

ISPRS Int. J. Geo-Inf. 2020, 9, 590; doi:10.3390/ijgi9100590 www.mdpi.com/journal/ijgi

Article

A Comparative Study of Several Metaheuristic

Algorithms to Optimize Monetary Incentive in

Ridesharing Systems

Fu-Shiung Hsieh

Department of Computer Science and Information Engineering, Chaoyang University of Technology,

Taichung 413, Taiwan; fshsieh@cyut.edu.tw

Received: 4 September 2020; Accepted: 4 October 2020; Published: 8 October 2020

Abstract: The strong demand on human mobility leads to excessive numbers of cars and raises the

problems of serious traffic congestion, large amounts of greenhouse gas emissions, air pollution and

insufficient parking space in cities. Although ridesharing is a potential transport mode to solve the

above problems through car-sharing, it is still not widely adopted. Most studies consider non-

monetary incentive performance indices such as travel distance and successful matches in

ridesharing systems. These performance indices fail to provide a strong incentive for ridesharing.

The goal of this paper is to address this issue by proposing a monetary incentive performance

indicator to improve the incentives for ridesharing. The objectives are to improve the incentive for

ridesharing through a monetary incentive optimization problem formulation, development of a

solution methodology and comparison of different solution algorithms. A non-linear integer

programming optimization problem is formulated to optimize monetary incentive in ridesharing

systems. Several discrete metaheuristic algorithms are developed to cope with computational

complexity for solving the above problem. These include several discrete variants of particle swarm

optimization algorithms, differential evolution algorithms and the firefly algorithm. The

effectiveness of applying the above algorithms to solve the monetary incentive optimization

problem is compared based on experimental results.

Keywords: ridesharing; metaheuristics; particle swarm optimization; differential evolution; firefly

algorithm

1. Introduction

The strong demand on human mobility leads to high use of private cars and raises the problems

of serious traffic congestion, large amounts of greenhouse gas emissions, air pollution and

insufficient parking space in cities. Ridesharing is a transportation model that can be applied to solve

the above problems in cities by sharing cars or vehicles. In the past decade, the subject of ridesharing

has attracted the attention of researchers around the world. Survey papers of the studies on

ridesharing/carpooling problems can be found in References [1,2]. The results of the exploratory

study by Genikomsakis et al. [3] indicate that people maintain a positive attitude towards the

ridesharing and carpooling transportation modes. In the literature, several systems have been

developed to verify ridesharing/carpooling systems. For example, a carpooling system for

universities called PoliUniPool was presented in Reference [4]. In terms of the characteristics and

modes of operation, carpooling/ridesharing systems can be classified into daily carpooling problem

[5], long-term carpooling problem [6] and dynamic ridesharing problem [7].

To effectively support operations of ridesharing systems, several issues need to be addressed.

An important issue is to extract rides that are amenable for ridesharing based on mobility traces. In

ISPRS Int. J. Geo-Inf. 2020, 9, 590 2 of 37

Reference [8], Bicocchi and Mamei presented a methodology to analyze mobility data for ridesharing.

In Reference [9], Toader et al. proposed an indicator for collaborative mobility between individuals

based on the use of smartphone data. In Reference [10], a carpooling prototype system was developed

to match passengers with drivers based on their trajectories. A carpooling problem was formulated

in Reference [11] and a heuristic algorithm was proposed to assign passengers to drivers' cars based

on their trajectories.

1.1. Motivation

Although ridesharing is a potential transportation mode to reduce the excessive number of cars

through car-sharing, it is still not widely adopted. Motivated by this fact, there are several papers addressing

factors that contribute to carpooling/ridesharing [12,13,14]. All the above studies point out that savings of cost and

time are the main incentives for ridesharing. There is an old Chinese idiom that goes, "Human beings die in

pursuit of wealth, and birds die in pursuit of food." When it comes to doing business, it is the profits that count. In

the context of ridesharing, providing profits or a monetary incentive for ridesharing participants is one effective

way to improve acceptance of the ridesharing model. However, most studies consider non-monetary

incentive performance indices such as travel distance and successful matches in ridesharing systems.

These performance indices fail to provide a strong incentive for ridesharing. There are only a few

works focusing on maximization of cost savings to provide incentives in ridesharing systems.

Santos and Xavier dealt with both dynamic ridesharing and taxi-sharing problems [15]. In their

work, passengers and car owners specify their origins, destinations and relevant timing information.

Passengers announce the maximum willing to pay price for their rides. Taxi drivers declare the

locations and relevant timing information for the provided service. The problem is to match requests

to vehicles in such a way that capacity constraints of vehicles and the maximum willing to pay price

of each passenger are satisfied. In Reference [16], Watel and Faye studied a Dial-a-Ride problem with

money as an incentive (DARP-M). They studied the taxi-sharing problem to reduce the cost of

passengers. Watel and Faye defined three variants of the DARP-M problems: max-DARP-M, max-1-

DARP-M and 1-DARP-M, to analyze their complexity. The objective of max-DARP-M is to drive the

maximum number of passengers under the assumption of unlimited number of taxis available. The

max-1-DARP-M problem is used to find the maximum number of passengers that can be transported

by a taxi. The 1-DARP-M problem is used to determine whether it is possible to drive at least one

passenger under the constraints stated. However, the max-DARP-M, max-1-DARP-M and 1-DARP-

M problems are oversimplified and fail to reflect real application scenarios even though they can be

used to analyze the complexity of the problems. In addition, the overall monetary incentive in

ridesharing systems is not considered in Reference [16]. In Reference [17], Hsieh considered a

monetary incentive in ridesharing systems and proposed a metaheuristic solution algorithm for it.

However, effectiveness of applying different metaheuristic algorithms to solve the problem

formulated in Reference [17] needs further study.

Most ridesharing problems can be formulated as optimization problems. Several meta-heuristic

approaches to deal with the complexity issue in optimization problems have been developed in the

past [18] and applied in different problem domains [19]. Genetic algorithm (GA) and swarm

intelligence [20,21,22] are two well-known population-based meta-heuristic approaches. GA

maintains a population of candidate solutions and attempts to improve the candidate solutions based

on biologically inspired operators such as mutation, crossover and selection to guide the search.

Swarm intelligence is also a population-based meta-heuristic approach relying on a collective

behavior of decentralized, self-organized agents in the population, called a swarm. In the literature,

well-known meta-heuristic approaches proposed based on swarm intelligence include particle

swarm optimization (PSO) [23], firefly algorithm [24] and monarch butterfly optimization [25]. In the

literature, swarm intelligence-based approaches, such as PSO, have several advantages over GA

[26,27]. In addition to GA and swarm intelligence, evolutionary computation has been proposed and

widely applied in solving different problems [28]. Differential evolution (DE) [29] is a population-

based metaheuristic approach in evolutionary computation. DE attempts to improve the solutions in

ISPRS Int. J. Geo-Inf. 2020, 9, 590 3 of 37

the population by creating new trial solutions through combining existing ones. Better trial solutions

will replace the existing solutions in the population.

Although many metaheuristic algorithms such as the PSO algorithm [23], firefly algorithm [24]

and differentiation evolution (DE) algorithm [29] have been proposed and applied to solve a variety

of optimization problems with continuous solution space for decades, effectiveness of these

metaheuristic algorithms in solving optimization problems with discrete solution space is less

addressed. As the earlier versions of the PSO algorithm, firefly algorithm and DE algorithm were

proposed to find solutions for optimization problems with continuous solution space, these

algorithms must be modified properly to be applied to optimization problems with discrete solution

space. Kennedy and Eberhart proposed a reworking of the PSO algorithm for problems with discrete

binary variables in Reference [30]. During the past years, several variants of PSO algorithms and DE

algorithms have been proposed in References [31] and [32] for the ridesharing problem with a linear

objective function. However, effectiveness of applying these variants of algorithms to solve the

nonlinear monetary incentive optimization problem requires further study. In particular, the results in

Reference [31] indicate that the cooperative coevolving particle swarm optimization algorithm

outperforms other metaheuristic algorithms for the ridesharing problem with a linear objective

function by combining the strategies of decomposition with random grouping with cooperative

coevolution [33,34,35]. Whether the cooperative, coevolving particle swarm optimization algorithm

still outperforms other variants for the problem defined in Reference [17] is an interesting question.

1.2. Research Question, Goals and Objectives

Based on the discussion on deficiencies of existing studies above, the research questions addressed in

this study are as follows: How to deal with monetary incentive issue in ridesharing systems and

formulate the decision problem? How to develop metaheuristic algorithms for this problem? How

about effectiveness of different metaheuristic algorithms for solving this decision problem? The goals

of this paper are to answer the above questions through the development of a solution methodology. The

objectives of this paper are to (1) address the monetary incentive issue in ridesharing systems by

proposing a monetary incentive performance indicator to improve the incentives for ridesharing, (2)

formulate the monetary incentive optimization problem, (3) develop solution metaheuristic algorithms based on

modification of several variants of PSO algorithms, DE algorithms and firefly algorithm for the nonlinear

monetary incentive optimization problem and (4) study the effectiveness of these metaheuristic algorithms based

on the results of experiments. For the optimization of monetary incentive in ridesharing systems, a non-

linear integer programming optimization problem is formulated. As finding a solution for the non-

linear integer programming optimization problem is computationally challenging, metaheuristic

approaches are adopted to solve the problem. The contributions of this paper include: (1) proposing

a problem formulation and associated solution algorithms to find and benefit the drivers and

passengers with the highest monetary incentive for ridesharing and (2) comparing the effectiveness

of several metaheuristic algorithms to provide a guideline for selecting an algorithm to solve the

formulated problem.

