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Abstract: Through volunteering data, people can help assess information on various aspects of their
surrounding environment. Particularly in natural resource management, Volunteered Geographic
Information (VGI) is increasingly recognized as a significant resource, for example, supporting
visitation pattern analysis to evaluate collective values and improve natural well-being. In recent
years, however, user privacy has become an increasingly important consideration. Potential conflicts
often emerge from the fact that VGI can be re-used in contexts not originally considered by volunteers.
Addressing these privacy conflicts is particularly problematic in natural resource management,
where visualizations are often explorative, with multifaceted and sometimes initially unknown sets
of analysis outcomes. In this paper, we present an integrated and component-based approach to
privacy-aware visualization of VGI, specifically suited for application to natural resource management.
As a key component, HyperLogLog (HLL)—a data abstraction format—is used to allow estimation
of results, instead of more accurate measurements. While HLL alone cannot preserve privacy, it
can be combined with existing approaches to improve privacy while, at the same time, maintaining
some flexibility of analysis. Together, these components make it possible to gradually reduce privacy
risks for volunteers at various steps of the analytical process. A specific use case demonstration is
provided, based on a global, publicly-available dataset that contains 100 million photos shared by
581,099 users under Creative Commons licenses. Both the data processing pipeline and resulting
dataset are made available, allowing transparent benchmarking of the privacy–utility tradeoffs.
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1. Introduction

A plethora of terms has emerged to describe User-Generated Content (UGC) that is publicly
available and used for different contexts of application and problem-solving, such as Volunteered
Geographic Information (VGI), Contributed Geographic Information (CGI) or Ambient Geographic
Information (AGI) (see [1]). One of the reasons is that there is a nuanced difference between voluntarily
sharing information and volunteering information. For example, for a specific purpose or application
such as in VGI [2]. Ghermandi and Sinclair [3], among others, coined the term “passive crowdsourcing”
for the specific case of UGC where “[ . . . ] information is voluntarily shared by users, albeit not for the
purpose for which it is used by the researchers” (p. 37).

From a privacy perspective, however, these difficulties in accurately defining data appear to be of
little significance because privacy of volunteers can be compromised regardless of whether data is
volunteered or voluntarily shared [2,3]. As a simple, yet useful, definition of privacy, Malhotra et al. [4]
use the term Internet Users’ Information Privacy Concerns (IUIPC) to describe “the degree to which a

ISPRS Int. J. Geo-Inf. 2020, 9, 607; doi:10.3390/ijgi9100607 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0003-1157-7967
https://orcid.org/0000-0003-2949-4887
http://dx.doi.org/10.3390/ijgi9100607
http://www.mdpi.com/journal/ijgi
http://www.mdpi.com/2220-9964/9/10/607?type=check_update&version=3


ISPRS Int. J. Geo-Inf. 2020, 9, 607 2 of 21

person is concerned about the amount of individual-specific data possessed by others relative to the
value of benefits received” (p. 338). Such a definition highlights that any evaluation of privacy and
ethical factors is incomplete when seen disconnected from actual applications of data, a conception
that is supported by other authors (see [5,6]). Here, natural resource management takes on a special
role because applications of data are typically geared towards benefits of individuals or society (see [7];
also note our system model, Figure 2, in Section 3). Consequently, protecting the identity of volunteers,
while also sustaining the quality of results, should be of common interest to decision-makers and the
public [2,3,5].

Many techniques already exist that help reduce the sensitivity of volunteered or collected datasets,
and shared results. These techniques range from basic components, such as pseudo-anonymization
or cryptographic hashing, to more complex solutions, such as inducing noise or data aggregation
(see [8,9]). On a system model level, these components can be combined by taking into account a
wider set of protocols and frameworks of good practice, such as data minimization, the separation
of concerns principle, or privacy by design and privacy by default (for definitions of these terms,
see [8,10–12]). It is commonly accepted that increasing levels of privacy come at several costs, such as
limitations in research setup or a reduced utility of outcomes [13]. As a primary consequence of these
many considerations, an ongoing and heated debate emerged around questions of where to make
compromises, how to best combine components, and which levels of risks are acceptable [14].

In the search for improved and robust mechanisms to protect privacy, it is not surprising that
components serving a variety of benefits receive little attention, if they cannot fulfill the highest
expectations to privacy [15]. One of these components is HyperLogLog (HLL), a data abstraction
format proposed by Flajolet et al. [16] for counting distinct values in a set, called cardinality estimation.
HLL may specifically fill in a gap at intermediate stages of analytical processes, where privacy is not an
absolute imperative. Such situations frequently occur in multi-criteria decision-making systems [17]
and citizen science [18], with a range of needs to gradually tune privacy–utility tradeoffs at various
stages of data processing. HLL features several characteristics that make it particularly suited as an
intermediate, privacy-aware component for location aware applications such as VGI and crowdsourced
geographic information [19]. However, since the HLL algorithm only allows cardinality estimation,
its application to the spatial domain requires consideration of addition components, methods and
risk mitigation strategies. As the privacy preserving effect of HLL is not guaranteed per se, we use
“privacy-aware”, to emphasize the dependence on implementation, user choices and data properties.
In addition, processing of spatial data for multi-criteria decision-making includes multiple steps,
from data retrieval, to data storage and to the visualization and publication of results. With the goal to
gradually reduce the risk of re-identification of individuals, privacy–utility tradeoffs are possible at
each of these steps.

In this paper, we demonstrate an integrated example of using HLL for monitoring spatial visitation
patterns. We discuss how several risk mitigation techniques can be implemented by considering
individual parameters in combination with other components, including integrating concepts of
geoprivacy [20]. Taking into account the unique circumstances of both publicly crowdsourced and
volunteered geographic data, it is illustrated how HLL may fill a gap of privacy-aware processing
of user-generated data in natural resource management. Due to the openness and complexity of the
presented research setup, we emphasize that it is not our goal to provide formal proofs of privacy with
the techniques demonstrated herein. Mathematical evaluations of the utility to privacy relationship
exist and are referenced for individual tools and components used in this work. Rather, our focus
is on utility, by illustrating a broader privacy-aware modular scheme that can be adapted based
on personal needs and application contexts. There exist different degrees of suitability for specific
purposes, and several examples are discussed in this work. As a means to lowering the barrier of
practical application, we specifically consider implementation details and obstacles to integrate HLL
in existing workflows. Thus, our contributions are multi-faceted but focus on a novel visualization
setup and a balanced, application-oriented evaluation of the tradeoffs between privacy and utility.
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Supporting the wider adoption and a transparent replication of results, we fully publish our tools,
processing pipeline and benchmark data alongside this work.

