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Abstract: The unnatural panoramic image transition between two adjacent viewpoints reduces
the immersion and interactive experiences of 360◦ panoramic walkthrough systems. In this paper,
a dynamic panoramic image rendering and smooth transition algorithm for adjacent viewpoints
is proposed. First, the feature points of adjacent view images are extracted, a robust matching
algorithm is used to establish adjacent point pairs, and the matching triangles are formed by using
the homonymous points. Then, a dynamic transition model is formed by the simultaneous linear
transitions of shape and texture for each control triangle. Finally, the smooth transition between
adjacent viewpoints is implemented by overlaying the dynamic transition model with the 360◦

panoramic walkthrough scene. Experimental results show that this method has obvious advantages
in visual representation with distinct visual movement. It can realize the smooth transition between
two indoor panoramic stations with arbitrary station spacing, and its execution efficiency is up to
50 frames per second. It effectively enhances the interactivity and immersion of 360◦ panoramic
walkthrough systems.
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1. Introduction

A 360◦ panoramic walkthrough system is a kind of virtual reality technology based on the
sequenced panoramic images. The image-based method enables walking through space much more
easily than using 3D modeling and rendering. It is widely used in 3D visualization, virtual reality and
augmented reality because of its easy data acquisition and processing, low bandwidth requirements,
high resolution, strong authenticity and good navigation on cheap hardware display devices [1].
Panoramic view is a new type of map service that displays 360◦ panoramic images taken in cities,
streets, museum and other places in the form of a 3D street view based on 360◦ panorama technology.
Users can use street view services to obtain an immersive experience by roaming around the 360◦

and 3D simulation scene without visiting the place. These services overcome the shortcomings of a
traditional map, which is incapable of delivering a real scene. Thus, street view services are highly
significant for applications research [2].

Since panoramic image acquisition occurs on some limited and discontinuous sites, there are two
main problems in a 360◦ panoramic walkthrough system compared to a general virtual reality system.
First, the observation is limited to a few specific roaming points. Users can not freely move in the
scene, and wandering can be realized only when there is only one viewpoint in the scene. Second,
skipping occurs between roaming points, and the transition is unnatural, which seriously affects the
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walkthrough experience [3,4]. It is difficult to solve the previous problem without increasing the
density of panorama stations and building a true 3D model. The latter problem can be compensated
for by the visual effect of the smooth transition between the viewpoints, which is also the subject of
this paper.

The smooth transition between the viewpoints can be used in compressing video sequences
with high compression rates, virtual tourism and entertainment, 3D scene displays of real estate and
public security, etc. The smooth transition algorithm for adjacent panoramic viewpoints is crucial for
improving the user experience of the 360◦ panoramic roaming system, the practicability of indoor
panoramic exhibition applications, and the usability of indoor panoramic navigation applications.

By summarizing the most current panoramic systems, there are several kinds of visual smoothing
methods used in panoramic site transition:

(1) Skipping directly from one panorama site to another dismembers the relationships between the
panoramic sites. The large flicker in the scenes can disorient the user. Unfortunately, most of
the existing panoramic walkthrough systems use this skip mode to transition between adjacent
sites without any strategies to mitigate this poor visual experience [5]. To achieve a smooth
transition between adjacent panorama sites, four common transition methods have been studied in
previous research, including the texture transparent gradient, noise interference, model stretching
and parallax.

(2) The texture-transparent gradient method reduces the flickering by linearly interpolating a series
of panoramic images and fusing the colors of the two panorama sites [6]. This method is simple
and easy to implement, and it has steady visual effects at the beginning and end of the transition.
However, an obvious ghosting occurs when the transition approaches half. In some game
scenarios, noise interference is a common method of scene transition. The method disperses
the user’s attention by generating some “noise” in the field of vision; this distracts the user’s
attention from the unnatural scene transition, and the “noise” is usually the jitter, distortion, or
change in the hue of the pixels on the screen [7]. The method is essentially a visual deception,
and the effect is limited.