The monetary incentive optimization problem is a non-linear integer programming problem

with a large number of constraints. The computational complexity arises from constraints in the

problem formulation. An effective method to deal with constraints must be employed to develop a

solution algorithm. In the literature, several ways to deal with constraints in constrained optimization

problems have been proposed. The concept behind these constraint-handling methods can be

classified into three categories: preserving feasibility of solutions, penalizing infeasible solutions and

biasing feasible over infeasible solutions. Among the well-known methods to handle constraints, the

penalty function method [36,37] and the biasing feasible over infeasible solutions method [38] are the

most popular ones. The biasing feasible over infeasible solutions method does not rely on setting of

penalty coefficients or parameters to handle constraints. Therefore, we adopt a method based on

biasing feasible over infeasible solutions [36] to develop metaheuristic algorithms. As the solutions

evolve in the continuous space, transformation of solutions to discrete space is required for each

metaheuristic algorithm developed in this study.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 4 of 37

To assess effectiveness of the proposed metaheuristic algorithms, we conduct experiments for

several test cases. The numerical results indicate that the discrete variant of the cooperative,

coevolving particle swarm optimization algorithm is significantly more effective than other

metaheuristic algorithms in solving a constrained optimization problem with nonlinear objective

function and binary decision variables. The results confirm the effectiveness of the proposed

algorithm.

This paper is different from the brief paper in Reference [17] in that it is extended with a number

of metaheuristic algorithms and a comparative study of these metaheuristic algorithms through

experiments. As this paper focuses on optimization of monetary incentive in ridesharing systems, it

is also different from the work in Reference [31] in two aspects. The objective function is not separable

with respect to the decision variables and is a nonlinear function. This makes the optimization

problem hard to solve. The problem formulated in this paper is a nonlinear integer programming

problem with discrete decision variables, which is different from the one studied in References [31]

and [10].

The remainder of this paper is organized as follows. In Section 2, we describe and formulate the

monetary incentive optimization problem. The fitness function and constraint handling method are

described in Section 3. The metaheuristic algorithms will be presented in Section 4. In Section 5, we

will present and discuss the results. In Section 6, we conclude this paper.

2. Problem Formulation

In this section, the problem formulation will be introduced. The notations required for problem

formulation are summarized in Table 1. A ridesharing system consists of a number of passengers, a

number of drivers and the cars owned by drivers. To describe the ridesharing problem, we use P to

denote the number of passengers in the system and a passenger is referred to as p , where

},....3,2,1{ Pp . Similarly, we use D to denote the number of drivers in the system and a driver is

referred to as d , where },....,3,2,1{ Dd  . For simplicity, it is assumed that each driver owns one car

and we use d to refer to the car of driver d whenever it is clear from the context.

The main function of ridesharing systems is to match the set D of drivers with the set P of

passengers according to their requirements. To describe the itinerary of driver d , let dLo and dLe

be the origin and destination of driver d , respectively. dR =),(dd LeLo denotes the itinerary of driver

},....,3,2,1{ Dd  . Similarly, to describe the itinerary of passenger },....3,2,1{ Pp , we use pLo and pLe to

denote the origin and destination of passenger p , respectively. pR =),(pp LeLo represents the

itinerary of passenger p.

To formulate the monetary incentive optimization problem in ridesharing systems, the

variables/symbols and their meaning are defined in Table 1.

Table 1. Notations of variables/symbols for problem formulation.

Variable/Symbol Meaning

P total number of passengers
p the ID of a passenger, where },....3,2,1{ Pp

D total number of drivers

d the ID of a driver, where },....,3,2,1{ Dd 

K total number of locations of passengers, PK 

k the location ID, },...,2,1{ Kk 

pks
the number of seats requested by passenger pfor location k , where

},....,3,2,1{ Kk 

dJ the number of bids placed by driver },...,2,1{ Dd 

j the jth bid submitted by driver d , where },...,2,1{ dJj

ISPRS Int. J. Geo-Inf. 2020, 9, 590 5 of 37

djc
the routing cost for transporting the passengers in the jth bid submitted by

driver d

djo the original travel cost of driver d (without transporting any passenger)

djkq
the number of seats available at location k in the jth bid submitted by driver

d

djDB djDB =),,,...,,,(321 djdjdjKdjdjdj coqqqq , the jth bid submitted by driver d

pf the original price of passenger p(without ridesharing)

pPB

pPB =),,...,,,(321 ppKppp fssss : the bid submitted by passenger p. The bid

pPB is an offer to pay the price phf for transporting pks passengers for each

},....,3,2,1{ Kk 

djx
a binary decision variable: it indicates whether the jth bid placed by driver d

is a winning bid (djx = 1) or not (djx = 0)

py
a binary decision variable: it indicates whether the bid placed by passenger p

is a winning bid (py = 1) or not (py = 0)

In the ridesharing system considered in this study, drivers and passengers express their

transportation requirements by submitting bids. Before submitting bids, it is assumed that drivers

and passengers apply some bid generation software to generate bids. For example, the Bid

Generation Procedures in Appendix II of Reference [31] may be applied to generate bids for drivers

and passengers. However, the problem formulation to be presented below does not presume the use

of Bid Generation Procedures in Appendix II of Reference [31] to generate bids. Drivers and

passengers may apply any other bid generation software to generate bids. The bids generated for

each driver are based on his/her itinerary, dR . Let dJ denote the number of bids generated and

submitted by driver d . The jth bid submitted by driver d is represented by djDB =

),,,...,,,(321 djdjdjKdjdjdj coqqqq . The input data djc and djo corresponding to the routing cost and the

original travel cost of the jth bid of driver d can be measured in any currency (such as USD, EURO,

RMB, NT, etc.) appropriate for a specific application scenario.

Similarly, the bid generated for a passenger pis also based on his/her itinerary, pR . It is assumed

that each passenger psubmits only one bid. The bid generated and submitted by passenger p is

represented by pPB =),,...,,,(321 ppKppp fssss . The parameter pf denoting the original price of

passenger pwithout ridesharing can be measured in any currency (such as USD, EURO, RMB, NT,

etc.) appropriate for a specific application scenario. A bid pPB is called a winning bid if passenger p

is selected by the ridesharing system to share a ride with a driver.

The problem is to match drivers and passengers based on their itineraries to optimize monetary

incentive. An objective function defined based on the ratio between the cost savings and the original

costs is proposed to achieve this goal. The objective function is defined as follows:

   

  

















































































 

  

D

d
djdj

J

j

P

p
pp

D

d
djdj

D
dj

J

j

P

p
p

P
p

D

d
djdjdj

J

j

P

p
pp

cxfy

ocTxfTyocxfy

yxF
d

dd

1 11

1 111 11

)()(-

),((1)

ISPRS Int. J. Geo-Inf. 2020, 9, 590 6 of 37

Based on the above monetary objective function, the objective of the monetary incentive

optimization problem is to find the set of passengers and drivers such that the ratio between the cost

savings and the original costs is maximized. We formulate the following optimization problem:

),(max
,

yxF
yx

 (2)

 K}{1,2,...,k

.

1 11

 
 

D

d

P

p
pkp

J

j
djkdj syqx

ts

d (3)


  


D

d
djdj

J

j

D

d
djdj

J

j

P

p
pp cxoxfy

dd

1 11 11

 (4)

},...,2,1{},,...,1{ 1
1

ddj

J

j

JjDdx
d




 (5)

jdxdj  , }1,0{ (6)

pyp  }1,0{ (7)

The problem is subject to several constraints: (a) the capacity constraints in Equation (3), (b) the

cost savings constraints in Equation (4) and (c) the winning bid constraint for each driver in Equation

(5). In addition, the values of decision variables must be binary, as specified in Equation (6) and

Equation (7). Note that the objective function),(yxF for the optimization of monetary incentive is

nonlinear. It is more complex than the simple linear function in Reference [31].

3. Fitness Function and Constraint Handling Method

The problem formulated previously is a constrained optimization problem with binary decision

variables and rational objective function. The objective function),(yxF in the above optimization

problem is not an additively separable function, which is different from the additively separable

objective function used in Reference [31]. In addition, the computational complexity arises from

constraints in the problem formulation. An effective method to deal with constraints must be

employed to develop a solution algorithm.

In existing literature, several ways to deal with constraints in the constrained optimization

problem have been proposed and used in solving constrained optimization problems. The concept

behind these constraint-handling methods includes preservation of solutions’ feasibility, penalizing

infeasible solutions and discrimination of feasible/infeasible solutions. Among the well-known

methods to handle constraints, the penalty function method [36,37] and the discrimination of

feasible/infeasible solutions method [38] are widely used methods.

Although the penalty function method is very easy to use, it relies on proper setting of the

penalty coefficients. The performance of the penalty function method depends on the penalty

coefficients. Improper penalty coefficients often seriously degrade the performance. In addition, there

still lacks a good way to set the penalty coefficients properly. The approach of discriminating

feasible/infeasible solutions method works without relying on coefficients or parameters to handle

constraints. Therefore, we adopt the approach of discriminating feasible/infeasible solutions [38]. The

details of applying this approach are described below.

The discriminating feasible/infeasible solutions method characterizes a feasible solution with the

corresponding original objective function value. For an infeasible solution, instead of calculating the

fitness function value due to infeasible solutions, the method of discriminating a feasible/infeasible

solutions method characterizes the fitness function value of infeasible solutions based on the objective

function value of the current population’s worst feasible solution. In this way, the performance

degradation due to improper setting of penalty coefficients can be avoided.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 7 of 37

As the discriminating feasible/infeasible solutions method [38] is adopted to handle constraints,

we need to find the objective function value of the current population’s worst feasible solution. To

achieve this, we define fS =),(),{(yxyx as a feasible solution in the current population satisfying

constraints (3)~(7). Then, the objective function value of the current population’s worst feasible

solution can be calculated by),(min
),(

min yxFS
fSyx

f


 .