2. Previous Work

Useful definitions that help describe the psychological, social and political dimensions of privacy
have existed since the 1960s [21,22]. However, it was not until the first decade of the 21st Century
that formal notions of privacy became available, allowing scientists to quantify and measure privacy
conflicts in datasets [23]. K-anonymity [24] was one of the first methods proposed, which aims at
quantifying and predicting the risk of re-identification in a single dataset. Here, k describes a threshold
for how many times attributes may occur in a dataset to be included [25], with e.g., a minimum of five
as a rule of thumb [26] (p. 14). A lower k typically means a higher risk of re-identification, for example,
through co-relating and combining attributes with external information. Conversely, larger k’s result
in a larger loss of information, up to a point where data becomes of no use [23] (p. 2754).

To compensate for the various shortcomings in specific use cases, a large number of sub variants,
alternatives and advances have been proposed [25,27,28]. However, while granularity reduction or
data suppression can reduce risks, it is difficult to provide exact guarantees [13]. This was one of the
reasons Dwork et al. [29] explored a different route, based on carefully calibrated levels of noise added
to outputs. Later, this concept became known as Differential Privacy (DP), providing a strict formal
notion and mathematical guarantees for privacy-preservation [30].

While k-anonymity, DP, and other approaches already cover a wide range of use cases, several
challenges continue to limit their broad application in practice [12,23,31]. For example, while DP
solves known vulnerabilities of k-anonymity, a number of factors reduce flexibility and feasibility
in practice [23] (p. 2760); [31]. Similar to k-anonymity, some analytical questions will require levels
of noise that are detrimental to results [14,27]. For inducing randomness, at least some statistical
properties of data must be known, requiring special adaption or imposing limitations to be used in
streaming applications, continuous monitoring tools and autonomous visualizations pipelines [12]
(p. 71); [32,33]. While exceptions apply, most available approaches also specifically focus on privacy
preserving publishing of results (see [28], p. 16), ignoring that any “act of data collection [ . . . ] is the
starting point of various information privacy concerns” [4] (p. 338).

From a privacy perspective, a relatively new component are Probabilistic Data Structures (PDS)
such as Bloom Filters, Count–Min Sketches, or HyperLogLog (HLL) (see [19] for an overview). Unlike
k-anonymity—founded on principles of aggregation and exclusion in single datasets—and DP—built
on random data perturbation with a focus on output sensitivity—, probabilistic algorithms employ a
different strategy with a different goal. By systematically removing pieces of information at a more
fundamental level of data, precision is traded for astonishing decreases in memory consumption and
processing time, while maintaining guaranteed error bounds (ibid., p. 1). Naturally, the original use
case of probabilistic computation was big data and streaming applications (ibid.).

More recently, several publications have looked at the utility of PDS to privacy, with ambivalent
results. Feyisetan et al. [27] combined Count-Min Sketches with k-anonymity, as a means to improve
performance to estimate query frequencies for very large datasets. Bianchi, Bracciale and Loreti [34],
exploring the privacy benefits of Bloom Filters, reach a “better than nothing” conclusion. In order to
balance accuracy and privacy, Yu and Weber [35] propose HLL for aggregate counts in clinical data,
simulating a test with 100 million patients. Desfontaines et al. [36] prove that HLL does not preserve
privacy but suggests several risk mitigation strategies. More recently, Wright et al. [37] show that
HLL and Bloom Filters can be combined to satisfy even the strict definition of DP. In their outlook,
Singh et al. [19] emphasize that the utilization of PDS in location aware applications needs further
exploration (ibid., p. 17).

In summary, while privacy is not a primary property of PDS, it is recognized as a side effect. HLL,
as the latest PDS developed, has taken on a special role from this privacy perspective. The primary
use case of HLL is counting distinct elements in a set, called cardinality estimation. The internal
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representation of a HLL set is also called a sketch because it only stores a small approximate summary
of the original data (see [36]; an example is illustrated in Figure 1, Section 4.3). As a result, a HLL sketch
can count 1 billion distinct items with an error rate of 2% using only 1.5 KB of memory [19] (p. 13).
HLL sets do not explicitly support membership checking of specific elements (ibid.). Consequently,
the removal of items is not possible because, once added, items cannot be unambiguously identified.
In this sense, HLL sets behave more like statistic data, whereas the functionality and their practical use
is more akin to conventional sets. For instance, several HLL sets can be merged (a union operation),
to compute the combined count of distinct elements of both sets, without losing accuracy. This allows
parallelized computation or individual storage of many small HLL sets that are only finally combined
to a single set. Equally, via the inclusion–exclusion principle [38], relationships between different HLL
sets can be quantitatively evaluated, such as is proposed by Baker and Langmead [39] for measuring
genomic similarity. In the following, we discuss and demonstrate how HLL sets can be combined with
spatial data to approximate typical metrics and relationships used in VGI.

3. Concept

3.1. System Model

As addressed in the introduction, the level of involvement for producing VGI can vary to a large
degree. Gómez-Barrón et al. [40] proposed general considerations for the systematic design of VGI
projects, taking into account a continuum of possible contribution modes that stretch from passive
to more active involvement (p. 11). Our system model, illustrated in Figure 2, is derived from these
general considerations. The simplified graphic aims at illustrating the key idea that decision-makers
and the public can work together in a cooperative manner to improve overall well-being and ensure
a collectively beneficial development of the environment [4,41]. Highlighted in the system model
(grey color, Figure 2) are components that have been added for the processing of HLL data, as part
of an Analytics Service (AS). Such a service can also be described as the central crowdsourced
processing unit [40] or the data curator [23] (p. 2753), which is more precisely described in Section 4.2
(Software architecture).

Figure 1. Illustration of the system model and the two cases of possible adversaries discussed in this work.

The fact that different levels of involvement are possible is recognized with two possible
communication links between users and the AS. The first, and currently perhaps most widely used
approach, utilizes Location-Based Social Media (LBSM) as an intermediate service, typically resulting
in more passive modes of contribution [3]. Conversely, a more direct link to users can be established
by including key components of the communication service as part of the AS, which represents a more
pro-active mode of contribution, in a continuum of possible definitions of VGI [40,42]. While quality
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and quantity of data may differ significantly between the two approaches, both may be used to produce
data of similar structure.