(3) The model stretching method is based on a simple assumption that a feeling of “going in” is
available by stretching the scene from the center of the view to the periphery, since the display
effect will be magnified to different degrees as the distance from the objects in the visible area to
the viewpoint is closer during the transition between sites. It can give the user a sense of moving
forward using a simple image stretching process. This method can be applied to outdoor scenes
with a broad perspective and relatively wide distances from objects to the viewpoint, especially in
the street view with a layout arranged along the road [8,9]. However, because of the greater space
shielding and smaller distance from objects to the viewpoint indoors, the stretching treatment
will give an exaggerated sense of space displacement that is unnatural and unrealistic.

(4) In recent years, parallax based on human eye perception has been introduced into panoramic
image roaming to improve the transitional effect, which includes full parallax, tour into the picture
and fake parallax [10,11]. The full parallax method requires the support of fine 3D models, but
the general panoramic walkthrough system does not have the necessary data. The fake parallax
method only extracts the rough geometric information and the color layer of the background,
and it simulates the parallax effect using a simple translation and zooming. Parallax is used
mainly to smooth the observations from moving around while keeping eyes on an object. There
are some marked differences in the direction and scale of motion between moving around and
panorama scene transition.

To solve the problems of the destroyed spatial relationships among the panorama stations, and the
disorientation caused by the inability of the user to perceive the change in position during panorama
scene transition, a dynamic panoramic image rendering algorithm for smooth transitions between
adjacent viewpoints in indoor scenes is proposed in this paper. Based on the principle of using
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homonymous points to guide graphics deformation, pairs of matched triangular patches are formed by
homonymous points; then, a smooth interpolation of shape and texture is made with triangular patches
as units to dynamically generate a panorama for each frame. This method dynamically constructs the
sequence panorama with motion sensing during the transition. This makes the scene transition as real
as walking in a three-dimensional scene, and effectively avoids the spatial disorientation.

Experiments using indoor panoramic images collected by different equipment and different
distances between stations are performed. The results show that the proposed method can realize
adaptive smooth transition between different scenes with a rendering efficiency of nearly 50 fps
(frames per second), which effectively enhances the interactivity and immersion of the panoramic
roaming system. Compared with similar research work, the special points of this paper are as follows:

(1) In the indoor space with a relatively regular layout but serious occlusion, instead of drawing
matching points manually [12], we construct matched triangular patches by using the method of
obtaining feature points and lines after panoramic orthophoto projection.

(2) We use barycentric coordinates to perform the panoramic transition algorithm directly on the
spherical panoramic model, instead of the transition of the cylindrical panoramic image [13] and
the cube panoramic image [14].

(3) The idea of our panoramic transition algorithm is similar to [15], but we constructed a panoramic
system with a panoramic deformation layer, and analyzed its visual effect, practicability and
operation performance in detail.

To illustrate the problem about the unnatural panoramic transition and better understand the
dynamic panorama transition method, the videos named “problem of panoramic transition.mp4” (https:
//youtu.be/R_lW1Xz8QNc) and “smooth panoramic transition using matched triangular patches.mp4”
(https://youtu.be/xQyqiUuLPCI) are provided as an attachment for readers.

2. Methods

To overcome the jumping between the panoramic images of adjacent viewpoints, the graphics
deformation principle is presented for the matched triangle in the adjacent panoramic images.
The panoramic images are divided into many matched triangular patches. The matched triangular
patches are then taken to implement graphical deformation to realize smooth transitions between the
panoramic images of adjacent viewpoints. The schematic diagram of the basic principle is shown in
Figure 1. Transitional frames are generated by the smooth interpolation of the shapes and textures of
all matched triangular patches.
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As Figure 1 shows, the panorama scene transitions from the current site to the next site are
controlled by the transition of yellow triangular patches with a blended texture that are formed by
fading out the current panorama A and fading in the next panorama B. The white triangle in the center
of the view is enlarged with a slight deformation, but the red, blue, green, and black triangles are
obviously stretched because of the transverse Mercator projection.