For the discriminating feasible/infeasible solutions method, we define the fitness function

),(1 yxF as follows:






otherwiseyxU

sconstrasatisfiesyxifyxF
yxF

),(

)7(~)3(int),(),(
),(

1
1 , where

),(),(),(),(432min1 yxUyxUyxUSyxU f 

,))0.0,min((),(
1 111

2  
 


D

d

P

p

pkp

J

j

djkdj

K

k

syqxyxU
d

)0.0,1(min),(

,)0.0),(min(),(

11 1

4

1 11

3

dj

K

k

D

d

J

j

D

d

djdjdj

J

j

P

p

pp

xyxU

ocxfyyxU

d

d





 

 





4. Implementation of Discrete Metaheuristic Algorithms

In this study, several discrete versions of metaheuristic algorithms for solving the monetary

incentive optimization problem have been developed. The notations required for describing these

metaheuristic algorithms are summarized in Table 2. These metaheuristic algorithms include discrete

PSO, discrete comprehensive learning particle swarm optimization (CLPSO) [39], discrete DE,

discrete firefly, discrete adaptive learning particle swarm optimization (ALPSO) and discrete

cooperative coevolving particle swarm optimization (CCPSO) algorithms. All these algorithms will

be compared by conducting experiments in the next section. As all these discrete algorithms are

developed based on transformation of continuous solutions to binary solutions, all the algorithms

mentioned above will be presented in this paper with the exception of the discrete ALPSO algorithm.

Just like other algorithms to be presented in this section, the discrete ALPSO is also developed [40]

by adding procedure to transform continuous solution space to binary solution space in the evolution

processes. Therefore, the discrete ALPSO algorithm will not be presented in this section to save space.

For each algorithm presented in this section, the stopping criteria is based on the maximum number

of generations parameter, GENMAX _ .

Table 2. Notations of variables/symbols for metaheuristic algorithms.

Variable/Symbol Meaning

GENMAX _ the maximum number of generations

t the iteration/generation variable

NP population size.

N the problem dimension, where PJN
D

d

d  
1

iz

the position of particle i , where },...,2,1{ NPi , and iz = (ix , iy), ix is the

position vector associated with the decision variable x and iy is the position

vector associated with the decision variable y

ISPRS Int. J. Geo-Inf. 2020, 9, 590 8 of 37

iv the velocity of particle i ; inv denotes the n th element of the vector iv

iPz
the personal best of particle i , where },...,2,1{ NPi , and inPz is the nth

element of the vector iPz , },...,2,1{ Nn

Gz
the global best, and nGz is the nth element of the vectorGz, where

},...,2,1{ Nn

1c a non-negative real parameter less than 1

2c a non-negative real parameter less than 1

1r a random variable with uniform distribution)1,0(U

2r a random variable with uniform distribution)1,0(U

maxV the maximum value of velocity

)(invs the probability of the bit inv

cp the learning probability, where cp is greater than 0 and less than 1

rp a random variable with uniform distribution)1,0(U

NS total number of swarms

sSW a swarm, where },...,2,1{ NSs

1 and 2 weighting factors for updating velocity; 10 1   ; 121 

 a scaling factor for updating velocity; 0

DS a set of integers

ds an integer ds is selected from DS

ẑ
the context vector obtained by concatenating the global best particles from all

NS swarms

is zSW . the ith particle in the sth swarm sSW

p
is zSW . the personal best of the ith particle in swarm sSW

zSWs ˆ. the global best of the component of the swarm sSW

ijr the distance between firefly i and firefly j

 the light absorption coefficient

0 the attractiveness when the distance ijr between firefly i and firefly j is zero

2

0
ijre





 the attractiveness when the distance ijr between firefly i and firefly j

t
in a random number generated from a uniform distribution in [0, 1]

t a constant parameter in [0, 1]

)(xT)(xT =
1

1
2

2




x

x

e

e
a function to transform a real value into a value in]1,0[

CR the crossover rate

F the scale factor

iF the scale factor for individual i

itv a mutant vector for individual i

4.1. Discrete PSO Algorithm

The original standard PSO algorithm was proposed in Reference [23] to solve problems with

continuous solution space. In the standard PSO algorithm, each particle of the swarm adjusts its

trajectory based on its own flying experience as well as the flying experiences from other particles.

Let),...,,,(321 iNiiii vvvvv  and),...,,,(321 iNiiii zzzzz  be the velocity and position of particle i ,

respectively. Let),...,,,(321 iNiiii PzPzPzPzPz  be the best historical position (the personal best) of

particle i . Let),...,,,(321 NGzGzGzGzGz  be the best historical position (the global best) of the entire

ISPRS Int. J. Geo-Inf. 2020, 9, 590 9 of 37

swarm. The velocity and position of particle i on dimension n in iteration 1t , where },...,3,2,1{ Nn ,

are updated as follows:

)()(2211 inninininin zGzrczPzrcvv   (8)

ininin vzz  (9)

where  is a parameter called the inertia weight, 1c and 2c are positive constants referred to as

cognitive and social parameters respectively, and 1r and 2r are random numbers generated from a

uniform distribution in the region of [0, 1].

As the original PSO algorithm was proposed to solve problems with continuous solution space,

it cannot be applied to solve the optimization problem with binary decision variables. Therefore,

transformation of solutions from continuous space to binary space is required. As the solution space

of the optimization problem formulated is binary, we define a procedure)(aCS in Table 3 to transform

continuous solution (CS) space to binary solution space. The procedure)(aCS will be invoked as

needed in different variants of PSO algorithms and DE algorithm.

Table 3. The pseudocode for procedure)(aCS .

Procedure)(aCS

If maxVa 

maxVa 

End If

If maxVa 

maxVa 

End If

a
as




exp1

1
)(

Generate a random variable rsid with uniform distribution)1,0(U



 


otherwise

asrsid
b

0

)(1

Return b

Figure 1 shows the flowchart for the discrete PSO algorithm. Table 4 shows the pseudocode for

the discrete PSO algorithm.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 10 of 37

Figure 1. A flowchart for the discrete particle swarm optimization (PSO) algorithm.

Table 4. The pseudocode for the discrete PSO algorithm.

Discrete PSO Algorithm

0t

Generate particle iz for each },...,2,1{ NPi in the population

Evaluate the fitness function)(1 izF for particle iz , where },...,2,1{ NPi

Determine the personal best iPz for each },...,2,1{ NPi

Determine the global bestGzof swarm

While (stopping criteria not satisfied)

1 tt
For each },...,2,1{ NPi

For each },...,2,1{ Nn

Generate a random variable 1r with uniform distribution)1,0(U

Generate a random variable 2r with uniform distribution)1,0(U

Calculate the velocity of particle iz

)()(2211 inninininin zGzrczPzrcvv 

Transform each element of inv into one or zero

ISPRS Int. J. Geo-Inf. 2020, 9, 590 11 of 37

)(inin vCSu 

End For

Update personal best and global best

If)()(11 ii PzFuF 

iPz = iu

 End If

If)()(11 GzFPzF i 

 Gz= iPz

 End If

End While

4.2. Discrete CLPSO Algorithm

The CLPSO algorithm [40] is a well-known variant of the PSO algorithm. The CLPSO algorithm

works based on the learning probability, cp , where cp is greater than 0 and less than 1. The CLPSO

algorithm generates a random number for each dimension of particle i . The corresponding

dimension of particle i will learn from its own personal best in case the random number generated is

larger than cp . Otherwise, the particle will learn from the personal best of the better of two randomly

selected particles, 1m and 2m . Letmdenote the better particle. The velocity of the particle in dimension

n will be updated according to (10) as follows:

)(11 inmninin zPzrcvv  (10)

As the original CLPSO algorithm was proposed to solve problems with continuous solution

space, it cannot be applied to solve the optimization problem with binary decision variables.

Therefore, transformation of solutions from continuous space to binary space is needed. Figure 2

shows the flowchart for the discrete CLPSO algorithm. Table 5 shows the pseudocode for the discrete

CLPSO algorithm.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 12 of 37

Begin

Generate particles randomly

Evaluate fitness function for
 each particle

Determine the personal best
 and the global best

Stopping criteria
satisfied ?

Generate random variables to
 update the velocity according to
 formula (8) of the standard
 PSO

Transform velocity to binary

Update the personal best
and the global best

No
End

Yes

Generate a random variable rp for each
particle in each dimension

rp greater than
learning probability ?

Randomly select two distinct
 particles and update the velocity
 according to formula (10)
 based on the better particle

Figure 2. A flowchart for the discrete CLPSO algorithm.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 13 of 37

Table 5. The pseudocode for the discrete CLPSO algorithm.

