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Abstract: The strong demand on human mobility leads to excessive numbers of cars and raises the 

problems of serious traffic congestion, large amounts of greenhouse gas emissions, air pollution and 

insufficient parking space in cities. Although ridesharing is a potential transport mode to solve the 

above problems through car-sharing, it is still not widely adopted. Most studies consider non-

monetary incentive performance indices such as travel distance and successful matches in 

ridesharing systems. These performance indices fail to provide a strong incentive for ridesharing. 

The goal of this paper is to address this issue by proposing a monetary incentive performance 

indicator to improve the incentives for ridesharing. The objectives are to improve the incentive for 

ridesharing through a monetary incentive optimization problem formulation, development of a 

solution methodology and comparison of different solution algorithms. A non-linear integer 

programming optimization problem is formulated to optimize monetary incentive in ridesharing 

systems. Several discrete metaheuristic algorithms are developed to cope with computational 

complexity for solving the above problem. These include several discrete variants of particle swarm 

optimization algorithms, differential evolution algorithms and the firefly algorithm. The 

effectiveness of applying the above algorithms to solve the monetary incentive optimization 

problem is compared based on experimental results. 

Keywords: ridesharing; metaheuristics; particle swarm optimization; differential evolution; firefly 

algorithm 

 

1. Introduction 

The strong demand on human mobility leads to high use of private cars and raises the problems 

of serious traffic congestion, large amounts of greenhouse gas emissions, air pollution and 

insufficient parking space in cities. Ridesharing is a transportation model that can be applied to solve 

the above problems in cities by sharing cars or vehicles. In the past decade, the subject of ridesharing 

has attracted the attention of researchers around the world. Survey papers of the studies on 

ridesharing/carpooling problems can be found in References [1,2]. The results of the exploratory 

study by Genikomsakis et al. [3] indicate that people maintain a positive attitude towards the 

ridesharing and carpooling transportation modes. In the literature, several systems have been 

developed to verify ridesharing/carpooling systems. For example, a carpooling system for 

universities called PoliUniPool was presented in Reference [4]. In terms of the characteristics and 

modes of operation, carpooling/ridesharing systems can be classified into daily carpooling problem 

[5], long-term carpooling problem [6] and dynamic ridesharing problem [7]. 

To effectively support operations of ridesharing systems, several issues need to be addressed. 

An important issue is to extract rides that are amenable for ridesharing based on mobility traces. In 
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Reference [8], Bicocchi and Mamei presented a methodology to analyze mobility data for ridesharing. 

In Reference [9], Toader et al. proposed an indicator for collaborative mobility between individuals 

based on the use of smartphone data. In Reference [10], a carpooling prototype system was developed 

to match passengers with drivers based on their trajectories. A carpooling problem was formulated 

in Reference [11] and a heuristic algorithm was proposed to assign passengers to drivers' cars based 

on their trajectories.  

1.1. Motivation 

Although ridesharing is a potential transportation mode to reduce the excessive number of cars 

through car-sharing, it is still not widely adopted. Motivated by this fact, there are several papers addressing 

factors that contribute to carpooling/ridesharing [12,13,14]. All the above studies point out that savings of cost and 

time are the main incentives for ridesharing. There is an old Chinese idiom that goes, "Human beings die in 

pursuit of wealth, and birds die in pursuit of food." When it comes to doing business, it is the profits that count. In 

the context of ridesharing, providing profits or a monetary incentive for ridesharing participants is one effective 

way to improve acceptance of the ridesharing model. However, most studies consider non-monetary 

incentive performance indices such as travel distance and successful matches in ridesharing systems. 

These performance indices fail to provide a strong incentive for ridesharing. There are only a few 

works focusing on maximization of cost savings to provide incentives in ridesharing systems.  

Santos and Xavier dealt with both dynamic ridesharing and taxi-sharing problems [15]. In their 

work, passengers and car owners specify their origins, destinations and relevant timing information. 