This makes it possible to formulate similar vulnerabilities of collected data, highlighted with the
two cases of an internal and external adversary in Figure 2. The internal adversary case illustrates
the possibility that the analytics service is compromised by someone with internal information of or
direct access to the analytics service, or someone external who gained malicious access. Even though
data is publicly available, e.g., through social media, such a scenario appears plausible under certain
circumstances. For instance, any data that is aggregated and combined in new ways can produce
insights that are not possible with the original data [12]. Conversely, social media users may at any
point remove information that was previously shared, challenging timely reflection of this change
in subsequent data collections [6]. In the second case of an external adversary, the more commonly
discussed situation of someone trying to compromise privacy in published datasets is portrayed.
Representative of such a dataset is the benchmark data produced and shared in this work (Section 6).
We return to these two adversarial cases in Section 5, with the discussion of two case studies.

3.2. Analytics Service

As a means to narrow down the scope of the following discussion, we specifically consider an
analytics service for monitoring spatial visitation patterns, with the ability to use results in a number of
decision-making contexts. Chen, Parkins, and Sherren [43], for example, use the number of Instagram
photographs to analyze and detect important landscape values around proposed hydroelectric dams
in Canada. Kennedy and Naaman [44] use the number of Flickr users that are present in photo
location clusters for representative landmark discovery. Wood, Guerry, Silver and Lacayo [45] find that
frequency of Flickr users per month correlates with official visitation rates for national parks in the
USA and can therefore be used as a sufficient proxy to improve park management. A similar approach
is applied by Heikinheimo et al. [46] for national park visitation rates and user frequencies derived
from Instagram. Flickr spatial data, similar to the type used herein, is also used in a large project
(naturalcapitalproject.stanford.edu) to identify and quantify aesthetic values, as an important basis for
assessing ecosystem services [47].

Recurring in these examples is the use of several types of identifiers. To distinguish between
items, unique identifiers (UIDs) are an intrinsic requirement of both IT systems and visual analytics.
Consider, for example, a national park management that aims to monitor the total number of unique
user visits. This could be done on site, as part of collecting an entrance fee, and, if it is possible to assign
some ID to visitors, to prevent double counting. Alternatively, publicly available social media data
may be considered as a proxy, as in the example discussed by Fisher et al. [48]. Finally, a focused VGI
project can be conceived that is built precisely for supporting public park management, comparable to
apps that help (e.g.,) assess pandemic spread.

Notwithstanding these good intentions, it has been shown that data can be repurposed through
its lifetime. UIDs specifically are a primary cause of privacy conflicts and misuse of data (e.g., [49]).
Without being exhaustive, we observe three recurring metrics that build on UIDs in nature resource
management: post count (PC), user count (UC) and post (or photo) user days (PUD) (see [3,45,48]).
The latter is coined by Wood et al. [45] as a measurement for “the total number of days, across all
users, that each person took at least one photograph within each site” (p. 6), and it is increasingly
used as a quantitative proxy for aesthetic value (e.g., [47]). As a fourth quasi-UID, coordinates of
publicly shared posts or photos are typically used for observation of spatial occurrence. Due to
their precision, such coordinates are usually treated with equal sensitivity to UIDs, with special
implications for geo-privacy [20]. Just one example is provided by Shi et al. [50], who demonstrate the
possibility to extract users’ job and housing locations from public records of a bicycle renting station.
In summary, while these metrics appear plausible, they are also disturbing from a privacy perspective,
even in proactive collaboration scenarios. While a large collection of solutions to this problem exists
(see Section 2), we specifically explore the capabilities of HLL as a component in the following.



ISPRS Int. J. Geo-Inf. 2020, 9, 607 6 of 21

4. Material and Methods

4.1. Dataset

We use the Yahoo Flickr Creative Commons 100 Million (YFCC100M) dataset released by Yahoo in
2014 [51] to provide a demonstration example. The dataset is publicly available as a comma-separated
values (CSV) file and consists of metadata from 100 million photos and videos shared by 581,099 users.
48,366,323 photos and 103,506 videos in the dataset are geotagged (ibid., p. 66). To simulate a streaming
application, the data is first read into a database, called “rawdb” (see Section 4.2), preserving all internal
relationships. These relationships, such as user IDs, post IDs, timestamps or coordinates and other
references, are typically also available when accessing the Flickr Application Programming Interface
(API) directly. The rationale for choosing this dataset is that it features a structure and scope that allows
comparison with other data used in various contexts of VGI (see examples in Section 3).

4.2. Software Architecture

To allow transparent evaluation and replication of the system and results presented in this work,
we combine several technology components, to illustrate a typical analytics service setup. At the core,
four Docker Containers (docker.com) are used as a representation of the different roles in the system
model described in Section 3 (Figure 2). Since the majority of work on privacy protection is conducted
in the context of databases [23] (p. 2754), a natural choice was to implement these roles with PostgreSQL
(postgresql.org). The first container (“rawdb”) simulates a social media service that allows access to
original, unfiltered data through an open API; or raw data collected directly from users (i.e., the active
contribution mode of VGI, Figure 2). The API functionality is reflected by the PostgreSQL query interface.
Similarly, a second PostgreSQL container (“hlldb”) is used to represent a privacy-aware data curator.
This data curator is running the Citus implementation of HLL (github.com/citusdata/postgresql-hll).
With the goal of illustrating the separation of concerns principle, the Aggregation Service and Sketching
Service are implemented with a separate, third container (“hllworker”), which is used for in-memory
calculations only. Finally, a fourth container, running Jupyter Notebook (jupyter.org), symbolizes
the visualization part of the Analytics Service (AS). The precise steps and code of the visualization
pipeline are structured in four notebooks. These notebooks are published alongside this paper in a
data repository [52] and HTML versions are included in the Supplementary Materials (S1–S4).

The intention for these notebooks is multifold. Firstly, through performance benchmarking, it is
possible to quantify the potential utility–privacy tradeoff that practitioners need to consider when
switching workflows. Secondly, each step is transparently documented, providing both reproducibility
of research and an “insight view” to the workings of our conceived AS, as is discussed for the internal
adversary scenario (Section 5). This makes it possible to identify and discuss strengths and weaknesses
in Section 6.3 (Privacy trade-off). Lastly, the notebooks can serve as a basis for evaluating how certain
choices and parameter settings, made in earlier stages of the process (see Section 4), may impact later
results. The first notebook describes how to import YFCC100M data to the rawdb and hlldb formats.
The second and third notebook are used to compare data processing based on raw and HLL data,
respectively. In the fourth notebook, it is shown how published benchmark data can be used for further
analysis (see Section 6.2). Two additional notebooks contain the code to replicate the remaining figures
and statistics shown in this paper (see Supplementary Materials, S5–S6).