Discrete CLPSO Algorithm

0t

Generate particle iz for each },...,2,1{ NPi in the population

Evaluate the fitness function)(1 izF for each },...,2,1{ NPi

Determine the personal best iPz of each particle

Determine the global bestGz of the swarm

While (stopping criteria not satisfied)

1 tt

For each },...,2,1{ NPi

For each },...,2,1{ Nn

Generate a random variable rp with uniform distribution)1,0(U

If rp > cp

Generate 1r , a random variable with uniform distribution)1,0(U

Generate 2r , a random variable with uniform distribution)1,0(U

Calculate the velocity of particle i as follows

)()(2211 inninininin zGzrczPzrcvv 

 else

 Randomly select two distinct integers 1m and 2m from },...,2,1{ NP

 If ()()(
21 11 mm zFzF 

Calculate the velocity of particle i as follows

)(
111 innminin zPzrcvv 

 Else

Calculate the velocity of particle i as follows

)(
211 innminin zPzrcvv 

 End If

 End If

Transform each element of inv into one or zero

)(inin vCSu 

End For

Update personal best and global best

If)()(11 ii PzFuF 

 iPz = iu

End If

If)()(11 GzFPzF i 

 Gz= iPz

End If

End While

4.3. Discrete CCPSO Algorithm

The discrete CCPSO algorithm adopts a divide-and-conquer strategy to decompose a problem

into smaller ones. To decompose the original higher dimensional problem into smaller subproblems,

a set of integers, DS , is defined first. Then, an integer ds is first selected from DS . The discrete

CCPSO algorithm decomposes the decision variables into NS swarms based on the selected integer

ds . To present the discrete CCPSO algorithm, let z be the vector obtained by concatenating decision

variables x and y of the problem formulation. To share information in the cooperative coevolution

ISPRS Int. J. Geo-Inf. 2020, 9, 590 14 of 37

processes, let ẑ be the context vector obtained by concatenating the global best particles from all NS
swarms. There are three algorithmic parameters used to update particles in the discrete CCPSO

algorithm. These parameters include the weighting factor 1 and 2 as well as the scaling factor .

The ith particle in the sth swarm sSW is denoted as is zSW . . The personal best of the ith particle in

swarm sSW is denoted as
p
is zSW . . Let the global best of the component of the swarm sSW be denoted

as zSWs ˆ. . In each iteration, personal best and velocity of each particle are updated according to (11)

as follows:

))ˆ..(,ˆ..(2
21 zSWzSWzSWzSW s

p
iss

p
is   (11)

The swarm best and the context vector are also updated.

Figure 3 shows the flowchart for the discrete CCPSO algorithm. The discrete CCPSO algorithm

can be presented by the pseudocode in Table 6.

Figure 3. A flowchart for the discrete CCPSO algorithm.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 15 of 37

Table 6. The pseudocode for the discrete CCPSO algorithm.

Discrete CCPSO Algorithm

0t
While (stopping criteria not satisfied)

Step 1: Select ds from DS and randomly partition the set of decision variables into

NS subsets, each with ds decision variables

Initialize swarm sSW for each },...,2,1{ NSs

Step 2: For each },...,2,1{ NSs

 For each particle sSWi

Construct the vector iz consisting of ẑwith its sth component being

replaced by is zSW .

Calculate)(ii zCSz 

Evaluate fitness function value)(1 izF of iz

 Update personal best
p
is zSW . if iz is better than

p
is zSW .

 Update swarm best zSWs ˆ. if
p
is zSW . is better than zSWs ˆ.

 End For

 Update the context vector (ẑ)

 End For

 For each },...,2,1{ NSs

 For each particle sSWi

 For each },...,2,1{ dsd 

 Update velocity ids vzSW . with a Gaussian random variable

))ˆ..(,ˆ..(2
21 zSWzSWzSWzSW s

p
iss

p
is  

 End For

 End For

 End For

End While

4.4. Discrete Firefly Algorithm

The firefly algorithm was inspired by the flashing pattern and behavior of fireflies [24]. The

firefly algorithm works under the assumption that all fireflies are attracted to other ones

independently of their sex. The less bright fireflies tend to flow towards the brighter ones. A firefly

moves randomly if no brighter one can be found. To describe the discrete firefly (DF) algorithm, we

use ijr to denote the distance between firefly i and firefly j and use  to denote the light absorption

coefficient. The parameter 0 represents the attractiveness when the distance ijr between firefly i and

firefly j is zero and
2

0
ijre





is the attractiveness when the distance ijr between firefly i and firefly j is

1 tt

ISPRS Int. J. Geo-Inf. 2020, 9, 590 16 of 37

greater than zero. Let
t
in be a random number generated from a uniform distribution in [0, 1] and t

be a constant parameter in [0, 1]. We define a function)(xT =
1

1
2

2




x

x

e

e
to transform a real value into a

value in [0, 1]. Consider two fireflies, iand j , in the discrete firefly PSO algorithm. Firefly iwill move

towards firefly iif the fitness function value of firefly iis less than that of firefly j according to (12) as

follows:

ininjn
r

inin zzezvz ij 





)(
2

0 (12)

Loosely speaking, for the monetary incentive optimization problem in ridesharing systems, a

firefly may play the role of a leader or a follower depending on the quality of the solution it has found.

In the ridesharing problem, a solution with better fitness function value means that it will provide a

stronger monetary incentive for drivers and passengers to share rides. A firefly will play the role of

a leader when it finds a solution with better fitness function value. In this case, it will attract other

fireflies whose solutions are inferior to move closer to it in order to find better solutions.

The discrete firefly algorithm can be described by a flowchart and a pseudocode. Figure 4 shows

the flowchart for the discrete firefly algorithm. Table 7 shows the pseudocode for the discrete firefly

algorithm.

Figure 4. A flowchart for the discrete firefly algorithm.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 17 of 37

Table 7. The pseudocode for the discrete Firefly algorithm.

Discrete Firefly Algorithm

0t

Generate NP fireflies in the initial population of swarm

While (stopping criteria not satisfied)

Evaluate the fitness function)(1 izF for each firefly },...,2,1{ NPi

For each },...,2,1{ NPi

 For each },...,2,1{ NPj

 If))()((11 ji zFzF 

Move firefly i toward j in N -dimensional space according to the

following formula:

ininjn
r

inin zzezvz ij 





)(
2

0

Update firefly i as follows:

Generate rsid , a random variable with uniform distribution
)1,0(U



 


otherwise

vzTrsid
z in
in

0

)(1

Evaluate)(1 izF

End For

End For

Find the global best

End While

4.5. Discrete Differential Evolution Algorithm

There are three parameters in the DE algorithm, including scale factor, crossover rate and the

number of individuals in the population (population size). To describe the DE algorithm, let N , NP ,

CR and F denote the problem dimension, population size, crossover rate and scale factor, respectively.

The scale factor for individual i is denoted by iF . We use itv to denote a mutant vector for individual

i , where i {1 , 2 , . . . , NP }.

A DE algorithm starts by generating a random population of trial individuals

),...,,,(321 iNiiii zzzzz  for i = 1 , 2 , . . . , NPand n = 1 , 2 , . . . , N . The DE algorithm attempts to

improve the quality of the trial populations. In each iteration, a new generation replaces the previous

one. In the course of generating a new generation, a new mutant vector),...,,,(321 iNiiii tvtvtvtvtv  is

generated for individual iz by applying a search strategy or mutation strategy, S . In existing

literature, several search strategies have been proposed for DE. Six well-known search strategies in

DE are as follows:

)(
321 nrnrinrin zzFztv  (13)

)(
32 nrnribnin zzFztv  (14)

)()(
54321 nrnrinrnrinrin zzFzzFztv  (15)

)()(
4321 nrnrinrnribnin zzFzzFztv  (16)

1 tt

ISPRS Int. J. Geo-Inf. 2020, 9, 590 18 of 37

)()(
21 nrnriinbniinin zzFzzFztv  (17)

)()()(
4321 nrnrinrnriinbniinin zzFzzFzzFztv  (18)

where the index b refers to the best individual bz .

Similarly, nrz 1
, nrz 2

, nrz 3
, nrz 4

and nrz 5
 are some random individuals, namely, 1r , 2r , 3r , 4r and

5r are random integers between 1 and NP .

The standard DE algorithm was originally proposed to solve the problem in continuous search

space. Therefore, it is necessary to transform each element of individual vector into one or zero in the

discrete DE algorithm. The discrete DE algorithm can be described by a flowchart and a pseudocode.

Figure 5 shows the flowchart for the discrete DE algorithm. Table 8 shows the pseudocode for the

discrete DE algorithm.

Figure 5. A flowchart for the discrete DE algorithm.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 19 of 37

Table 8. The pseudocode for the discrete DE algorithm.

Discrete DE Algorithm

0t
Set parameters

5.0CR

)1,0(NF  , where)1,0(N is a Gaussian random variable with mean 0 and standard

deviation 1.0

For NPtoi 1

FFi 

End For

S : A mutation strategy defined in (13) through (18)

Generate an initial population S randomly

While (stopping criteria not satisfied)

For NPtoi 1

Compute mutant vector iv

Compute iv according to mutation strategy S

Compute trial vector iu by crossover operation

For },...,2,1{ Nn



 


otherwisez

CRRandifv
u

in

in
in

)1,0(

End For

Transform each element of inu into one or zero

)(inin uCSu 

Update individual i

If)()(11 ii zFuF 

 iz = iu

End If

End For

End While

5. Results

In this section, we conduct experiments by generating the data for several test cases and then

apply four discrete variants of PSO algorithms, discrete variants of DE algorithms and the discrete

firefly algorithm to find solutions for the test cases. First, we briefly introduce the data and

parameters for test cases and the metaheuristic algorithms. We then compare different metaheuristic

algorithms based on the results of experiments. The outputs obtained by applying different

metaheuristic algorithms to each test case are summarized and analyzed in this section.

5.1. Data and Parameters

The input data are created by arbitrarily selecting a real geographical area first. Then, locations

of drivers and passengers are randomly generated based on the selected geographical area. Therefore,

the procedure for selecting input data is general and can be applied to other geographical areas in

the real world. The test cases are generated based on a real geographical area in the central part of

Taiwan. The data for each example are represented by bids. The data (bids) for these test cases are

available for download from:

1 tt

ISPRS Int. J. Geo-Inf. 2020, 9, 590 20 of 37

https://drive.google.com/drive/folders/1pl_bYMtWUCbGODYDmDr2aX2h_7WXSeNZ?usp=sh

aring.