To achieve the smooth panorama transition between adjacent viewpoints with frame rates of
no less than human visual perception, the production workflow is designed as shown in Figure 2.
The proposed method is divided into three parts. First, the triangular patches for controlling transitions
are generated from the feature points of panoramas by a triangulation algorithm featured by maximizing
the minimum angles. The above work is detailed in Section 2.1. Then, we morph the triangular
patches on the surface of a 3D panorama sphere while fading out texture A and fading in texture B.
The principles and algorithms involved in this section are presented in Sections 2.2 and 2.3. Finally,
a strategy for implementing the panoramic walkthrough system, which is equipped with a dynamic
panoramic image rendering algorithm for smooth transitions between adjacent viewpoints by overlying
the morph model layer, is described in Section 2.4.
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2.1. Generation of Matched Delaunay Triangular Patches

The solutions of the panoramic image matching problem can be roughly divided into three
categories. First, Bay et al. [16] directly applied the existing techniques for general frame image
processing to panoramic images. The algorithm is simple, but the special geometric deformation of the
panoramic image has a profound influence on the matching results. Second, the feature extraction and
various operations are directly performed in the spherical scale space, and the matching accuracy is
high, but the model is complex and difficult to implement. The rigorous spherical geometry model was
adopted to map the panoramic image onto the sphere. The image function was expressed in the form
of a spherical harmonic function, and various operations are carried out in the spherical scale space
in [17]. Third, Mauthner et al. [18] proposed a virtual imaging surface for matching that is generated
by resampling the panoramic image according to the perspective projection model, but the obtained
feature matching is relatively limited.
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In this paper, the way to obtain homonymous points referenced in the method of the virtual
imaging surface (the third solution above) is shown in Figure 3.
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Figure 3. Generation flow chart of triangular patches for controlling transition. The green arrow
represents the direction of execution of the local projection, and the red arrow represents the direction
of execution of the back projection. The picture at the bottom right shows the extracted control
triangular patches.

First, the panoramic image is projected onto a cube to form six local planes, and the homonymous
feature points are extracted by the classical SIFT (Scale-invariant feature transform) on all local planes.
Then, a following back projection converts these points back into the image coordinates. Finally,
triangular patches are generated by the triangulation algorithm from homonymous points. Based on the
preferred homonyms points, the Delaunay triangulations algorithm is used to generate the triangular
patches [19]. It tends to avoid sliver triangles because it maximizes the minimum angle of all the
angles of the triangles in the triangulation. Moreover, a Delaunay triangulation for a given set P of
discrete points in a plane is a triangulation DT(P) such that no point in P is inside the circumcircle of
any triangle in DT(P). This ensures that no control faces intersect.

2.2. Synchronous Morphing of the Shape and Texture

Based on the idea of the transition guided by control points, we use triangular patches as the
basic control unit to transform the adjacent panorama. As the simplest surface element, a triangle’s
transition is shown in Figure 4. With the increase from 0 to 1, a triangle’s deformation is accomplished
by simultaneously changing the triangle shape and the interior point texture. The original triangle
(red) is displayed on the left, the target triangle (blue and green) is displayed on the right, and the
gradual triangles (from 1/4 to 1/2 to 3/4) become narrower and greener. The solid black spots indicate
the movement of the triangle’s vertices, and the hollow spots express the textural interpolation of
interior points.
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When a triangular surface is deformed, the positions and textures of its interior points need to be
changed. In the Cartesian coordinate system, this operation requires a large number of interpolated
calculations. However, in the Barycentric coordinates system, this operation becomes easy due to an
important property in which the barycentric coordinates of each point in the triangle remain during a
linear deformation [20].

According to the definition of the Barycentric coordinates, considering a triangle ∆ABC defined by
its three vertices, A(x1, y1), B(x2, y2) and C(x3, y3), any interior point p in ∆ABC can be expressed as a
linear combination of three vertex coordinates p = λ1 ∗A + λ2 ∗ B + λ3 ∗C, where λ1,λ2,λ3 ≥ 0 and
λ1 + λ2 + λ3 = 1; the combination of parameters (λ1,λ2,λ3) is regarded as the Barycentric coordinates
of point p. Specially, the vertices themselves have the coordinates A = (1, 0, 0), B = (0, 1, 0) and
C = (0, 0, 1).