Passengers announce the maximum willing to pay price for their rides. Taxi drivers declare the 

locations and relevant timing information for the provided service. The problem is to match requests 

to vehicles in such a way that capacity constraints of vehicles and the maximum willing to pay price 

of each passenger are satisfied. In Reference [16], Watel and Faye studied a Dial-a-Ride problem with 

money as an incentive (DARP-M). They studied the taxi-sharing problem to reduce the cost of 

passengers. Watel and Faye defined three variants of the DARP-M problems: max-DARP-M, max-1-

DARP-M and 1-DARP-M, to analyze their complexity. The objective of max-DARP-M is to drive the 

maximum number of passengers under the assumption of unlimited number of taxis available. The 

max-1-DARP-M problem is used to find the maximum number of passengers that can be transported 

by a taxi. The 1-DARP-M problem is used to determine whether it is possible to drive at least one 

passenger under the constraints stated. However, the max-DARP-M, max-1-DARP-M and 1-DARP-

M problems are oversimplified and fail to reflect real application scenarios even though they can be 

used to analyze the complexity of the problems. In addition, the overall monetary incentive in 

ridesharing systems is not considered in Reference [16]. In Reference [17], Hsieh considered a 

monetary incentive in ridesharing systems and proposed a metaheuristic solution algorithm for it. 

However, effectiveness of applying different metaheuristic algorithms to solve the problem 

formulated in Reference [17] needs further study. 

Most ridesharing problems can be formulated as optimization problems. Several meta-heuristic 

approaches to deal with the complexity issue in optimization problems have been developed in the 

past [18] and applied in different problem domains [19]. Genetic algorithm (GA) and swarm 

intelligence [20,21,22] are two well-known population-based meta-heuristic approaches. GA 

maintains a population of candidate solutions and attempts to improve the candidate solutions based 

on biologically inspired operators such as mutation, crossover and selection to guide the search. 

Swarm intelligence is also a population-based meta-heuristic approach relying on a collective 

behavior of decentralized, self-organized agents in the population, called a swarm. In the literature, 

well-known meta-heuristic approaches proposed based on swarm intelligence include particle 

swarm optimization (PSO) [23], firefly algorithm [24] and monarch butterfly optimization [25]. In the 

literature, swarm intelligence-based approaches, such as PSO, have several advantages over GA 

[26,27]. In addition to GA and swarm intelligence, evolutionary computation has been proposed and 

widely applied in solving different problems [28]. Differential evolution (DE) [29] is a population-

based metaheuristic approach in evolutionary computation. DE attempts to improve the solutions in 
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the population by creating new trial solutions through combining existing ones. Better trial solutions 

will replace the existing solutions in the population. 

Although many metaheuristic algorithms such as the PSO algorithm [23], firefly algorithm [24] 

and differentiation evolution (DE) algorithm [29] have been proposed and applied to solve a variety 

of optimization problems with continuous solution space for decades, effectiveness of these 

metaheuristic algorithms in solving optimization problems with discrete solution space is less 

addressed. As the earlier versions of the PSO algorithm, firefly algorithm and DE algorithm were 

proposed to find solutions for optimization problems with continuous solution space, these 

algorithms must be modified properly to be applied to optimization problems with discrete solution 

space. Kennedy and Eberhart proposed a reworking of the PSO algorithm for problems with discrete 

binary variables in Reference [30]. During the past years, several variants of PSO algorithms and DE 

algorithms have been proposed in References [31] and [32] for the ridesharing problem with a linear 

objective function. However, effectiveness of applying these variants of algorithms to solve the 

nonlinear monetary incentive optimization problem requires further study. In particular, the results in 

Reference [31] indicate that the cooperative coevolving particle swarm optimization algorithm 

outperforms other metaheuristic algorithms for the ridesharing problem with a linear objective 

function by combining the strategies of decomposition with random grouping with cooperative 

coevolution [33,34,35]. Whether the cooperative, coevolving particle swarm optimization algorithm 

still outperforms other variants for the problem defined in Reference [17] is an interesting question. 