4.3. First Component: HyperLogLog (HLL)

As the first of two components, HLL is used to count distinct items for the three different metrics,
PC, UC and PUD, introduced in Section 3.2. Even though different implementations of HLL exist,
all share a number of basic steps. At the core, the binary version of any given character string is divided
into “buckets” of equal size, such as e.g., 4 (see illustration in Figure 1, step 4). The bucket is also
referred to as the register width. For each bucket, the number of leading zeroes is counted. Because
any given character string is first randomized (step 3, Figure 1), typically by using a non-cryptographic
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hash function, it is possible to predict how many distinct items must have been added to a given HLL
set, based on the maximum number of leading zeroes observed [16]. In other words, if multiple items are
added to a HLL set, only the highest number of leading zeroes per bucket needs to be memorized. As a
result, the cardinality estimation (i.e., the count of distinct elements added to the set, step 6, Figure 1)
will produce decimal numbers that only approximate exact counts.

Figure 2. Transformation steps applied to a single character string, such as a user ID, for generating a
HyperLogLog (HLL) set, and the final estimation of cardinality (Example values were generated with
real data, but different values may be produced based on various parameter settings).

As a side effect, it is only limitedly possible to check whether a particular user or ID has been
added to a HLL set. In an adversarial situation, Desfontaines et al. [36] refer to such a check as an
“intersection attack”. Intersection attacks first require obtaining the hash of a targeted person or
ID, and then adding this hash to a HLL set. If the HLL set changes, an adversarial may be able to
increase their initial suspicion by a certain degree. Such an increase in posterior knowledge, even by a
small degree, is typically incompatible with strict definitions of privacy preservation (see Section 2).
Desfontaines et al. [36] show that the privacy preserving effect of HLL directly relates to the size
of a set, with smaller sets having a larger vulnerability. The authors conclude that HLL sets with
10,000 elements feature a strong privacy-preserving effect, sets with 1000 elements have a noticeable
decrease in privacy preservation, and sets with less than 1000 elements demonstrate a weak privacy
preserving effect (ibid., p. 14).

Next to the size of sets, several parameters affect the accuracy of cardinality estimation, and
therefore indirectly the privacy preserving effect. For example, the number and width of buckets
can be tuned for different needs. With a parameter setting of log2m = 11 (the logarithm to the base
2), the number of used registers would be 2048. In this case, the relative error of estimation will
be ±1.04/

√
(2|log2m) = ±2.30%. In combination with a default register width of 5 (regwidth = 5),

the implementation of Citus HLL allows adding a maximum number of 1.6 × 1012 items to a single
set—a number that is difficult to express in non-scientific notation. For comparison, using a regwidth of
4 and a log2m of 10 already reduces the maximum number of items that can be estimated to 12 million,
with a relative error of ±3.25% (for references to the above, see the online documentation). From a
privacy perspective, it is recommended to use the smallest possible parameter settings, which depend
on the expected maximum size of HLL sets. In our case, the Flickr YFCC100M dataset encompasses
100 million total post IDs, which is why we used the default settings of log2m = 11 and regwidth = 5.
For many other datasets, smaller parameter settings will be possible.

Entirely unrelated to the function of HLL, but recommended from a privacy perspective,
a cryptrographic hashing function can be added in a preceding step (step 2, Figure 1). This effectively
prevents typical intersection attacks because an adversary cannot generate the hash for a known
original ID, without knowing the secret key. In our implementation, we use Postgres HMAC function,
using SHA256 and a secret key with a length of 160 bits. The consequences on privacy and utility in our
spatial setting are later evaluated in Section 6.3 (Privacy trade-off). Lastly, and rather implementation
specific, is that HLL sets are sequentially promoted to three different “modes” of operation: explicit,
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sparse, and full. For performance reasons, explicit and sparse mode provide a higher accuracy at lower
cardinalities. Since explicit mode stores original hashes fully, it obviously cannot provide any benefits
to privacy and should be disabled, which will promote any set directly to sparse (as suggested by
Desfontaines et al. [36], p. 15, who use “sparse” to refer to what we mean with explicit mode here).

While storing a single item in a HLL set is not the typical case of application, providing only weak
initial benefits to privacy, it helps to mark out some key functionality. For the sake of demonstration,
consider that all available user IDs in the YFCC100M dataset can be converted to individual HLL sets.
Unlike raw data, which consists of 581,099 unique items (k = 1), a naïve direct count of distinct items
of these individual HLL representations yields a number of 17,358 (for reproducing these numbers,
see calculations in Supplementary Materials, S5). Thus, it becomes obvious that multiple user IDs are
converted to the same HLL representation. This grouping originates from the randomization induced
by the hash operation. All of these individual HLL sets can be merged (a union operation), to produce
a single HLL set that can be used to estimate a cardinality of 589,475 (see Table 1).

Table 1. Total counts for different metrics based on raw and HLL data with default parameters (to
reproduce these numbers, see Supplementary Materials, S5).

Metric Exact (Raw) Estimated (HLL)

Coordinate count 12,764,268 12,756,691
User count 581,099 589,475
Post count 100,000,000 98,553,392
User days 17,662,780 17,678,373

Note that what is counted is entirely left to the analyst. In Table 1, a summary is provided for the
metrics used in this paper, with corresponding values collected on the basis of the YFCC100M dataset.
For clarity, while post and user count can be applied on a single identifier basis (iduser, idpost), distinct
coordinates and user days are measured by string concatenation (e.g., latitudepost ‖ longitudepost and
iduser ‖ idpost−publish−date, respectively). Thus, latitude and longitude, or dates, are treated as character
strings, which allows combination with other identifiers, such as user IDs, to form composite metrics.
This concatenation is applied before the cryptographic hashing and HLL transformation step (for the
exact process, see Supplementary Materials, S1).

Since HLL only allows counting distinct values, it is apparent that some information is required
as a reference for what is counted. This typically results in a two-component setup, where one part
is stored in clear text. In a spatial context, this clear text component will be the location identifier,
which is associated with the HLL set. It follows that any evaluation of privacy risks requires looking at
both the HLL and the location component.