Setting an interior point p with the Cartesian coordinates (x, y) and the Barycentric coordinates
(λ1,λ2,λ3), there is the following deduction:

(1) The transformation equation from Barycentric coordinates to Cartesian coordinates can be
described as follows: [

x
y

]
=

[
λ1x1 + λ2x2 + λ3x3

λ1y1 + λ2y2 + λ3y3

]
, (1)

(2) The transformation equation from Cartesian coordinates to Barycentric coordinates can be
described as follows: [

λ1

λ2

]
=


(y2−y3)(x−x3)+(x3−x2)(y−y3)

((y2−y3)(x1−x3)+(x3−x2)(y1−y3)
(y3−y1)(x−x3)+(x1−x3)(y−y3)
(y2−y3)(x1−x3)+(x3−x2)(y1−y3)

 (2)

The synchronous shape morph and the texture interpolation of a triangle can be realized by
Algorithm 1 with the following steps.

1. At the moment that a in triangle ∆ABC transitions to a new position in ∆A′B′C, the coordinates
of three vertices are the linear interpolation of the beginning and end positions in the Cartesian
coordinates system as in Equation (3).

Pα = Po + α ∗ (Pt − Po ), (3)

where Po is the beginning coordinate, Pt is end coordinate, and Pα is the coordinate at the moment α.
2. For each interior point v in ∆ABC, a blended texture should be calculated. To blend the texture

of the origin triangle To with the texture of target triangle Tt, the corresponding position of v
in ∆A′B′C′ should be calculated by Equations (1) and (2). After we get obtain the Barycentric
coordinate vb of vo in ∆ABC, the Cartesian coordinate vt of vb in ∆A′B′C′ can then be obtained.

3. The texture of the interior point v can be interpolated according to the corresponding texture To

and Tt of vo and vt. The color interpolation follows Equation (4).

Tα = (1− α) ∗ To + α ∗ Tt , (4)
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4. A temporary triangle is meshed by the new shape and blended texture at moment α.

Algorithm 1. Synchronously Morph the Shape and Interpolate the Texture of a Triangle

Input: the origin triangle Po, and the target triangle Pt, the progress α
Begin

interpolate three vertices of triangle Pa using Equation (3)
for each interior point V in Po do

Vbe f ore is the Cartesian coordinate of V before the transition

Vmiddle = Cartesian2Barycentric
(
Vbe f ore

)
, in Po

Va f ter = Barycentric2Cartesian(Vmiddle), in Pa

Tnew = Equation4(α, V), the texture at V
end
build new mesh Ma by the Va f ter[] and Ta[]

End

2.3. Transition between Adjacent Panoramic Viewpoints

The transition from panoramic site A to panoramic site B can be accomplished by dividing
panoramic scenes into corresponding patches (Section 2.1), and then performing morphing operations
(Section 2.2) on these patches. The process of transition from panoramic site A to B follows Algorithm 2.

Algorithm 2: Transition the Panorama from A to B

Input: two site panorama images IA, IB, the control triangular patches T
Begin

mapping IA and IB to T j , j ∈ {1..M}
initial state Current_View = IA
Loop: progress a from 0.0 to 1.0

for each triangle P in T do
Fa + = Algorithm1(P) on Spherical coordinate

end for
Current_View = Fa.

end loop
final state Current_View = IB

End

1. Initially, panoramas of the current station I(a) and the next station I(b) are mapped to each T j to
initialize the triangular patches. The current view shows the panoramic site A, meaning that I(a)

is fully visible and I(b) is completely transparent.
2. At each moment α during the transition (more than 50 frames), each triangle in the control

triangular patches transitions to a new status using Algorithm 1. Stitching all new status triangle
together, a current frame Fa was formed to update the panoramic view.

3. The end-state shows the panoramic site B with fully visible I(b) and completely transparent I(a).

The middle textures I(a) (b) are formed by collecting all Fa. Figure 5 shows a sample of the middle
textures generated by the smooth transition algorithm using the matched Delaunay triangular patches
of two adjacent viewpoints.
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Figure 5. Middle textures generated by the smooth transition algorithm. The panorama scene transitions
from the current site to the next with the process ranging from 0.0 to 1.0. The control patches transition
from a small piece on the sphere to a hemi-spherical surface as the viewpoint moves forward.