1.2. Research Question, Goals and Objectives 

Based on the discussion on deficiencies of existing studies above, the research questions addressed in 

this study are as follows: How to deal with monetary incentive issue in ridesharing systems and 

formulate the decision problem? How to develop metaheuristic algorithms for this problem? How 

about effectiveness of different metaheuristic algorithms for solving this decision problem? The goals 

of this paper are to answer the above questions through the development of a solution methodology. The 

objectives of this paper are to (1) address the monetary incentive issue in ridesharing systems by 

proposing a monetary incentive performance indicator to improve the incentives for ridesharing, (2) 

formulate the monetary incentive optimization problem, (3) develop solution metaheuristic algorithms based on 

modification of several variants of PSO algorithms, DE algorithms and firefly algorithm for the nonlinear 

monetary incentive optimization problem and (4) study the effectiveness of these metaheuristic algorithms based 

on the results of experiments. For the optimization of monetary incentive in ridesharing systems, a non-

linear integer programming optimization problem is formulated. As finding a solution for the non-

linear integer programming optimization problem is computationally challenging, metaheuristic 

approaches are adopted to solve the problem. The contributions of this paper include: (1) proposing 

a problem formulation and associated solution algorithms to find and benefit the drivers and 

passengers with the highest monetary incentive for ridesharing and (2) comparing the effectiveness 

of several metaheuristic algorithms to provide a guideline for selecting an algorithm to solve the 

formulated problem. 

The monetary incentive optimization problem is a non-linear integer programming problem 

with a large number of constraints. The computational complexity arises from constraints in the 

problem formulation. An effective method to deal with constraints must be employed to develop a 

solution algorithm. In the literature, several ways to deal with constraints in constrained optimization 

problems have been proposed. The concept behind these constraint-handling methods can be 

classified into three categories: preserving feasibility of solutions, penalizing infeasible solutions and 

biasing feasible over infeasible solutions. Among the well-known methods to handle constraints, the 

penalty function method [36,37] and the biasing feasible over infeasible solutions method [38] are the 

most popular ones. The biasing feasible over infeasible solutions method does not rely on setting of 

penalty coefficients or parameters to handle constraints. Therefore, we adopt a method based on 

biasing feasible over infeasible solutions [36] to develop metaheuristic algorithms. As the solutions 

evolve in the continuous space, transformation of solutions to discrete space is required for each 

metaheuristic algorithm developed in this study. 
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To assess effectiveness of the proposed metaheuristic algorithms, we conduct experiments for 

several test cases. The numerical results indicate that the discrete variant of the cooperative, 

coevolving particle swarm optimization algorithm is significantly more effective than other 

metaheuristic algorithms in solving a constrained optimization problem with nonlinear objective 

function and binary decision variables. The results confirm the effectiveness of the proposed 

algorithm. 

This paper is different from the brief paper in Reference [17] in that it is extended with a number 

of metaheuristic algorithms and a comparative study of these metaheuristic algorithms through 

experiments. As this paper focuses on optimization of monetary incentive in ridesharing systems, it 

is also different from the work in Reference [31] in two aspects. The objective function is not separable 

with respect to the decision variables and is a nonlinear function. This makes the optimization 

problem hard to solve. The problem formulated in this paper is a nonlinear integer programming 

problem with discrete decision variables, which is different from the one studied in References [31] 

and [10]. 

The remainder of this paper is organized as follows. In Section 2, we describe and formulate the 

monetary incentive optimization problem. The fitness function and constraint handling method are 

described in Section 3. The metaheuristic algorithms will be presented in Section 4. In Section 5, we 

will present and discuss the results. In Section 6, we conclude this paper. 