To illustrate the elements of typical test cases’ data, the details of the data for a small example is

introduced first.

An Example:

Consider a ridesharing system with one driver and four passengers. The origins and destinations

of the driver and passengers are listed in Table 9. Table 10 shows the bid generated for Driver 1 by

applying the bid generation procedure in Appendix II of Reference [31]. The bids generated for all

passengers are shown in Table 11. Four discrete variants of PSO algorithms, six discrete variants of

DE algorithms and the discrete firefly algorithm (FA) are applied to find solutions for this example.

The parameters used for each metaheuristic algorithm in this study are as follows.

Table 9. Origins and destinations of participants.

Participant Origin Destination

Driver 1
24.13046,

120.7047

24.2493791,

120.6989202

Passenger 1
24.13745,

120.68354

24.15294,

120.65751

Passenger 2
24.17119,

120.65015

24.13423,

120.65639

Passenger 3
24.2033643,

120.7047477

24.1344881,

120.6674565

Passenger 4
24.2057,

120.67951

24.2261,

120.65644

Table 10. Bid submitted by Driver 1.

Driver ID(d) 11dq 12dq 13dq 14dq 1do 1dc

1 1 0 0 0 55.4325 58.815

Table 11. Bids submitted by Passengers.

Passenger ID(p) 1ps 2ps 3ps 4ps pf

1 1 0 0 0 11.8775

2 0 1 0 0 13.01

3 0 0 1 0 24.33

4 0 0 0 1 10.155

The parameters for the discrete CCPSO algorithm are:

DS = {2, 5, 10}

1 = 0.5

2 = 0.5

 = 1.0

maxV = 4

GENMAX _ = 10,000

The parameters for the discrete PSO algorithm are:

= 0.4

1c = 0.4

2c = 0.6

maxV = 4

ISPRS Int. J. Geo-Inf. 2020, 9, 590 21 of 37

GENMAX _ = 10,000

The parameters for the firefly algorithm (FA) are:

0 = 1.0

 = 0.2

 = 0.2

maxV = 4

GENMAX _ = 10,000

The parameters for the CLPSO algorithm are:

= 0.4

1c = 0.4

2c = 0.6

cp = 0.5

maxV = 4

GENMAX _ = 10,000

The parameters for the DE algorithm are:

CR = 0.5

F : Gaussian random variable with zero mean and standard deviation set to 1.0

maxV = 4

GENMAX _ = 10,000

Population size NP= 10

For this example, all the above algorithms obtain the same solution 11,1 x , 11,1 y , 01,2 y ,

01,3 y , 01,4 y . The solution indicates that Driver 1 will share a ride with Passenger 1 only to

optimize monetary incentive. The objective function value for this solution is 0.12. Figure 6 shows the

results on Google Maps.

Figure 6. The results (obtained with population size NP = 10 for Test Case 1) displayed on Google

Maps.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 22 of 37

5.2. Comparison of Different Metaheuristic Algorithms

Experiments for several test cases have been conducted to compare different metaheuristic

algorithms. The parameters for running all the algorithms for Case 1 through Case 6 are the same as

those used by the Example in Section 5.1, with the exception that the population size NP is either set

to 10 or 30. The parameters for running all the algorithms for Case 7 and Case 8 are the same as those

used by the Example in Section 5.1, with the exception that the maximum number of generations

GENMAX _ is set to 50,000 and the population size NP is either set to 10 or 30. The results are as

follows.

By setting the population size NP to 10 and applying the discrete PSO, discrete firefly (FA),

discrete ALPSO and discrete CCPSO algorithms to solve the problems, we obtained the results of

Table 12. It indicates that the discrete CCPSO algorithm outperforms the discrete firefly algorithm

and discrete ALPSO algorithm. Although the average fitness function values of the discrete PSO

algorithm and the discrete CCPSO algorithm are the same for small test cases (Case 1 through Case

6), the average number of generations needed by the discrete CCPSO algorithm is less than that of

the discrete PSO algorithm for most test cases. In particular, the discrete CCPSO algorithm

outperforms the discrete PSO algorithm in terms of the average fitness function values and the

average number of generations needed for larger test cases (Case 7 and Case 8). This indicates that

the discrete CCPSO algorithm outperforms the discrete PSO algorithm for most test cases when the

population size NP is 10.

For Table 12, the corresponding bar chart for the average fitness function values of discrete PSO,

CCPSO, CLPSO, ALPSO and FA algorithms is shown in Figure 7.

Table 12. Fitness function values for discrete PSO, CCPSO, CLPSO, ALPSO and FA algorithms

(population size NP = 10). Avg. = average.

Cas

e
D P

PSO FA CLPSO ALPSO CCPSO
Avg. Fitness

Value/Avg.

Generation

Avg. Fitness

Value/Avg.

Generation

Avg. Fitness

Value/Avg.

Generation

Avg. Fitness

Value/Avg.

Generation

Avg. Fitness

Value/Avg.

Generation

1 1 4 0.12/3.2 0.12/4.6 0.12/3.1 0.12/3.3 0.12/3.9

2 3
1

0

0.292/216.4 0.2849/344 0.292/410.4 0.292/263.3 0.292/156.9

3 3
1

0

0.204/267.9 –0.2373/95.1 0.204/297.6 0.204/205.3 0.204/177.2

4 5
1

1

0.371/1222.1 –0.3558/1252.6 0.3667/2855.7 0.371/1365.6 0.371/568.7

5 5
1

2

0.279/1381.2 0.2663/2513.6 0.2721/3388.9 0.279/1756.5 0.279/184.4

6 6
1

2

0.268/2147.6 –0.9662/1195.2 0.2638/4282.2 0.2679/3187.

1

0.268/364.5

7
2

0

2

0

0.2111/24,501 –

1.0659/10,817.

5

0.2023/20,843.

7

0.2298/24,68

1

0.381/13,288.

5

8
3

0

3

0

0.1423/29,449.

2

–

1.6923/23,324.

6

–

0.5304/26,707.

3

0.0125/29,17

2

0.508/11,036.

7

ISPRS Int. J. Geo-Inf. 2020, 9, 590 23 of 37

Figure 7. The bar chart for the average fitness function values of discrete PSO, CCPSO, CLPSO,

ALPSO and FA algorithms (population size NP = 10) created based on Table 12.

For Table 12, the corresponding bar chart for the average number of generations of discrete PSO,

CCPSO, CLPSO, ALPSO and FA algorithms is shown in Figure 8.

Figure 8. The bar chart for the average number of generations of discrete PSO, CCPSO, CLPSO,

ALPSO and FA algorithms (population size NP = 10) created based on Table 12.

By setting the population size NP to 10 and applying the discrete DE algorithm with six well-

known strategies to solve the problems, we obtained Tables 13 and 14. By comparing Table 13, Table

14 and Table 12, it indicates that the discrete CCPSO algorithm outperforms the discrete DE algorithm

for most test cases. The discrete DE algorithm performs as good as the discrete CCPSO algorithm

only for Test Case 1. For Test Case 2, only two DE strategies (Strategy 1 and Strategy 3) perform as

good as the discrete CCPSO algorithm. The discrete CCPSO algorithm outperforms the discrete DE

algorithm for Test Case 3 through Test Case 6. This indicates that the discrete CCPSO algorithm

outperforms the discrete PSO algorithm when the population size NP is 10.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 24 of 37

Table 13. Average (Avg.) fitness function values/generations for discrete DE algorithms with strategy

1, strategy 2 and strategy 3 (population size NP = 10).

Case D P

DE_Strategy

1

DE_Strategy 2 DE_Strategy 3

Avg. Fitness

Value/Avg.

Generation

Avg. Fitness

Value/Avg.

Generation

Avg. Fitness

Value/Avg.

Generation

1 1 4 0.12/3.1 0.12/4.4 0.12/2.3

2 3 10 0.292/86.7 0.281/574.8 0.292/102.7

3 3 10 0.1995/867 0.2023/180.2 0.1903/146.4

4 5 11 0.3389/220.5 0.2896/1027.4 0.3177/1179.6

5 5 12 0.2745/1914.2 0.2553/2233.4 0.2681/574

6 6 12 0.2542/417 0.2307/894.2 0.2521/541.3

7 20 20 0.2622/2764.4 0.1819/13,610.3 0.3266/6310.3

8 30 30
0.256/15,267.8 –

0.0367/11,861.2

0.3258/10,241.7

Table 14. Average (Avg.) fitness function values/generations for discrete DE algorithms with strategy

4, strategy 5 and strategy 6 (population size NP = 10).

Case D P

DE_Strategy

4

DE_Strategy 5 DE_Strategy 6

Avg. Fitness

Value/Avg.

Generation

Avg. Fitness

Value/Avg.

Generation

Avg. Fitness

Value/Avg.

Generation

1 1 4 0.12/2.3 0.12/2.8 0.12/2.4

2 3 10 0.2834/79.9 0.2834/1867.6 0.2801/170.2

3 3 10 0.2017/63.3 0.202/1065.3 0.2031/475.8

4 5 11 0.3416/835.4 0.3536/1393.3 0.3263/1201.9

5 5 12 0.261/2318.2 0.2332/1491.5 0.2758/256.1

6 6 12 0.2606/219.1 0.2491/2854.4 0.2677/796.9

7 20 20 0.2219/9339.7 0.1898/14,519.7 0.0485/10,533.6

8 30 30
0.227/18,229.7 –

0.0598/13,292.6

0.1072/20,699.7

For Tables 13 and 14, the corresponding bar chart for the average fitness function values of

discrete DE algorithms with strategy 1, strategy 2, strategy 3, strategy 4, strategy 5 and strategy 6

(population size = 10) is shown in Figure 9.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 25 of 37

Figure 9. The bar chart for the fitness function values of discrete DE algorithms with strategy 1,

strategy 2, strategy 3, strategy 4, strategy 5 and strategy 6 (population size NP = 10) created based on

Tables 13 and 14.

