. The results extracted by our method only had a few nonmarking points in the
same areas.

To quantitatively evaluate the performance of the two methods, reference datasets (truth) of the road
marking points were manually labeled by visual inspection of the two datasets. The recall, precision,
and Matthews correlation coefficient (MCC) index described in Equation (6) were employed [26].

recall = TP
TP+FN

precision = TP
TP+FP

MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(6)

where TP, FN, and FP represent the number of correctly extracted, undetected, and falsely extracted
road marking points, and TN represents the number of correctly detected nonmarking points.
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The results of the quantitative evaluations are listed in Tables 1 and 2. It can be seen that our
method demonstrates better performance for road marking extraction from multi-beam MLS points.
Our method achieves about 90% average recall and about 95% average precision, whereas Yu’s method
achieves about 75% average recall and about 82% average precision. This is because the reflected
laser pulse intensities of multi-beam MLS points are very inconsistent, and Yu’s method is difficult to
identify marking points with low-intensity values in road markings. Our method’s average MCC was
about 15% higher than that of Yu’s method.

Table 1. Quantitative evaluation of road marking extraction using Yu’s method [16].

Yu’s Method Truth TP FN FP TN Recall
(%)

Precision
(%)

MCC
(%)

Dataset I 73,429 54,575 18,854 21,919 1,115,820 74 71 71
Dataset II 40,898 31,180 9718 2530 589,737 76 92 83
Average 75 82 77

Table 2. Quantitative evaluation of road marking extraction using our method.

Our Method Truth TP FN FP TN Recall
(%)

Precision
(%)

MCC
(%)

Dataset I 73,429 65,097 8332 4079 1,605,861 89 94 91
Dataset II 40,898 36,752 4146 1588 883,497 90 96 92
Average 90 95 92

The two methods were implemented in C++ programming language. The processing without
parallel computing was performed on an ordinary personal laptop with an Intel Core i7-10510U CPU
with 8 GB RAM. The running time of each processing stage in seconds is listed in Table 3. For the
two datasets, about 40% of the total time was spent in road marking extraction because intensity
median filtering was time consuming. The k-d tree costed a lot of memory to structure the radius
neighbourhoods of each point. Our method was about 3 s on the average total and was slightly a bit
time consuming. However, this can be improved by parallel computation scan line by scan line.

Table 3. Running time for each step (unit: s).

Datasets Road Surface
Extraction

Road Marking
Extraction

Road Marking
Refinement Total Time

Dataset I 1.5 1.7 1.2 4.4
Dataset II 0.8 1.0 0.7 2.5
Average 1.15 1.35 0.95 3.45

4. Discussion

Previous methods were mainly designed for road marking detection from mono-beam MLS
points, while the proposed method aimed to accurately detect road markings from multi-beam MLS
points. Additionally, our method, unlike most of the methods reported in the literature [9,12,27–29],
does not depend on converting 3D point clouds into 2D images; therefore, the loss of accuracy was
avoided effectively.

The points were partitioned into pseudo-scan lines perpendicularly to the driving direction.
Therefore, our method successfully solved the problem that the number of point clouds to be processed
is significantly reduced and multi-beam MLS points cannot be organized into the scan line structure
using time stamps [30] and angle field [18]. This structure is also suitable for parallel and real-time/online
processing. Of course, the correct size of pseudo-scan lines should be determined for different MLS
data with different densities. Enough points can be organized into each pseudo-scan line using a larger
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width threshold, but the computation efficiency may decline. When using a width threshold that is too
small, the road surface may not be completely extracted.

The moving fitting window filter precisely extracted the road surface by detecting jump features
between the road boundaries and the curbs. The filter can be applied not only to road surface with
the curbs but also to some road surface without curbs. All points inside a pseudo-scan line will be
regarded as road points and extracted if jump features were not detected in the pseudo-scan line.
Road surface extraction may be affected by vehicles on the road surface because the elevation jump
between the vehicle and road surface may be mistakenly detected as the road boundary. To decrease
the influence of vehicles, data acquisition should avoid rush hours.