4.4. Second Component: Location

In a scenario for monitoring spatial visitation patterns, as conceived in Section 3, at some point a
decision is made about at which level of granularity spatial information needs to be collected, and at
which granularity it should be visualized. Assume, albeit unlikely but illustrative, a goal to monitor
worldwide visitation patterns, at a very coarse granularity, such as in a grid of 100 km bins. In an early
phase of the project, it may not be possible to accurately predict whether 100 km will be sufficient.
Therefore, in a privacy–utility tradeoff, it may be decided to collect data at a slightly higher precision.
Frequently, such tradeoffs will not be binary but gradual, and can be evaluated using a number of
measures, such as k-nearest neighbor, t-closeness, l-diversity, or p-sensitive [53].

In terms of k-anonymity, a location (e.g., represented by a pair of coordinates latitude and
longitude) can be described as relating to any number of k ≥ 1 individuals (e.g., [54]). The general
idea is that data is found to be k-anonymous if a location refers to at least k− 1 other individuals [55].
The predicate of k-anonymity is typically compromised in the presence of (spatial) outliers [56].
To remove outliers, one solution is to decrease the spatial granularity. We use a simple GeoHash
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function to reduce granularity of coordinates in discrete steps from e.g., 10 to 1, similar to how Ruppel
and Küpper [57] combine GeoHashes with Bloom Filters. The GeoHash function is comparable to
“snapping” points to a grid, with 10 and 1 resulting in an average error rate stretching from 60 cm to
2500 km, respectively (ibid., p. 420). Based on this function, the global percentage of outlier volume
can be evaluated for decreasing spatial precision levels and for the metrics used in this paper (Figure 3).

Figure 3. Percentage of global spatial outlier volume (k = 1) in the Yahoo Flickr Creative Commons 100
Million (YFCC100M) dataset, for decreasing precision levels (GeoHash) and different metrics used in
this paper (to reproduce this graphic, see Supplementary Materials, S5).

Reflected in the graphic in Figure 3 is a common property of UGC, which is frequently unevenly
distributed, featuring heavy tailed patterns. For example, the total number of user outliers, at the
highest precision (10), is almost 100%, meaning that at each coordinate only one user is observed.
In contrast, about 80% of coordinates refer to at least 2 posts, meaning that the larger volume of
distinct posts is already clustered at the highest level of locational precision (also see [54]). This unequal
distribution becomes more noticeable at coarser granularities. At a GeoHash level of 5, referring to
an average “snapping distance” of 4 km, almost 80% of coordinates satisfy “k − 1”, that is, at least
2 individuals are present. However, there are many different evaluations of risk. Another method,
illustrated with the red line (user-coordinate outliers, Figure 3) is to check the total number of users
that could be compromised by having at least one coordinate in the total dataset with k = 1. This curve
only reaches 0% at a GeoHash precision of 1, likely representing a strong level of privacy, but also
resulting in spatial information that may be of no use anymore. Based on this evaluation, a GeoHash
precision of 5 may appear plausible for initially reducing the spatial granularity of input data. Note
that this number is entirely context dependent; it is used here for demonstration purposes only.

5. Case Study: Alex, “Sandy”, and “Robert”

The only way for an attacker to gain information about the contents of a HLL set is through an
intersection attack (Section 4.3). To better illustrate intersection attacks, and how, and under which,
circumstances privacy of a user could become compromised in the presented two-component research
setup, we briefly introduce two examples. Alex is a real user who is included in the YFCC100M dataset
because he published 289 photos under Creative Commons Licenses between 2013 and 2014 on Flickr;
120 of these photos are geotagged. Alex is one of the authors of this paper. Given this information,
it will be relatively easy to re-identify Alex. “Sandy” and “Robert”, instead, are fictional persons.

We use Sandy to describe an internal adversary. Sandy could be someone working at the Analytical
Service, with full access to the database. In the first example, the privacy of Alex is compromised
if Sandy could increase or confirm her suspicion that Alex was not at his workplace in Berlin on
9 May 2012. Robert, on the other hand, is someone representing an external adversary, with access
only to the published dataset. In this second example, the privacy of Alex is compromised if Robert
could increase or confirm his suspicion that Alex was indeed at least once at a specific location, e.g.,
contrary to what Alex claims. Finally, Alex could be someone who voluntarily contributed his pictures
to the conceived AS, or altruistically published Creative Commons photos on Flickr.
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Consider that, at the moment of contribution, Alex may not have thought of the consequences to
his privacy, but later realized his mistake. With the use of raw data, even removing any compromising
data from Flickr, this change would need to be reflected in any subsequent data collection, such as in
our fictional AS or the YFCC100M dataset. This is either impractical or impossible. The question is,
therefore, whether it is possible to replace raw data workflows with a privacy-aware visualization
pipeline, without significantly reducing utility. In the following, we first discuss and illustrate how
parameter choices made so far affect visualizations and the ability to use results, by comparing the
visualization process in parallel for raw and HLL data. In Section 6.3, we return to the two examples
illustrated here and evaluate, using the privacy-aware HLL data, whether the privacy of Alex could be
compromised through an intersection attack.

6. Results

6.1. Worldwide Visitation Patterns

To produce graphics of worldwide spatial visitation patterns, envisaged in a grid of 100 km bins,
spatial aggregation of data is required. We use a binary search to assign coordinates to discrete bins.
In a raw data setting, all distinct IDs (user ID, post ID, post publish date) must first be collected fully
per bin, until all data is available. Only afterwards, the number of distinct elements per bin can be
computed. In contrast, in a HLL data setting, all transformation steps (steps 1 to 4, Figure 1, Section 4.3)
can be applied on a single piece of information basis. In other words, the HLL transformation can
happen immediately, upon any new element arriving, for instance, in streaming contexts. This also
means that individual HLL sets for PC, UC and PUC are merged by incremental union per bin, until
all data is processed. The Supplementary Materials (S2–S4) include the procedural Python code to
produce the following graphics from raw and HLL data, respectively.

Before presenting more concrete results, we briefly summarize apparent differences in visuals and
processing workflow. Figure 4 compares graphics generated for exact and estimated user days per
100 km bin for a part of Europe. For classification, the head/tail breaks algorithm is used, which offers
a scheme that is specifically suited for data with a heavy-tailed distribution [58]. Head/tail breaks
automatically calculates the number of classes. For both raw and HLL data, head/tail breaks produced
seven classes. The 3 to 5% error rate of HLL is only noticeable in legend entries. In Figure 4, a total
number of two bins switch classes (i.e., change color), due to edge cases in the automatic classification
process (for graphics comparison, see Supplementary Materials, S7).