2. Problem Formulation 

In this section, the problem formulation will be introduced. The notations required for problem 

formulation are summarized in Table 1. A ridesharing system consists of a number of passengers, a 

number of drivers and the cars owned by drivers. To describe the ridesharing problem, we use P to 

denote the number of passengers in the system and a passenger is referred to as p , where

},....3,2,1{ Pp . Similarly, we use D to denote the number of drivers in the system and a driver is 

referred to as d , where },....,3,2,1{ Dd  . For simplicity, it is assumed that each driver owns one car 

and we use d to refer to the car of driver d whenever it is clear from the context. 

The main function of ridesharing systems is to match the set D of drivers with the set P of 

passengers according to their requirements. To describe the itinerary of driver d , let dLo  and dLe

be the origin and destination of driver d , respectively. dR = ),( dd LeLo denotes the itinerary of driver

},....,3,2,1{ Dd  . Similarly, to describe the itinerary of passenger },....3,2,1{ Pp , we use pLo and pLe to 

denote the origin and destination of passenger p , respectively. pR = ),( pp LeLo represents the 

itinerary of passenger p.  

To formulate the monetary incentive optimization problem in ridesharing systems, the 

variables/symbols and their meaning are defined in Table 1.  

Table 1. Notations of variables/symbols for problem formulation. 

Variable/Symbol Meaning 

P  total number of passengers 
p the ID of a passenger, where },....3,2,1{ Pp  

D  total number of drivers 

d  the ID of a driver, where },....,3,2,1{ Dd   

K  total number of locations of passengers, PK   

k  the location ID, },...,2,1{ Kk   

pks  
the number of seats requested by passenger pfor location k , where

},....,3,2,1{ Kk   

dJ  the number of bids placed by driver },...,2,1{ Dd   

j  the jth bid submitted by driver d , where },...,2,1{ dJj  
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djc  
the routing cost for transporting the passengers in the jth bid submitted by 

driver d  

djo  the original travel cost of driver d (without transporting any passenger) 

djkq  
the number of seats available at location k in the jth bid submitted by driver

d  

djDB  djDB = ),,,...,,,( 321 djdjdjKdjdjdj coqqqq , the jth bid submitted by driver d  

pf  the original price of passenger p(without ridesharing) 

pPB  

pPB = ),,...,,,( 321 ppKppp fssss : the bid submitted by passenger p. The bid

pPB is an offer to pay the price phf for transporting pks passengers for each

},....,3,2,1{ Kk   

djx  
a binary decision variable: it indicates whether the jth bid placed by driver d

is a winning bid ( djx = 1) or not ( djx = 0) 

py  
a binary decision variable: it indicates whether the bid placed by passenger p

is a winning bid ( py = 1) or not ( py = 0) 

 
In the ridesharing system considered in this study, drivers and passengers express their 

transportation requirements by submitting bids. Before submitting bids, it is assumed that drivers 

and passengers apply some bid generation software to generate bids. For example, the Bid 

Generation Procedures in Appendix II of Reference [31] may be applied to generate bids for drivers 

and passengers. However, the problem formulation to be presented below does not presume the use 

of Bid Generation Procedures in Appendix II of Reference [31] to generate bids. Drivers and 

passengers may apply any other bid generation software to generate bids. The bids generated for 

each driver are based on his/her itinerary, dR . Let dJ denote the number of bids generated and 

submitted by driver d . The jth bid submitted by driver d is represented by djDB =

),,,...,,,( 321 djdjdjKdjdjdj coqqqq . The input data djc and djo corresponding to the routing cost and the 

original travel cost of the jth bid of driver d can be measured in any currency (such as USD, EURO, 

RMB, NT, etc.) appropriate for a specific application scenario.  

Similarly, the bid generated for a passenger pis also based on his/her itinerary, pR . It is assumed 

that each passenger psubmits only one bid. The bid generated and submitted by passenger p is 

represented by pPB = ),,...,,,( 321 ppKppp fssss . The parameter pf denoting the original price of 

passenger pwithout ridesharing can be measured in any currency (such as USD, EURO, RMB, NT, 

etc.) appropriate for a specific application scenario. A bid pPB is called a winning bid if passenger p

is selected by the ridesharing system to share a ride with a driver. 