Our method worked effectively for road marking extraction from noisy multi-beam MLS points,
which is beneficial to MLS technology that is widely used in road information collection and promotes
the development of unmanned driving. However, the MECD method may be less accurate for
extracting badly worn road markings and emergency lanes, because Ith selected from the intensity
statistics histogram is a globally optimal threshold. The limitation of the globally optimal threshold
makes it difficult to separate road marking points with similar intensities to road points from local
road surface.

5. Conclusions

Most of the existing methods extract road markings from point clouds acquired by high-precision
mono-beam MLS systems. However, mono-beam MLS systems are expensive. The high cost limits
MLS technology from being applied to road information collection on a large scale. In this paper,
we presented an accurate method to directly extract road markings from low-cost, multi-beam system
scanning data. The proposed method applied a nonroad point filter to eliminate most nonroad points,
and then the remaining points were partitioned into different pseudo-scan lines and transformed into
corresponding pseudo-scan line-based local coordinate systems. An extended moving fitting window
filter was applied to extract the road surface and further reduce the number of points. A density-based
adaptive window median filter was applied to smooth the intensity information of the road surface.
The MECD method was applied to extract the road markings through detecting each pair of left-hand
edge point and right-hand edge point from each pseudo-scan line. The extracted road markings were
refined by a segmentation-based filter and a dimensionality filter to eliminate nonmarking points.
The quantitative evaluation showed that the proposed method achieved average recall, precision,
and MCC of 90%, 95%, and 92%, respectively, for road marking detection from multi-beam scanning
point clouds. The extracted road markings can be modeled to make high-precision maps. The road
markings on high-precision maps are not only used by traffic management departments to direct traffic
activities but also provide detailed instructions for the navigation of self-driving vehicles. Future work
will focus on the combined application of our method with deep-learning methods for road marking
classification and real-time environmental detection.

Author Contributions: onceptualization, Junxiang Tan; data curation, Ronghao Yang and Xinyu Chen; funding
acquisition, Junxiang Tan; investigation, Shaoda Li; methodology, Ronghao Yang and Qitao Li; software, Qitao Li
and Junxiang Tan; supervision, Shaoda Li; validation, Ronghao Yang, Shaoda Li, and Xinyu Chen; visualization,
Xinyu Chen; writing—original draft, Ronghao Yang, Qitao Li, and Junxiang Tan; writing—review and editing,
Qitao Li and Xinyu Chen. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Startup Foundation of Chengdu University of Technology, grant
number 10912-2019KYQD0727, and also funded by the National Natural Science Foundation of China, grant
number 41771444.

Acknowledgments: The authors gratefully thank the editor and anonymous reviewers for their constructive comments.

Conflicts of Interest: The authors report no potential conflict of interest.



ISPRS Int. J. Geo-Inf. 2020, 9, 608 13 of 14

References

1. Hoffmann, G.M.; Tomlin, C.J.; Montemerlo, M.; Thrun, S. Autonomous automobile trajectory tracking for
off-road driving: Controller design, experimental validation and racing. In Proceedings of the American
Control Conference, New York, NY, USA, 9–13 July 2007.

2. Holgado-Barco, A.; Riveiro, B.; González-Aguilera, D.; Arias, P. Automatic inventory of road cross-sections
from mobile laser scanning system. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 3–17. [CrossRef]

3. Li, Z.; Tan, J.; Liu, H. Rigorous boresight self-calibration of mobile and UAV LiDAR scanning systems by
strip adjustment. Remote Sens. 2019, 11, 442. [CrossRef]

4. Mandlburger, G.; Pfennigbauer, M.; Wieser, M.; Riegl, U.; Pfeifer, N. Evaluation of a novel UAV-bornet
opo-bathymetric laser profiler. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 933–939.
[CrossRef]

5. Yan, L.; Tan, J.; Liu, H.; Xie, H.; Chen, C. Automatic non-rigid registration of multi-strip point clouds from
mobile laser scanning systems. Int. J. Remote Sens. 2018, 39, 1713–1728. [CrossRef]

6. Glennie, C.L.; Kusari, A.; Facchin, A. Calibration and stability analysis of the VLP-16 laser scanner. ISPRS
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 9, 55–60. [CrossRef]

7. Pierzchała, M.; Giguère, P.; Astrup, R. Mapping forests using an unmanned ground vehicle with 3D LiDAR
and graph-SLAM. Comput. Electron. iAgric. 2018, 145, 217–225. [CrossRef]

8. Miadlicki, K.; Pajor, M.; Sakow, M. Real-time ground filtration method for a loader crane environment
monitoring system using sparse LIDAR data. In Proceedings of the 2017 IEEE International Conference on
INnovations in Intelligent SysTems and Applications (INISTA), Gdynia, Poland, 3–5 July 2017.