Figure 4. Comparison of automatic classification of raw and HLL user days for Europe (100 km grid).

All metrics for all bins can be interactively explored in a map interface (see Figure 5 and
Supplementary Materials, S8). Evidently, the values observed are within expected error bounds of
the HLL cardinality estimation (Section 4.3). In total, the differences that impact visuals are largely
imperceptible. In addition, the effort required to modify the visualization process, for compatibility
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with the HLL calculation, was found to be rather small, with the exception of some cumbersome
support for Python (compare notebooks raw/HLL, Supplementary Materials, S2–S3).

Figure 5. Screenshot of map for user counts per 100 km grid bin, allowing interactive comparison of
estimated values (HLL) and exact counts (raw) (see Figure A1 for a static, worldwide view of the map,
and Supplementary Materials S8 for the interactive version).

For an additional basis of comparison of tradeoffs between raw and HLL data processing, several
performance benchmarks have been collected in notebooks (see summary in Table 2 and code in
Supplementary Materials, S2–S3). The total size of data that is initially given to the visualization process
is 2.5 GB (raw) and 134 MB (HLL, sparse mode). For the sake of comparability, the difference of size for
explicit (281 MB) and full mode (3.3 GB) is given (Table 2). If both explicit and sparse mode are disabled,
the total size of HLL data is slightly larger than raw data because many small sets exist. For raw
data, the processing time to produce the worldmap differs for different metrics because computation
of the count of distinct items becomes more expensive for more complex metrics such as user days.
In contrast, HLL processing time for the incremental union of all sets to 100 km bins remains linear.
The memory peak observed for raw and HLL aggregation largely depends on parameter settings.
For union of HLL sets, any arbitrary chunk_size can be used to parallelize processing. In contrast,
for computation of the count of distinct items with raw data, all identifiers per bin must first be fully
available, limiting possibilities to reduce memory load.

Table 2. Performance benchmark results for raw and HLL data processing (100 km grid).

Context Raw Data HLL Data

Input data size of comma-separated values (CSV) 2.5 GB
Explicit: 281 MB
Sparse: 134 MB

Full: 3.3 GB
Output data size, 100 km grid (CSV) 182.46 MB 19.80 MB

Processing time (Worldmap)
Post count: 7 min 13 s
User count: 8 min 55 s
User days: 12 min 8 s

54.1 s (Post count, user count, user days)

Memory peak (Worldmap)
Post count: 15.4 GB
User count: 15.5 GB
User days: 19.3 GB

1.4 GB (Post count, user count, user days)

Benchmark data size (CSV) / 10.61 MB (bins with user count ≥ 100)

Lastly, Figure 6 shows the same grid for Europe, for post count and with a changed parameter
of grid_size = 50 (km). For such a change to the visualization pipeline to be possible at later time,
it is necessary to have a sufficiently accurate initial granularity of spatial information available.
While HLL sets can be merged seamlessly in a bottom-up manner, the lower threshold that is defined
at data collection time affects the ability to later reduce the grid size parameter. In our demonstration,
a GeoHash of 5 (4 km) perhaps illustrates a rather conservative tradeoff, towards more analytical
flexibility, but less service – internal geoprivacy.
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Figure 6. Estimated post count with a reduced grid size of 50 km for Europe.

6.2. Utility of Published Benchmark Data

Benchmark data containing all HLL sets for grid bins with user count ≥ 100 are made available as
Supplementary Materials (S9), equally reflecting a rather conservative tradeoff, towards more analytical
freedom. In our system model (Section 3.1), decision makers could use this data to further study data
patterns, in a limited manner, through the union and intersection capability of HLL. To illustrate this
further use of the HLL benchmark data released, we briefly illustrate an example here. Firstly, consider
that for two sets A and B, the union of the sets refers to the sum of all elements that appear in either one
of the two sets. This union operation can be expressed as |A∪ B|. The intersection, in contrast, is the
sum of all elements that appear in both sets and can be expressed as |A∩ B|. According to set theory [38],
unions can be used to calculate intersection. Following the inclusion–exclusion principle (ibid., p. 120),
the relation between intersection and union can be formally expressed as |A∪ B| = |A| + |B| − |A ∩ B|,
which can be transformed to |A∩ B| = |A| + |B| − |A ∪ B|. For three sets A, B and C, the formula
can be written as |A ∩ B ∩ C| = |A ∪ B ∪ C| − |A| − |B| − |C| + |A ∩ B| + |A ∩ C| + |B ∩ C|
(ibid.). Both union and intersection allow the quantitative evaluation of relationships between different
HLL sets such as common user visitation counts between different regions.

In Figure 7, grid cells are first selected based on centroid–country intersection for France, Germany,
and the UK, and merged to produce three sets (user count) for the three countries. Based on the
inclusion–exclusion principle, common user counts for several different groups are estimated.
The relative error rate compared to raw data processing is given in percentage numbers. The quality of
the intersection is not very reliable if the sets have very few overlaps or a large difference in size [59].
In our example, all sets are of almost equal size, with a total number of 24,318 (DE), 24,947 (FR), 31,290
(UK) distinct users having shared at least one photo from these countries. Only a small number of
2778 estimated users have shared a photo from all three countries.

Obviously, a limitation factor for the utility of the intersection capability is the relative error rate.
In Figure 7, high error rates with up to 16% are observed. These numbers are a combined result of two
factors. Firstly, the intersection of HLL sets may significantly amplify error bounds of original HLL
sets (ibid.). Secondly, the granularity of benchmark data with a 100 km grid is only limitedly suited to
be intersected with exact country borders. This is a consequence of working with pre-aggregated data
and is commonly referred to as the Modifiable Areal Unit Problem (MAUP, see [60]). MAUP explains,
for example, the large error rate of 12.6% overestimation for Germany, and it is also obvious for France,
where no bin was selected for Corsica based on country–centroid intersection. In Figure A2, Figure 7
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was generated based on a reduced grid size parameter of 50 km, which significantly reduces error
rates from MAUP.