The extra fact to note is that a spherical interpolation function is used instead of a linear
interpolation function to morph the triangles in the spherical space. According to Liem [21], the linear
interpolation on longitude and latitude coordinates is equivalent to the spherical interpolation on
Cartesian coordinates when the pixel coordinates are proportional to the spherical longitude and
latitude on the panorama with an aspect ratio of 2:1. Therefore, the morphing mesh’s transition can
fully perform based on Section 2.2.

2.4. Dynamic Panoramic Image Rendering

According to the transitional method described in Section 2.3, a set of dynamic textures I(a) (b)

was collected. Therefore, the natural transitional effect of the panoramic scene can be achieved by
“playing” the dynamic textures I(a) (b) on the panoramic ball. This strategy is easy to implement but is
inefficient, because it requires the constant formation of new textures and retexture mapping, which on
a large image requires serious CPU and memory consumption.

The dynamic panoramic ball display strategy was proposed as shown in Figure 6. To avoid
repeated texture mapping, a morphing mesh is added between the experiencer’s eyes and the regular
panoramic ball as a model layer. Therefore, the panorama of site A or B is displayed to the users when
roaming a fixed site, and the morphing mesh is displayed to users when jumping between sites.
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The implementation of the dynamic panoramic image rendering algorithm for smooth transitions
between adjacent viewpoints based on matched Delaunay triangular patches is shown in Figure 7. More
specifically, a spherical triangular mesh was generated by three-dimensional Delaunay triangulations.
Then, the dynamic morph layer was implemented by transitioning between adjacent panorama sites
on the sphere.
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3. Experiments and Results

3.1. Experimental Environment and Dataset

To comprehensively and effectively test the effect of this method, two datasets were collected by
different acquisition equipment in different scenarios. Table 1 shows the collected panoramas and the
corresponding acquisition equipment. The experimental data and results involved in this article can
be obtained at https://github.com/zpc-whu/panoramic-transition.

Table 1. Experimental datasets.

Dataset Name Dataset-1. Traditional Panoramic
Image Collection

Dataset-2. Mobile Mapping with Multiple
Sensors Integrated

Scenario Digital Museum Indoor Mapping

acquisition equipment
the camera consists

of 6 Nikon
(AF-S 24–70 mm) lenses
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Dataset-1 consists of two panoramic pictures of a museum. These pictures are taken by a high-
definition assembly camera with six lenses through the traditional station measurement in an digital 
museum construction project. The resolution can reach 20,000 × 10,000. The visual effect and accuracy 
testing of the proposed method is executed using these two panoramas. 

Dataset-2 consists of seven panoramic pictures of a library, taken by a camera with six cheap 
XiaoYi lenses carried on the latest efficient indoor mobile measurement trolley during an indoor 
mapping project. The resolutions are 4096 × 2048. The robustness experiment of the proposed method 
is executed using these seven panoramas with six tests with distances from the cur-rent site to the 
destination site of 1 m, 2 m, 3 m, 5 m, 10 m, and 15 m. 

3.2. Equations Visualization Performance 

The visual effect and accuracy testing of the proposed method is executed using Dataset-1. The 
visualization performance is shown in Table 2. The first column in the table is the transition schedule. 
It proceeds from 0 to 1 to complete the entire transitional process. Particularly, views of 11 moments 
(1%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,90%, and 99%) are selected to show the visual effects 
of the transitional methods. In contrast, the second column shows the results of the commonly used 
texture transparent gradient method, and the third column shows the results of the proposed method. 
The fourth column shows the deformation motion of the control triangular patches during the 
transition to better understand the principle of the proposed method. 

Table 2. Visualization performance of the proposed method compared with the texture transparent 
gradient method. 

a 
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Method The Proposed Method 
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Patches 
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Dataset-1 consists of two panoramic pictures of a museum. These pictures are taken by a
high-definition assembly camera with six lenses through the traditional station measurement in an
digital museum construction project. The resolution can reach 20,000 × 10,000. The visual effect and
accuracy testing of the proposed method is executed using these two panoramas.

Dataset-2 consists of seven panoramic pictures of a library, taken by a camera with six cheap
XiaoYi lenses carried on the latest efficient indoor mobile measurement trolley during an indoor
mapping project. The resolutions are 4096 × 2048. The robustness experiment of the proposed method
is executed using these seven panoramas with six tests with distances from the cur-rent site to the
destination site of 1 m, 2 m, 3 m, 5 m, 10 m, and 15 m.