9. Yang, B.; Fang, L.; Li, Q.; Li, J. Automated extraction of road markings from mobile LiDAR point clouds.
Photogramm. Eng. Remote Sens. 2012, 78, 331–338. [CrossRef]

10. Guan, H.; Li, J.; Yu, Y.; Ji, Z.; Wang, C. Using mobile LiDAR data for rapidly updating road markings.
IEEE Trans. Intell. Transp. Syst. 2015, 16, 2457–2466. [CrossRef]

11. Kumar, P.; McElhinney, C.P.; Lewis, P.; McCarthy, T. Automated road markings extraction from mobile laser
scanning data. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 125–137. [CrossRef]

12. Jung, J.; Che, E.; Olsen, M.J.; Parrish, C. Efficient and robust lane marking extraction from mobile lidar point
clouds. ISPRS J. Photogramm. Remote Sens. 2019, 147, 1–18. [CrossRef]

13. Li, L.; Zhang, D.; Ying, S.; Li, Y. Recognition and reconstruction of zebra crossings on roads from mobile laser
scanning data. ISPRS Int. J. Geo Inf. 2016, 5, 125. [CrossRef]

14. Ma, L.; Li, Y.; Li, J.; Wang, C.; Wang, R.; Chapman, M. Mobile laser scanned point-clouds for road object
detection and extraction: A Review. Remote Sens. 2018, 10, 1531. [CrossRef]

15. Yang, B.; Liu, Y.; Dong, Z.; Liang, F.; Li, B.; Peng, X. 3D local feature BKD to extract road information from
mobile laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 2017, 130, 329–343. [CrossRef]

16. Yu, Y.; Li, J.; Guan, H.; Jia, F.; Cheng, W. Learning hierarchical features for automated extraction of road
markings from 3-D mobile LiDAR point clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8,
709–726. [CrossRef]

17. Wang, J.; Zhao, H.; Wang, D.; Chen, Y.; Zhang, Z.; Liu, H. GPS trajectory-based segmentation
and multi-filter-based extraction of expressway curbs and markings from mobile laser scanning data.
Eur. J. Remote Sens. 2018, 51, 1022–1035. [CrossRef]

18. Yan, L.; Liu, H.; Tan, J.; Li, Z.; Xie, H.; Chen, C. Scan line based road marking extraction from mobile LiDAR
point clouds. Sensors 2016, 16, 903. [CrossRef] [PubMed]

19. Soilan, M.; Riveiro, B.; Martinez-Sanchez, J.; Arias, P. Segmentation and classification of road markings using
MLS data. ISPRS J. Photogramm. Remote Sens. 2017, 123, 94–103. [CrossRef]

20. Wen, C.; Sun, X.; Li, J.; Wang, C.; Guo, Y.; Habib, A. A deep learning framework for road marking extraction,
classification and completion from mobile laser scanning point clouds. ISPRS J. Photogramm. Remote Sens.
2019, 147, 178–192. [CrossRef]

21. Chen, S.; Zhang, Z.; Zhong, R.; Zhang, L.; Ma, H.; Liu, L. A dense feature pyramid network-based deep
learning model for road marking instance segmentation using MLS point clouds. IEEE Trans. Geoence Remote
Sens. 2020, 1–17. [CrossRef]