Figure 7. Analyzing spatial relationships with HLL intersection, based on incremental union of user
sets from benchmark data (100 km-grid) for France, Germany and the United Kingdom (left). The Venn
Diagram (right) shows estimation of common user counts for different groups, and the percentage of
error compared to raw data. The same graphic, generated for 50 km grid size, is available in Figure A2.

6.3. Privacy Trade-Off

The union –intersection capability of HLL opens up an increased utility of data, but at the same
time introduces the possibility of intersection attacks (see Section 4.3). Several factors must coincide
for intersection attacks to be successful. Firstly, an adversarial must have access to HLL sets. In our
system model, this can either be an internal adversary (“Sandy”), having direct access to the database,
or an external adversary (“Robert”), having access only to published benchmark data (see Section 5).
Furthermore, an adversary must be able to either compute hashes for a given target user, or somehow
gain access to a computed HLL set for the given user. The former is only possible if the secret key
is compromised. The latter appears conceivable, in our example, if the adversary has some prior
knowledge about other locations visited by a target user, and if the HLL sets of these locations ideally
contain only the target user or a few other users. In the following, we explore this worst-case scenario,
where both “Sandy” and “Robert” (see case studies, Section 5) somehow got hold of a HLL set that
only contains Alex’s computed hashes.

For “Sandy”, this means in order to test whether Alex was not in Berlin on 9 May 2012, she either
needs Alex’s original user ID and the secret key to construct the user day–hash, or find another location
(e.g., a grid bin) that has only been visited by Alex on this date. In this unlikely scenario, the result of
an intersection attack for all grid cells is shown in Figure 8. Visible in the figure is that a large number
of other grid cells show false-positives for the intersection test, that is, these HLL sets did not change,
even when updated with the particular user day-hash for Alex. Since HLL prevents the occurrence
of false negatives, and San Francisco is indeed among these locations, the result does include Alex’s
actual location on 9 May 2012. Depending on the size of the targeted HLL set, Sandy may then increase
her suspicion by some degree. In case of the grid cell for San Francisco, with 209,581 user days,
this increase in posterior knowledge may be found to be negligibly small. In other words, even if there
was no post from Alex on 9 May 2012, the intersection attack may have produced the same result,
providing a differentially private situation. In conclusion, even in the worst scenario, having direct
access to the database and a compromised secret key, Sandy could not gain any further corroboration.
Similarly, and rather incidentally, the positive grid cell for Berlin does indeed falsely suggest that Alex
was in Berlin. This is not surprising given that larger HLL sets have a higher likeliness of showing
false positives, and Berlin is a highly frequented location. In other words, Alex benefits from the
privacy-preserving effect of HLL, by “hiding in the crowd” [27] (p. 2).
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Figure 8. Alex case study, evaluation of scenario “Sandy”.

In the second scenario, consider a situation in which “Robert” may have an a-priori suspicion that
Alex went to Cabo Verde. Alex, on the other hand, does not want Robert to know that he went surfing
without him. Robert knows that Alex is participating in the conceived AS and, somehow, gains access
to a HLL set containing only one hashed user ID from Alex. The results of the intersection attack for
all grid cells are shown in Figure 9. Since only 56 users have been to Cabo Verde in the YFCC100M
dataset, the particular bin is not included in the published benchmark data, which is limited by a
minimum threshold of 100 users. However, with direct access to the database, Robert could observe
that Cabo Verde is among the locations revealed. In this case, Robert may gain some corroboration for
his suspicion that Alex was in Cabo Verde. At the same time, a definite answer will not be possible,
given the irreversible approximation of the HLL structure. For example, for the same intersection
attack, for set sizes below 56 users, there are 14 other grid cells that show false positives, down to
eight users (for a comparison of these numbers, see Supplementary Materials, S6). In other words,
even though these HLL sets do not change when tested, Alex has never been to these locations, adding
further noise to the results.

Figure 9. Alex case study, evaluation of scenario “Robert”.

While these two scenarios provide a base to understand how intersection attacks may be executed
in a spatial setting, a valid question is how likely successful intersection attacks are overall. To some
degree, this depends on questions of security, such as protecting the secret key, or managing database
access, which cannot be fully covered in this work. Another part is directly related to the distribution of
collected data and the number of outliers that are present at each stage of data processing (see Section 4.4).
If data is more clustered, users will generally receive more benefits from the privacy-preserving effects
of HLL. This can be quantitatively substantiated with the given dataset. For example, at data collection
time, with a Geohash of five, there are 226,025 locations that contain only one user ID. Compared to
raw data, this represents only 1.77% of the total distinct locations available in the YFCC100M dataset.
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Furthermore, only 50,358 users (8.43%) have visited one of these locations at least once, providing an
upper bound to the possibility of intersection attacks, based on a fully compromised database. Privacy
risks are further mitigated with data aggregated to 100 km bins. A total of 3354 grid bins (26.64% of total
grid bins with data) have a user cardinality of one. These grid bins contain only 1833 users, reflecting
the small minority of “adventurous” users who have visited at least one bin where no other user has
been. In an adversarial situation of a fully compromised database, these adventurers will receive little
benefits from the privacy-preserving effects of HLL. However, this group also only represents 0.31%
of total users in the YFCC100M dataset and the set of possible conclusions that can be drawn from a
successful intersection attack is severely limited. Finally, 41,582,251 of posts are included in HLL sets
of bins (100 km) with post count ≥ 10,000, which feature a strong privacy-preserving effect according
to [36]. This represents 85.79% of all geotagged posts in the YFCC100M dataset (for calculations of the
numbers above, see Supplementary Materials, S5).

7. Discussion

In the puzzle piece of privacy-aware and privacy-preserving components, practical obstacles of
implementation and the cost of making existing workflows compatible with privacy continue to impede
wider adoption [31]. This is specifically problematic in areas where user privacy, albeit recognized
as beneficial, is not a fundamental requirement. Here, HLL may fill in a gap, by featuring ad-hoc
capabilities that can generally improve workflows, while still allowing some flexibility of analysis.
However, as has been shown by others, the privacy-preserving side effect of HLL can be weak under
certain situations. Practitioners could rationally reach opposite conclusions regarding whether the
benefits outweigh the costs in particular contexts.