For Tables 13 and 14, the corresponding bar chart for the average number of generations of

discrete DE algorithms with strategy 1, strategy 2, strategy 3, strategy 4, strategy 5 and strategy 6

(population size = 10) is shown in Figure 10.

Figure 10. The bar chart for the average number of generations of discrete DE algorithms with strategy

1, strategy 2, strategy 3, strategy 4, strategy 5 and strategy 6 (population size NP= 10) created based

on Tables 13 and 14.

We obtained Table 15 by applying the discrete PSO, the discrete firefly, the discrete CLPSO,

discrete ALPSO and discrete CCPSO algorithms to solve the problems with population size 30NP
. Table 15 indicates that the average fitness function values found by the discrete PSO, discrete ALPSO

and discrete CCPSO algorithms are the same for small test cases (Test Case 1 through Test Case 6).

The results indicate that the discrete PSO, discrete ALPSO and discrete CCPSO algorithms

outperform the discrete FA and discrete CLPSO algorithms for small test cases (Test Case 1 through

ISPRS Int. J. Geo-Inf. 2020, 9, 590 26 of 37

Test Case 6). The discrete CCPSO algorithm outperforms the discrete PSO, the discrete FA, the

discrete CLPSO and the discrete ALPSO algorithms for larger test cases (Test Case 7 and Test Case

8). The discrete CCPSO algorithm does not just outperform the discrete PSO, the discrete FA, the

discrete CLPSO and the discrete ALPSO algorithms in terms of the average fitness function values

found, also, the average numbers of generations needed by the discrete CCPSO algorithm to find the

best solutions are less than those of the discrete PSO algorithm and the discrete ALPSO algorithm for

most test cases. This indicates that the discrete CCPSO algorithm is more efficient than the discrete

PSO, the discrete FA, the discrete CLPSO and the discrete ALPSO algorithms for most test cases when

the population size NP is 30.

Table 15. Average (Avg.) fitness function values/generations for discrete PSO, CCPSO, CLPSO,

ALPSO and FA algorithms (population size NP = 30).

Cas

e
D P

PSO FA CLPSO ALPSO CCPSO
Avg. Fitness

Value/Avg.

Generation

Avg. Fitness

Value/Avg.

Generation

Avg. Fitness

Value/Avg.

Generation

Avg. Fitness

Value/Avg.

Generation

Avg. Fitness

Value/Avg.

Generation

1 1 4 0.12/2.1 0.12/2 0.12/2.3 0.12/2.1 0.12/2.4

2 3
1

0

0.292/114.7 0.292/34.7 0.292/176.3 0.292/65.3 0.292/40.1

3 3
1

0

0.204/69.6 0.204/29 0.204/241.1 0.204/118.4 0.204/84.2

4 5
1

1

0.371/371.7 –0.1032/236.4 0.371/1074.1 0.371/383.4 0.371/141.8

5 5
1

2

0.279/619.8 0.279/450.5 0.279/2424.8 0.279/586.9 0.279/93.8

6 6
1

2

0.268/2090.9 0.268/958.8 0.2678/3479.7 0.268/1325.2 0.268/116.8

7
2

0

2

0

0.2609/22,957.

7

0.2149/19,716.

8

0.1971/36,331.

3

0.2432/2663.7 0.381/2909.

8

8
3

0

3

0

0.1875/30,923.

7

–

0.213/19,855.3

–

0.2449/24,290.

3

0.1811/30,853.

2

0.508/5266.

9

For Table 15, the corresponding bar chart for the average number of generations of discrete PSO,

CCPSO, CLPSO, ALPSO and firefly (FA) algorithms is shown in Figure 11.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 27 of 37

Figure 11. The bar chart for the average fitness function values of discrete PSO, CCPSO, CLPSO,

ALPSO and FA algorithms (population size NP = 30) created based on Table 15.

For Table 15, the corresponding bar chart for the average number of generations of discrete PSO,

CCPSO, CLPSO, ALPSO and FA algorithms is shown in Figure 12.

Figure 12. The bar chart for the average number of generations of discrete PSO, CCPSO, CLPSO,

ALPSO and FA algorithms (population size NP = 30) created based on Table 7.

We obtained Tables 16 and 17 by setting the population size NP to 30 and applying the discrete

DE algorithm with six well-known strategies to solve the problems. Tables 16 and 17 indicate that the

performance of the discrete DE algorithm is improved for most test cases. For example, the average

fitness function values obtained by the discrete DE algorithm with Strategy 3 are the same as those

obtained by the discrete PSO, discrete ALPSO and discrete CCPSO algorithms for small test cases

(Test Case 1 through Test Case 6). Although the average fitness function values obtained by the

discrete DE algorithm with other strategies are no greater than those obtained by the discrete PSO,

discrete ALPSO and discrete CCPSO algorithms, the performance of the discrete DE algorithm are

close to the discrete PSO, discrete ALPSO and discrete CCPSO algorithms. The discrete CCPSO

ISPRS Int. J. Geo-Inf. 2020, 9, 590 28 of 37

algorithm still outperforms the discrete DE algorithm with any of the six strategies for larger test

cases (Test Case 7 and Test Case 8). Note that the average number of generations needed by the

discrete DE algorithm to find the best solutions is significantly reduced for all strategies for most test

cases. This indicates that the discrete DE algorithm works more efficiently for larger population size.

Table 16. Average (Avg.) fitness function values/generations for discrete DE algorithms with strategy

1, strategy 2 and strategy 3 (population size NP = 30).

Case D P

DE_Strategy1 DE_Strategy2 DE_Strategy3
Avg. Fitness

Value/Avg.

Generation

Avg. Fitness

Value/Avg.

Generation

Avg. Fitness

Value/Avg.

Generation

1 1 4 0.12/1.2 0.12/1.5 0.12/1.6

2 3 10 0.292/22.5 0.292/25.875 0.292/25.625

3 3 10 0.204/22.3 0.1966/478.3 0.204/30.7

4 5 11 0.3458/756.7 0.3624/94.8 0.371/79.9

5 5 12 0.279/66.4 0.27/216.2 0.279/88.5

6 6 12 0.2646/97.2 0.2571/548.8 0.268/76.9

7 20 20 0.3758/10,239 0.3027/6492.6 0.3528/6385.7

8 30 30 0.4316/15,061.3 0.0142/11,460 0.3754/18,206.9

Table 17. Average (Avg.) fitness function values/generations for discrete DE algorithms with strategy

4, strategy 5 and strategy 3 (population size NP = 30).

Case D P

DE_Strategy4 DE_Strategy5 DE_Strategy6
Avg. Fitness

Value/Avg.

Generation

Avg. Fitness

Value/Avg.

Generation

Avg. Fitness

Value/Avg.

Generation

1 1 4 0.12/1.5 0.12/1.1 0.12/1.5

2 3 10 0.28425/577.375 0.283/88.75 0.292/16.123

3 3 10 0.2011/1162.5 0.2035/160 0.204/30.9

4 5 11 0.3624/1290.4 0.3667/1063 0.371/395.9

5 5 12 0.2647/310.9 0.2546/667.8 0.279/38.7

6 6 12 0.2637/1179.8 0.2538/922.4 0.2607/160.4

7 20 20 0.3218/8211.2 0.3157/6530.8 0.1311/5601.5

8 30 30 0.3003/17,476.7 0.3393/11,709.7 0.3413/13,503.9

For Tables 16 and 17, the corresponding bar chart for the average fitness function values of

discrete DE algorithms with strategy 1, strategy 2, strategy 3, strategy 4, strategy 5 and strategy 6

(population size = 30) is shown in Figure 13.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 29 of 37

Figure 13. The bar chart for the fitness function values of discrete DE algorithms with strategy 1,

strategy 2, strategy 3, strategy 4, strategy 5 and strategy 6 (population size NP = 30) created based on

Tables 16 and 17.

For Tables 16 and 17, the corresponding bar chart for the average number of generations of

discrete DE algorithms with strategy 1, strategy 2, strategy 3, strategy 4, strategy 5 and strategy 6

(population size = 30) is shown in Figure 14.

Figure 14. The bar chart for the average number of generations of discrete DE algorithms with strategy

1, strategy 2, strategy 3, strategy 4, strategy 5 and strategy 6 (population size NP= 30) created based

on Tables 16 and 17.

To study the convergence speed of the discrete PSO, discrete CLPSO, discrete ALPSO, discrete

DE and discrete FA algorithms, we compare the convergence curves of simulation runs for several

test cases. Figure 15 shows convergence curves for Test Case 2 (NP= 10).

ISPRS Int. J. Geo-Inf. 2020, 9, 590 30 of 37

It indicates that the FA performs the worst for this simulation run. For this simulation run, the

PSO algorithm converges the fastest. The CCPSO algorithm, the CLPSO algorithm, the ALPSO

algorithm, the DE algorithm with Strategy 1, the DE algorithm with Strategy 3 and the DE algorithm

with Strategy 6 also converge to the best fitness values very fast. The slowest algorithms are the firefly

algorithm, the DE algorithm with Strategy 4 and the DE algorithm with Strategy 5.

Figure 15. Simulation runs of Test Case 2 obtained by discrete PSO, CCPSO, CLPSO, ALPSO, FA and

DE algorithms with population size NP= 10.