http://dx.doi.org/10.1111/mice.12213
http://dx.doi.org/10.3390/rs11040442
http://dx.doi.org/10.5194/isprsarchives-XLI-B1-933-2016
http://dx.doi.org/10.1080/01431161.2017.1410248
http://dx.doi.org/10.5194/isprsarchives-XL-3-W4-55-2016
http://dx.doi.org/10.1016/j.compag.2017.12.034
http://dx.doi.org/10.14358/PERS.78.4.331
http://dx.doi.org/10.1109/TITS.2015.2409192
http://dx.doi.org/10.1016/j.jag.2014.03.023
http://dx.doi.org/10.1016/j.isprsjprs.2018.11.012
http://dx.doi.org/10.3390/ijgi5070125
http://dx.doi.org/10.3390/rs10101531
http://dx.doi.org/10.1016/j.isprsjprs.2017.06.007
http://dx.doi.org/10.1109/JSTARS.2014.2347276
http://dx.doi.org/10.1080/22797254.2018.1533388
http://dx.doi.org/10.3390/s16060903
http://www.ncbi.nlm.nih.gov/pubmed/27322279
http://dx.doi.org/10.1016/j.isprsjprs.2016.11.011
http://dx.doi.org/10.1016/j.isprsjprs.2018.10.007
http://dx.doi.org/10.1109/TGRS.2020.2996617


ISPRS Int. J. Geo-Inf. 2020, 9, 608 14 of 14

22. Cheng, Y.-T.; Patel, A.; Wen, C.; Bullock, D.; Habib, A. Intensity thresholding and deep learning based lane
marking extraction and lane width estimation from mobile light detection and ranging (LiDAR) point clouds.
Remote Sens. 2020, 12, 1379. [CrossRef]

23. Tan, K.; Cheng, X. Intensity data correction based on incidence angle and distance for terrestrial laser scanner.
J. Appl. Remote Sens. 2015, 9, 094094. [CrossRef]

24. Alireza, K.; Michael, O.; Christopher, P.; Nicholas, W. A review of LiDAR radiometric processing: From ad
hoc intensity correction to rigorous radiometric calibration. Sensors 2015, 15, 28099–28128. [CrossRef]

25. Lalonde, J.-F.; Vandapel, N.; Huber, D.F.; Hebert, M. Natural terrain classification using three-dimensional
ladar data for ground robot mobility. J. Field Robot. 2006, 23, 839–861. [CrossRef]

26. Yan, L.; Li, Z.; Liu, H.; Tan, J.; Zhao, S.; Chen, C. Detection and classification of pole-like road objects from
mobile LiDAR data in motorway environment. Opt. Laser Technol. 2017, 97, 272–283. [CrossRef]

27. Pankaj, K.; Paul, L.; Tim, M.C. The potential of active contour models in extracting road edges from mobile
laser scanning data. Infrastructures 2017, 2, 9. [CrossRef]

28. Yang, B.; Dong, Z.; Liu, Y.; Liang, F.; Wang, Y. Computing multiple aggregation levels and contextual features
for road facilities recognition using mobile laser scanning data. ISPRS J. Photogramm. Remote Sens. 2017,
126, 180–194. [CrossRef]

29. Arias, P.; Gonzalez-Jorge, H.; Riveiro, B.; Diaz-Vilarino, L.; Martinez-Sanchez, J. Automatic detection of zebra
crossings from mobile LiDAR data. Opt. Laser Technol. 2015, 70, 63–70. [CrossRef]

30. Yang, B.; Fang, L.; Li, J. Semi-automated extraction and delineation of 3D roads of street scene from mobile
laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 2013, 79, 80–93. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs12091379
http://dx.doi.org/10.1117/1.JRS.9.094094
http://dx.doi.org/10.3390/s151128099
http://dx.doi.org/10.1002/rob.20134
http://dx.doi.org/10.1016/j.optlastec.2017.06.015
http://dx.doi.org/10.3390/infrastructures2030009
http://dx.doi.org/10.1016/j.isprsjprs.2017.02.014
http://dx.doi.org/10.1016/j.optlastec.2015.01.011
http://dx.doi.org/10.1016/j.isprsjprs.2013.01.016
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Method 
	Road Surface Extraction 
	Road Marking Extraction 
	Intensity Median Filtering 
	Marker Edge Constraint Detection 

	Road Marking Refinement 

	Result 
	Parameter Sensitivity Analysis 
	Experiments 
	Comparative Study 

	Discussion 
	Conclusions 
	References