The problem is to match drivers and passengers based on their itineraries to optimize monetary 

incentive. An objective function defined based on the ratio between the cost savings and the original 

costs is proposed to achieve this goal. The objective function is defined as follows: 
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Based on the above monetary objective function, the objective of the monetary incentive 

optimization problem is to find the set of passengers and drivers such that the ratio between the cost 

savings and the original costs is maximized. We formulate the following optimization problem: 

),(max
,
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yx
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jdxdj  ,    }1,0{  (6) 

pyp     }1,0{  (7) 

The problem is subject to several constraints: (a) the capacity constraints in Equation (3), (b) the 

cost savings constraints in Equation (4) and (c) the winning bid constraint for each driver in Equation 

(5). In addition, the values of decision variables must be binary, as specified in Equation (6) and 

Equation (7). Note that the objective function ),( yxF  for the optimization of monetary incentive is 

nonlinear. It is more complex than the simple linear function in Reference [31]. 

3. Fitness Function and Constraint Handling Method 

The problem formulated previously is a constrained optimization problem with binary decision 

variables and rational objective function. The objective function ),( yxF in the above optimization 

problem is not an additively separable function, which is different from the additively separable 

objective function used in Reference [31]. In addition, the computational complexity arises from 

constraints in the problem formulation. An effective method to deal with constraints must be 

employed to develop a solution algorithm. 

In existing literature, several ways to deal with constraints in the constrained optimization 

problem have been proposed and used in solving constrained optimization problems. The concept 

behind these constraint-handling methods includes preservation of solutions’ feasibility, penalizing 

infeasible solutions and discrimination of feasible/infeasible solutions. Among the well-known 

methods to handle constraints, the penalty function method [36,37] and the discrimination of 

feasible/infeasible solutions method [38] are widely used methods.  

Although the penalty function method is very easy to use, it relies on proper setting of the 

penalty coefficients. The performance of the penalty function method depends on the penalty 

coefficients. Improper penalty coefficients often seriously degrade the performance. In addition, there 

still lacks a good way to set the penalty coefficients properly. The approach of discriminating 

feasible/infeasible solutions method works without relying on coefficients or parameters to handle 

constraints. Therefore, we adopt the approach of discriminating feasible/infeasible solutions [38]. The 

details of applying this approach are described below. 

The discriminating feasible/infeasible solutions method characterizes a feasible solution with the 

corresponding original objective function value. For an infeasible solution, instead of calculating the 

fitness function value due to infeasible solutions, the method of discriminating a feasible/infeasible 

solutions method characterizes the fitness function value of infeasible solutions based on the objective 

function value of the current population’s worst feasible solution. In this way, the performance 

degradation due to improper setting of penalty coefficients can be avoided. 
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As the discriminating feasible/infeasible solutions method [38] is adopted to handle constraints, 

we need to find the objective function value of the current population’s worst feasible solution. To 

achieve this, we define fS = ),(),{( yxyx as a feasible solution in the current population satisfying 

constraints (3)~(7). Then, the objective function value of the current population’s worst feasible 

solution can be calculated by ),(min
),(

min yxFS
fSyx

f


 . 

For the discriminating feasible/infeasible solutions method, we define the fitness function

),(1 yxF as follows: 
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4. Implementation of Discrete Metaheuristic Algorithms 

In this study, several discrete versions of metaheuristic algorithms for solving the monetary 

incentive optimization problem have been developed. The notations required for describing these 

metaheuristic algorithms are summarized in Table 2. These metaheuristic algorithms include discrete 

PSO, discrete comprehensive learning particle swarm optimization (CLPSO) [39], discrete DE, 

discrete firefly, discrete adaptive learning particle swarm optimization (ALPSO) and discrete 

cooperative coevolving particle swarm optimization (CCPSO) algorithms. All these algorithms will 

be compared by conducting experiments in the next section. As all these discrete algorithms are 

developed based on transformation of continuous solutions to binary solutions, all the algorithms 

mentioned above will be presented in this paper with the exception of the discrete ALPSO algorithm. 