The results in this article provide a range of measures, specifically suited for evaluating the
privacy–utility tradeoff connected to the use of HLL in the context of spatial data processing. In the
context of streaming applications for VGI and crowdsourced geographic information, a distinct
advantage is that raw data can be immediately split into its atomic pieces, upon any new elements
arriving. This allows reducing the overall data footprint of visual analytics at data collection time.
Equally, direct relations between data, such as user IDs, post IDs, or user days, which are among
the most problematic attributes from a privacy perspective, can be dissolved before data is stored.
This largely reduces possibilities to re-use data beyond the original context considered. In this paper,
this has been demonstrated for the most popular metrics, user count, post count and user days,
which are currently used in decision-making to analyze e.g., spatial activity. Unlike with raw data,
tracking a single user across several locations is impossible with absolute certainty given the HLL data.

At the same time, some flexibility to further explore data remains open. By using the exclusion–
inclusion principle, patterns of data and relationships can be quantitatively evaluated, as demonstrated
with the identification of common visitor counts for Germany, France and the UK (Section 6.2).
Information like this may be used in decision-making, as a privacy-aware proxy, for analyzing
tourism behavior or important cultural connections between groups of different people. Similar
information is considered as an important basis to evaluate, for instance, socio-spatial inequality [61].
In natural resource management, particularly highly frequented places may be monitored using the
data structure presented here, providing insights into user behavior without compromising user
privacy. Just one example application could be to monitor and mitigate the negative impact on vantage
points that are overrun by Instagram followers, as a consequence of influencers and the global spread
of information [62]. From a broader point of view, the approach presented here could also be applied
to other spatial problem solving contexts, for example to Spatial Delphi [63], as a means to seek
anonymous expert opinions’ convergence.

We specifically and deliberately refer to the approach illustrated herein as “privacy-aware”, instead
of privacy-preserving, because additional considerations and risk mitigation strategies are required
to render intersection attacks more difficult and less efficient in practice. Among those discussed,
protecting the secret key that is used to create hashes is perhaps most important. Protecting a secret key
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is simplified by the ability to parallelize and containerize computation of HLL sets and because analysts
do not need to know the key to be able to work with the data. For example, a separate Sketching Service
can be used to create hashes (see Figure 2, Section 3.1), which can be operated separately from the
conceived Analytical Service. In pro-active collaboration scenarios (see Figure 2, Section 3.1), further
improvements appear possible, such as signing hashes on user devices, with keys only known to the
users themselves. A measure to effectively prevent intersection attacks, as suggested by Desfontaines
et al. [36] (p. 15), is to use different keys for different HLL sets. In our case, hashes for each grid bin
could be created with a different key, rendering intersection attacks much more difficult. However,
this would also remove any ability to use data beyond cardinality estimation. Finally, an important
measure to gradually reduce vulnerability, particularly when publishing datasets, is to limit HLL sets
by a lower threshold. Higher thresholds will increase the average privacy of users, but also limit
application to relatively large data collections.

From this point of view, HLL may be particularly suitable as a first step towards more user
privacy, with little or no detrimental effect on the quality and utility of results, including the promise
of improved performance. Based on these benefits, HLL offers a largely untapped potential to replace
many data processing pipelines that currently still use raw data. The performance benchmarks collected
in Section 6 and example code published may underpin this development for spatial visualizations.
Finally, all measures described above are complementary. They can be supplemented by more robust
solutions, such as adding noise, for satisfying stricter notions of privacy.

Notwithstanding the many ways in which the presented visualization setup could be used and
applied, the method described herein constitutes an integrated approach with limited consideration of
related spatial visualization methods, and it was only tested on one specific data set. Some spatial
visualization techniques, such as the one presented herein, may be more suited to be combined with
HLL than others. It would be interesting, for example, to classify visualization techniques based on
their ability to be combined with PDS. Another direction could be to use more advanced methods
for automatically classifying the sensitivity of HLL sets at various stages, such as that presented by
Reviriego et al. [64], or more formally evaluating the privacy–utility tradeoff, such as those presented
by Feyisetan et al. [27] or Desfontaines et al. [36]. From an application-oriented perspective, it would be
interesting to apply the presented two-component HLL setup to data beyond locations, such as topical
and temporal information (e.g., tags, dates), with the ability to study a broader set of relationships
through intersection.

8. Conclusions

HLL and other PDS open up a relatively new direction for visual analytics, which is specifically
suited to exploration in combination with visualization techniques that focus on identifying patterns of
data and contexts where definite answers are not a requirement. This makes HLL particularly suited
for large data collections, such as those frequently encountered with VGI and publicly crowdsourced
geographic information. As a side effect, HLL allows an increase in the privacy of volunteers at data
collection time, with the ability to further and gradually tune risks during multi-step and multi-criteria
decision-making processes. In a limited application scenario, this has been shown for spatial activity
analysis in the present study. From a utility perspective, the results suggest that little to no compromises
are necessary to transition workflows. Furthermore, HLL provides benefits beyond an increase in
user privacy such as performance improvements, a reduced storage need, or improved encapsulation
of processing pipelines. The results shown in this paper provide a base for evaluating a number of
additional utility trade-offs when transitioning workflows, particularly for spatial data processing
techniques. The provided notebooks can serve as a basis for adaption to other contexts.

Limitations apply for application contexts that require exact guarantees for privacy preservation.
In spatial scenarios, such as the one presented herein, the privacy-preserving effect of HLL can be
weak in the presence of outliers. While outliers can be reduced by different techniques, additional risk
mitigation strategies are required to make the approach compatible with stricter notions of privacy,
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such as adding noise or data exclusion. Several of these strategies are discussed in this paper. Whether
the benefits outweigh the costs is context-dependent and practitioners are encouraged to consider a
combination of techniques, rather than focus on one particular solution, as is presented for purposes of
isolation in this paper.

Supplementary Materials: The following are available online at http://www.mdpi.com/2220-9964/9/10/607/s1,
Jupyter Notebook S1: 01_preparations.html, Jupyter Notebook S2: 02_grid_agg_raw.html, Jupyter Notebook S3:
03_grid_agg_hll.html, Jupyter Notebook S4: 04_interpretation.html, Jupyter Notebook S5: Figure2_outlier_
analysis.html, Jupyter Notebook S6: Privacy_test_alex.html, Interactive comparison of graphics (HTML) S7:
yfcc_compare_raw_hll.html, Interactive Map S8 (Figure 5): yfcc_usercount_est.html, benchmark data (CSV) S9:
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Appendix A

Figure A1. Worldwide map of estimated user counts (YFCC) per 100 km grid bin.

Figure A2. Figure 7 generated with 50 km grid size parameter and corresponding error rates.
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