Figure 16 shows convergence curves for Test Case 5 (NP= 10). Again, FA is the slowest among

all the algorithms for this simulation run.

Figure 16. Simulation runs of Test Case 5 obtained by discrete PSO, CCPSO, CLPSO, ALPSO, FA and

DE algorithms with population size NP= 10.

Figure 17 shows convergence curves for Test Case 7 (NP= 10). FA and the CLPSO algorithms

are the two slowest algorithms in terms of convergence rate.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 31 of 37

Figure 17. Simulation runs of Test Case 7 obtained by discrete PSO, CCPSO, CLPSO, ALPSO, FA and

DE algorithms with population size NP= 10.

Figure 18 shows convergence curves for Test Case 8 (NP= 10). The CCPSO algorithm and the

DE algorithm with Strategy 1 are the fastest to converge to the best fitness values. All the other

algorithms fail to converge to the best values.

Figure 18. Simulation runs of Test Case 8 obtained by discrete PSO, CCPSO, CLPSO, ALPSO, FA and

DE algorithms with population size NP= 10.

Figure 19 shows convergence curves for Test Case 2 (NP= 30). All algorithms converge very

fast to the best solution in this simulation run for Test Case 2 when population size NP= 30.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 32 of 37

Figure 19. Simulation runs of Test Case 2 obtained by discrete PSO, CCPSO, CLPSO, ALPSO, FA and

DE algorithms with population size NP= 30.

Figure 20 shows convergence curves for Test Case 5 (NP= 30). All algorithms converge very

fast to the best solution in this simulation run for Test Case 5 when population size NP= 30.

Figure 20. Simulation runs of Test Case 5 obtained by discrete PSO, CCPSO, CLPSO, ALPSO, FA and

DE algorithms with population size NP= 30.

For larger test cases, depending on the algorithm used, the convergence speed varies

significantly. Figure 21 shows convergence curves for Test Case 7 (NP = 30). The two fastest

algorithms are the CCPSO algorithm and the DE algorithm with Strategy 6. In this run, the firefly

algorithm is the slowest one and fails to converge to the best fitness value.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 33 of 37

Figure 21. Simulation runs of Test Case 7 obtained by discrete PSO, CCPSO, CLPSO, ALPSO, FA and

DE algorithms with population size NP= 30.

The variation in convergence speed is significant for another larger test case, Test Case 8. Figure

22 shows convergence curves for Test Case 8 (NP= 30). The fastest algorithm is the CCPSO algorithm.

In this run, the slowest algorithms are the PSO, CLPSO, ALPSO and FA. Note that the CLPSO, ALPSO

and FA fail to converge to the best fitness value.

Figure 22. Simulation runs of Test Case 8 obtained by discrete PSO, CCPSO, CLPSO, ALPSO, FA and

DE algorithms with population size NP= 30.

The results presented above indicate that the proposed discrete CCPSO algorithm outperforms

other metaheuristic algorithms. Superiority of the discrete CCPSO algorithm is due to its capability

to balance exploration and exploitation in the evolution processes. According to (11), ids zSW . is

updated with a Gaussian random variable))ˆ..(,ˆ..(2
21 zSWzSWzSWzSW s

p
iss

p
is   . Exploration

and exploitation characteristics of the discrete CCPSO algorithm strongly depend on the magnitude

ISPRS Int. J. Geo-Inf. 2020, 9, 590 34 of 37

zSWzSW s
p
is ˆ..  . The balance between exploration and exploitation of the discrete CCPSO is as

follows: As long as the personal best of a particle is not the same as the global best, the magnitude

zSWzSW s
p
is ˆ..  is nonzero. In this case, the variance of the Gaussian random variable

))ˆ..(,ˆ..(2
21 zSWzSWzSWzSW s

p
iss

p
is   will be nonzero. If the magnitude zSWzSW s

p
is ˆ..  is

large, the variance of the Gaussian random variable))ˆ..(,ˆ..(2
21 zSWzSWzSWzSW s

p
iss

p
is   will

be large. This makes it possible to search a larger region around zSWzSW s
p
is ˆ.. 21   . If the personal

best of a particle is close to the global best, the magnitude zSWzSW s
p
is ˆ..  will be small. In this case,

the variance of the Gaussian random variable))ˆ..(,ˆ..(2
21 zSWzSWzSWzSW s

p
iss

p
is   tends to

be small. This leads to a very small search region. Therefore, exploration and exploitation

characteristics of the discrete CCPSO algorithm are balanced automatically in the solution searching

process through the magnitude zSWzSW s
p
is ˆ..  .

Although the subject of ridesharing/carpooling has been studied for over a decade, it is still not

in widespread use. Motivated by this fact, several papers attempt to identify factors that contribute

to ridesharing/carpooling [11–14]. Waerden et al. investigated factors that stimulate people to change

from car drivers to carpooling. They identified several attributes that may influence the attractiveness

of carpooling, including flexibility/uncertainty in travel time, costs and number of persons [13]. Their

study indicates that the most influential are costs and time-related attributes in carpooling.

Delhomme and Gheorghiu investigated the socio-demographics and transportation accessibility

factual data to study motivational factors that differentiate carpoolers from non-carpoolers and

highlight the main determinants of carpooling [12]. Their study indicates that the main incentives for

carpooling are financial gains, time savings and environmental protection. Shaheen et al. studied a

special type of carpooling called casual carpooling, which provides participants the benefits through

access to a high-occupancy vehicle lane with tolling discounts. The study of Shaheen et al. indicates

that monetary savings and time savings are the main motivations for casual carpooling participation

[14].

Santos and Xavier [15] studied the ridesharing problem in which money is considered as an

incentive. The study by Watel and Faye [16] focuses on a taxi-sharing problem, called Dial-a-Ride

problem with money as an incentive (DARP-M). They studied the taxi-sharing problem to reduce the

cost of passengers. Watel and Faye defined three variants of the DARP-M problem: max-DARP-M,

max-1-DARP-M and 1-DARP-M, to analyze their complexity. The objective of max-DARP-M is to

drive the maximum number of passengers under the assumption of unlimited number of taxis

available. The max-1-DARP-M problem is used to find the maximum number of passenger that can

be transported by a taxi. The 1-DARP-M problem is used to decide whether it is possible to drive at

least one passenger under the constraints stated. Although the max-DARP-M, max-1-DARP-M and

1-DARP-M problems can be used to analyze complexity, they do not reflect real application scenarios.

In addition, the problem to optimize overall monetary incentive is not addressed in References [15]

and [16]. In Reference [17], Hsieh considered a monetary incentive in ridesharing systems and

proposed a PSO-based solution algorithm for it. However, there is still lack of study on comparison

with other variants of metaheuristic algorithms for solving the monetary incentive optimization

problem formulated in this study. The results presented in this study serve to compare the

effectiveness of applying several different metaheuristic algorithms to solve the monetary incentive

optimization problem. The effectiveness of applying metaheuristic algorithms to solving a problem

is assessed by performance and efficiency. Performance is reflected in the average number of fitness

function values found by the metaheuristic algorithm applied, whereas efficiency is measured by the

average number of generations needed to find the best fitness function values in the simulation runs.

In this study, the comparative study on performance and efficiency was helpful for assessing the

effectiveness of applying these metaheuristic approaches to solve the monetary incentive

optimization problem.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 35 of 37

6. Conclusions

Motivated by the fact that the performance indices considered in most studies on ridesharing

are not directly linked to monetary incentive, this study focused on how to deal with the monetary

incentive issue in ridesharing systems to promote the ridesharing transportation model. This study

contributes to the literature by (1) proposing a monetary incentive performance index, (2) formulating

a monetary incentive optimization problem formulation, (3) developing solution algorithms based

on several metaheuristic approaches to find drivers and passengers with the highest monetary

incentive for ridesharing and (4) providing a guideline for selecting a proper metaheuristic algorithm

to solve the problem through comparing the effectiveness of several metaheuristic algorithms.

As the performance indicator for this problem is a highly non-linear and non-separable function

and the decision variables are discrete, the optimization problem is a non-linear integer programming

problem. It is computationally complex to find the solutions for this problem. To cope with

computational complexity, metaheuristic approaches were adopted to solve the problem. Several

discrete algorithms have been developed based on variants of PSO, DE and the firefly algorithms. To

assess the effectiveness of these proposed algorithms, experiments for several test cases were

conducted. The results show that the discrete CCPSO algorithm outperformed the variants discrete

PSO algorithms, DE algorithm and the firefly algorithm when the population size was 10 or 30. The

average fitness function values obtained by applying the discrete PSO algorithm were the same as

those obtained by the discrete CCPSO algorithm for small test cases when the population size was

10. But, the average number of generations needed by the discrete CCPSO algorithm was less than

those of the discrete PSO algorithm for most test cases. This indicates that the discrete CCPSO

algorithm outperformed the discrete PSO algorithm when the population size was 10. The

effectiveness of the variants of DE algorithms were significantly improved when the population size

was increased to 30. The variants of DE algorithms were competitive with the discrete CCPSO

algorithm in terms of performance and efficiency when the population size was increased. However,

the variants of DE algorithms were more sensitive to population size in comparison with the discrete

CCPSO algorithm. The discrete CCPSO algorithm worked effectively even if the population size was

10. These results provide guidelines for selecting metaheuristic algorithms to solve the monetary

incentive optimization problem. The results indicate that many metaheuristic algorithms perform

poorly as the problem grows due to premature convergence and/or the complex structure of

constraints in the optimization problem, although they can be applied to develop solution algorithms

for the nonlinear integer programming problem. The cooperative coevolution approach copes with

these shortcomings of metaheuristic algorithms.