3.2. Equations Visualization Performance

The visual effect and accuracy testing of the proposed method is executed using Dataset-1.
The visualization performance is shown in Table 2. The first column in the table is the transition
schedule. It proceeds from 0 to 1 to complete the entire transitional process. Particularly, views of
11 moments (1%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,90%, and 99%) are selected to show the
visual effects of the transitional methods. In contrast, the second column shows the results of the
commonly used texture transparent gradient method, and the third column shows the results of the
proposed method. The fourth column shows the deformation motion of the control triangular patches
during the transition to better understand the principle of the proposed method.

Table 2. Visualization performance of the proposed method compared with the texture transparent
gradient method.

a Texture Transparent Gradient Method The Proposed Method Control Triangular Patches

0.0
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Table 2. Cont.
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In Table 2, comparing the scenes in the third column with the scenes in the second column,
the method proposed in this paper has obvious advantages over the existing the texture transparency
gradient method. There was a slight ghosting only at the progress of approximately 50% using the
proposed method, but there was a severe ghosting between 30% and 70% using the transparency
gradient method. Moreover, observing the third columns in sequence, the user can experience a distinct
visual movement (going in) without a perceptible visual distortion introduced by the existing model
stretching method.

More specifically, the proposed transitional method can guarantee a smooth process on the cabinets
on both sides, the front display screen and the simulated sand table on the floor, without ghosting
and distortion. Therefore, the proposed method of panoramic transitions guided by the triangular
patches is an effective seamless transitional solution for the indoor panoramic scene. Compared with
the method of the transparency gradient and model stretching, this method can achieve extremely
natural transitions of scenes in conditions with only panoramic data.

3.3. Applicability Performance

To determine the robustness, six experiments (jumping from different distances to the same
site) were performed using Dataset-2 to verify the sensitivity of the proposed method to the distance
between sites. The robustness is listed in Table 3. The first column is the distance from the start site to
the target site of a transition, and six panoramic sites at different distances (1 m, 2 m, 3 m, 5 m, 10 m,
and 15 m) from the target site are selected to show the robustness of the proposed transitional methods.
The second column shows the control triangular patches extracted from each start site. The third
column shows a snapshot of the user’s view when transitioning to 50%. The fourth column shows the
deformation introduced by the morphing mesh near the end of the transition. The first row shows the
real target site for all six experiments.

Table 3. Robustness performance of the proposed method with six tests.
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3.3. Applicability Performance 

To determine the robustness, six experiments (jumping from different distances to the same site) 
were performed using Dataset-2 to verify the sensitivity of the proposed method to the distance 
between sites. The robustness is listed in Table 3. The first column is the distance from the start site 
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shows the deformation introduced by the morphing mesh near the end of the transition. The first row 
shows the real target site for all six experiments. 
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with the increase in the distance between the two panorama sites is caused by the decreasing image
overlap. More specifically, it is easy to extract the control triangle patches on the left side of the
homonymic scene because of the commodious spatial distribution with objects farther away from the
shooting site. However, it is challenging to extract the control triangle patches on the right side of
the homonymic scene because of the large angular variations in the perspective caused by narrow
spaces and occlusions of the objects in space. From the third column, the deformation of the generated
panoramic scene increases, and the accuracy of the transitional model guided by the triangle patches
decreases with the increase in the distance between the two panorama sites. In other words, the right
side of the scene is significantly compressed, resulting in greater distortion.

In general, as the distance between the two sites increases from 1 m to 15 m, the overlap of the
space scene decreases. This results in the control area that guides the transition decreasing, which
increases the distortion of the generated scenes and worsens the transitional effect. However, the visual
distortions resulting from the transitions within the 10 m range are acceptable in most application
scenarios. The visual sense of movement is still maintained, and there is still an advantage over other
transitional methods. Therefore, the proposed method can basically satisfy the smooth transition
between two indoor panorama sites with a station spacing less than or equal to 10 m.

3.4. Efficiency Performance

To test the feasibility and efficiency of the proposed method, a variety of browser platforms
extended to personal computers and mobile devices were used to run the single page application.
Table 4 recodes the frame rate under different platforms and datasets when the scene is roaming and
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transiting. The first column lists the four common browsers for testing, and the second and third
columns are the frame rates in units of fps (frames per second).