An interesting future research direction is to develop new methods to study the sensitivity with

respect to algorithmic parameters of metaheuristic algorithms such as the population size. As the

results indicate that the discrete CCPSO algorithm can solve non-linear integer programming

problems effectively, another future research direction is to study whether the proposed discrete

CCPSO algorithm can effectively deal with an integer programming problem with non-linear

objective function and non-linear constraints. The first step to carry out this future research direction

is to identify the optimization problem with non-linear objective function and non-linear constraints

to pave the way for extending the proposed discrete CCPSO algorithm to general non-linear integer

programming problems. The second step is to develop a method for handling non-linear constraints.

Funding: This research was supported in part by the Ministry of Science and Technology, Taiwan, under Grant

MOST 109-2410-H-324-001.

Conflicts of Interest: The author declares no conflict of interest.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 36 of 37

References

1. Furuhata, M.; Dessouky, M.; Ordóñez, F.; Brunet, M.; Wang, X.; Koenig, S. Ridesharing: The state-of-the-

art and future directions. Transp. Res. Pt. B-Methodol. 2013, 57, 28–46.

2. Agatz, N.; Erera, A.; Savelsbergh, M.; Wang, X. Optimization for dynamic ride-sharing: A review. Eur. J.

Oper. Res. 2012, 223, 295–303.

3. Genikomsakis, K.N.; Ioakimidis, C.S.; Bocquier, B.; Savvidis, D.; Simic, D. Electromobility and

carsharing/carpooling services at the University of Deusto: A preliminary exploratory survey. In

Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013),

The Hague, The Netherlands, 6–9 October 2013; pp. 1935–1940.

4. Bruglieri, M.; Ciccarelli, D.; Colorni, A.; Luè, A. PoliUniPool: A carpooling system for universities. Procedia

Soc. Behav. Sci. 2011, 20, 558–567.

5. Baldacci, R.; Maniezzo, V.; Mingozzi, A. An Exact Method for the Car Pooling Problem Based on

Lagrangean Column Generation. Oper. Res. 2004, 52, 422–439.

6. Maniezzo, V.; Carbonaro, A.; Hildmann, H. An ants heuristic for the long-term car pooling problem. In

New Optimization Techniques in Engineering; Onwubolu, G., Babu, B.V., Eds.; Springer: Berlin/Heidelberg,

Germany, 2004; Volumn 141, pp. 411–430.

7. Agatz, N.A.H.; Erera, A.L.; Savelsbergh, M.W.P.; Wang, X. Dynamic ride-sharing: A simulation study in

metro Atlanta. Transp. Res. Pt. B-Methodol., 2011, 45, 1450–1464.

8. Bicocchi, N.; Mamei, M. Investigating ride sharing opportunities through mobility data analysis. Pervasive

Mob. Comput. 2014, 14, 83–94.

9. Toader, B.; Sprumont, F.; Faye, S.; Popescu, M.; Viti, F. Usage of Smartphone Data to Derive an Indicator

for Collaborative Mobility between Individuals. ISPRS Int. J. Geo-Inf. 2017, 6, 62.

10. Hsieh, F.S. Car Pooling Based on Trajectories of Drivers and Requirements of Passengers. In Proceedings

of the 2017 IEEE 31st International Conference on Advanced Information Networking and Applications

(AINA 2017), Taipei, Taiwan, 27–29 March 2017; pp. 972-978.

11. Bian, Z.; Liu, X.; Bai, Y. Mechanism design for on-demand first-mile ridesharing. Transp. Res. Pt. B-Methodol.

2020, 138, 77–117.

12. Delhomme, P.; Gheorghiu, A. Comparing French carpoolers and non-carpoolers: Which factors contribute

the most to carpooling? Transport. Res. Part D-Transport. Environ. 2016, 42, 1–115.

13. Waerden, P.; Lem, A.; Schaefer, W. Investigation of Factors that Stimulate Car Drivers to Change from Car

to Carpooling in City Center Oriented Work Trips. Transp. Res. Procedia 2015, 10, 335–344.

14. Shaheen, S.A.; Chan, N.D.; Gaynor, T. Casual carpooling in the San Francisco Bay Area: Understanding

user characteristics, behaviors, and motivations. Transp. Policy 2016, 51, 165–173.

15. Santos, D.O.; Xavier, E.C. Taxi and Ride Sharing: A Dynamic Dial-a-Ride Problem with Money as an

Incentive. Expert Syst. Appl. 2015, 42, 6728–6737.

16. Watel, D.; Faye, A. Taxi-sharing: Parameterized complexity and approximability of the dial-a-ride problem

with money as an incentive. Theor. Comput. Sci., 2018, 745, 202–8223.

17. Hsieh, F.S. Optimization of Monetary Incentive in Ridesharing Systems. In Advances and Trends in Artificial

Intelligence, From Theory to Practice; Wotawa, F., Friedrich, G., Pill, I., Koitz-Hristov, R., Ali, M., Eds.; Lecture

Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11606, pp. 835–840.

18. Ting, T.O.; Yang, X.S.; Cheng, S.; Huang, K. Hybrid Metaheuristic Algorithms: Past, Present, and Future.

In Recent Advances in Swarm Intelligence and Evolutionary Computation. Studies in Computational Intelligence,

Yang, X.S., Ed.; Springer: Cham, Switzerland, 2015; Volume 585, pp. 71–83, doi:10.1007/978-3-319-13826-

8_4.

19. de Rosa, G.H.; Papa, J.P.; Yang, X. Handling dropout probability estimation in convolution neural networks

using meta-heuristics. Soft Comput. 2018, 22, 6147–6156.

20. Zhao, X.; Wang, C.; Su, J.; Wang, J. Research and application based on the swarm intelligence algorithm

and artificial intelligence for wind farm decision system. Renew. Energy 2019, 134, 681–697.

21. Slowik, A.; Kwasnicka, H. Nature inspired methods and their industry applications—Swarm intelligence

algorithms. IEEE Trans. Ind. Inform. 2018, 14, 1004–1015.

22. Anandakumar, H.; Umamaheswari, K. A bio-inspired swarm intelligence technique for social aware

cognitive radio handovers. Comput. Electr. Eng. 2018, 71, 925–937.

23. Kennedy, J.; Eberhart, R.C. Particle swarm optimization, In Proceedings of the IEEE International

Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.

ISPRS Int. J. Geo-Inf. 2020, 9, 590 37 of 37

24. Yang, X.S. Firefly algorithms for multimodal optimization. In Lecture Notes in Computer Science; Springer:

Berlin/Heidelberg, Germany, 2009; Volume 5792, pp. 169–178.

25. Bacanin, N.; Bezdan, T.; Tuba, E.; Strumberger, I.; Tuba, M. Monarch Butterfly Optimization Based

Convolutional Neural Network Design. Mathematics 2020, 8, 936.

26. Eberhart, R.C.; Shi, Y. Comparison between genetic algorithms and particle swarm optimization. In Lecture

Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1447 pp. 169–178.

27. Hassan, R.; Cohanim, B.; Weck, O.D. A Comparison of Particle Swarm Optimization and the Genetic

Algorithm, In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and

Materials Conference, Austin, TX, USA, 18–21 April 2005.

28. Dulebenets, M.A.; Moses; R., Ozguven, E.E.; Vanli, A. Minimizing carbon dioxide emissions due to

container handling at marine container terminals via hybrid evolutionary algorithms. IEEE Access 2017, 5,

8131–8147.

29. Price, K.; Storn, R.; Lampinen, J. Differential Evolution: A Practical Approach to Global Optimization; Springer:

Berlin/Heidelberg, Germany, 2005.

30. Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of the

1997 IEEE International Conference on Systems, Man, and Cybernetics: Computational Cybernetics and

Simulation, Orlando, FL, USA, 12–15 October 1997; Volume 5, pp. 4104–4108.

31. Hsieh, F.S.; Zhan, F.; Guo, Y. A solution methodology for carpooling systems based on double auctions and

cooperative coevolutionary particle swarms. Appl. Intell. 2019, 49, 741–763.

32. Hsieh, F.S.; Zhan, F. A Discrete Differential Evolution Algorithm for Carpooling. In Proceedings of the 2018

IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, 23–27

July 2018; pp. 577–582.

33. Bergh, F.; Engelbrecht, A.P. A Cooperative approach to particle swarm optimization. IEEE Trans. Evol.

Comput. 2004, 8, 225–239.

34. Potter, M.A.; De Jong, K.A. A cooperative coevolutionary approach to function optimization. In Parallel

Problem Solving from Nature—PPSN III; Davidor, Y., Schwefel, H.P., Männer, R., Eds.; Lecture Notes in

Computer Science; Springer: Berlin/Heidelberg, Germany, 1994; Volume 866, pp. 741–763.

35. Yang, Z.; Tang, K.; Yao, X. Large scale evolutionary optimization using cooperative coevolution. Inf. Sci.

2008, 178, 2985–2999.

36. Ravindran, A.; Ragsdell, K.M.; Reklaitis, G.V. Engineering Optimization: Methods and Applications, 2nd ed.;

Wiley: Hoboken, NJ, USA, 2007.

37. Deb, K. Optimization for Engineering Design: Algorithms and Examples; Prentice-Hall: Upper Saddle River, NJ,

USA, 2004.

38. Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng.,

2000, 186, 311–338.

39. Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particle swarm optimizer for

global optimization of multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295.

40. Wang, F.; Zhang, H.; Li, K.; Lin, Z.; Yang, J.; Shen, X.L. A hybrid particle swarm optimization algorithm

using adaptive learning strategy. Inf. Sci. 2018, 436-437,162–177.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