Table 4. Efficiency performance using different data on various browsing platforms.

Platform
Dataset-1 Dataset-2

Roam Transition Roam Transition

Windows 10 Chrome 54 fps 54 fps 60 fps 56 fps

Windows 10 Edge 53 fps 54 fps 60 fps 56 fps

XiaoMi Note 3 WeChat browser 41 fps 39 fps 56 fps 53 fps

Huawei Honour 5A QQ browser 40 fps 37 fps 52 fps 46 fps

As Table 4 shows, different platforms keep different frame rates due to the different rendering
capabilities, but there is slight difference in frame rates between roaming and transitioning on the
same platform. This confirms that the proposed panorama transitional scheme does not slow down
the rendering of panoramic scenes, and it is beyond the requirements of human visual observations
(24 fps). Therefore, it is feasible and efficient.

4. Discussion

The seamless transition of the panoramic scene is achieved under the image morphing guidance
of the triangular mesh generated by extracting the homonymous control points. From the extraction of
homonymous feature points and the generation of triangular patches, to the calculation principles
of triangular patch deformation and texture interpolation, to the design of the panoramic site
transition algorithm and the implementation of the panoramic walkthrough system equipped with a
dynamic morph layer, the proposed algorithm is described in detail. The further development of this
methodology is the robust and smart matching of panoramic images.

The method is based on feature points, but it is difficult to find the feature points with practical
significance in two panoramic images. Furthermore, the conventional line extraction and methods
for eliminating mismatching points (such as distance anomaly and direction consistency) are also
difficult to apply into panoramic images directly. Therefore, the development of feature extraction and
matching between panoramic images is very important for the natural transition of panoramic scenes.
The work of Carufel and Laganiere [22] and Kim and Park [23] can be a further reference regarding the
matching of panoramic images.

As the transitional units, the control triangular patches play a vital role. For instance, the narrow
triangle will cross the larger angle of view, resulting in larger distortions when we use the linear
interpolation to simulate the continuous transition in the space. The object is broken when the
same object is divided into different triangles, so it is necessary to make a reasonable division of the
panoramic scene before doing a transition. In this regard, the latest research on restoring the depth and
layout of houses from single panoramic images [24,25] is an inspiration to divide the panoramic space
reasonably. Of course, the use of some auxiliary data can improve the transition, including planes in
the scene extracted from the point cloud.

As the distance between stations increases, the shooting angle varies greatly. The control points
will centrally appear in one cluster on the image or will be scattered over the upper and lower edges of
the image. Such control triangular patches do not have strong reliability, frequently lead to greater
deformation or confusion, and do not have good transitional visual effects. The analysis found that
three major causes led to the above poor performance:

(1) the large distance between the sites with narrow space;
(2) objects are closer to the point of exposure and produce large occlusions;
(3) the depth distribution of the objects in space is diverse.
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In view of the above problems, a shooting route with a relatively wide view should be a
better choice.

Its natural smooth visual browsing experience is superior to the existing method of panoramic site
transitions. Through the comprehensive test and analysis of its application scenarios and operational
efficiency, the method is shown to be able to smoothly transition between adjacent panoramic sites
collected by traditional station measurement or up-to-date mobile measurements. It also meets the
needs of different applications, including panoramic space position navigation or high-resolution
panoramic browsing. However, it should be noted that the method is not suitable for the scenes
without obvious texture features or narrow and complicated scenes due to the invalid morph constraint
caused by the rare feature points and small overlap.

5. Conclusions

In this paper, a dynamic panoramic image rendering algorithm for smooth transitions between
adjacent viewpoints based on matched Delaunay triangular patches is proposed. The experiment shows
that the proposed method seems to produce a visual sense of motion by the movement of vertexes and
texture transparency changes in the morphing mesh. This work improves the user experience of the
360◦ panoramic roaming system and greatly improves the usability of indoor panoramic exhibition
applications and indoor panoramic navigation applications. Furthermore, this technology can also be
used in compressing video sequences with high compression rates, virtual tourism and entertainment,
3D scene displays of real estate and public security, etc.
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