Just like other algorithms to be presented in this section, the discrete ALPSO is also developed [40] 

by adding procedure to transform continuous solution space to binary solution space in the evolution 

processes. Therefore, the discrete ALPSO algorithm will not be presented in this section to save space.  

For each algorithm presented in this section, the stopping criteria is based on the maximum number 

of generations parameter, GENMAX _ . 

Table 2. Notations of variables/symbols for metaheuristic algorithms. 

Variable/Symbol Meaning 

GENMAX _  the maximum number of generations 

t  the iteration/generation variable 

NP  population size. 

N  the problem dimension, where PJN
D

d

d  
1

 

iz  

the position of particle i , where },...,2,1{ NPi , and iz = ( ix , iy ), ix is the 

position vector associated with the decision variable x and iy is the position 

vector associated with the decision variable y  
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iv  the velocity of particle i ; inv denotes the n th element of the vector iv  

iPz  
the personal best of particle i , where },...,2,1{ NPi , and inPz is the nth  

element of the vector iPz , },...,2,1{ Nn  

Gz 
the global best, and nGz is the nth element of the vectorGz, where

},...,2,1{ Nn  

1c  a non-negative real parameter less than 1 

2c  a non-negative real parameter less than 1 

1r  a random variable with uniform distribution )1,0(U  

2r  a random variable with uniform distribution )1,0(U  

maxV  the maximum value of velocity 

)( invs  the probability of the bit inv  

cp  the learning probability, where cp is greater than 0 and less than 1 

rp  a random variable with uniform distribution )1,0(U  

NS  total number of swarms 

sSW  a swarm, where },...,2,1{ NSs  

1 and 2  weighting factors for updating velocity; 10 1   ; 121   

  a scaling factor for updating velocity; 0  

DS  a set of integers 

ds  an integer ds is selected from DS  

ẑ  
the context vector obtained by concatenating the global best particles from all

NS swarms 

is zSW .  the ith particle in the sth swarm sSW  

p
is zSW .  the personal best of the ith particle in swarm sSW  

zSWs ˆ.  the global best of the component of the swarm sSW  

ijr  the distance between firefly i and firefly j  

  the light absorption coefficient 

0  the attractiveness when the distance ijr between firefly i and firefly j is zero 

2

0
ijre





 the attractiveness when the distance ijr between firefly i and firefly j  

t
in  a random number generated from a uniform distribution in [0, 1] 

t  a constant parameter in [0, 1] 

)( xT  )( xT =
1

1
2

2




x

x

e

e
a function to transform a real value into a value in ]1,0[  

CR  the crossover rate 

F  the scale factor 

iF  the scale factor for individual i  

itv  a mutant vector for individual i  

  

4.1. Discrete PSO Algorithm 

The original standard PSO algorithm was proposed in Reference [23] to solve problems with 

continuous solution space. In the standard PSO algorithm, each particle of the swarm adjusts its 

trajectory based on its own flying experience as well as the flying experiences from other particles. 

Let ),...,,,( 321 iNiiii vvvvv  and ),...,,,( 321 iNiiii zzzzz  be the velocity and position of particle i , 

respectively. Let ),...,,,( 321 iNiiii PzPzPzPzPz   be the best historical position (the personal best) of 

particle i . Let ),...,,,( 321 NGzGzGzGzGz  be the best historical position (the global best) of the entire 
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swarm. The velocity and position of particle i on dimension n in iteration 1t , where },...,3,2,1{ Nn , 

are updated as follows: 

)()( 2211 inninininin zGzrczPzrcvv    (8) 

ininin vzz   (9) 

where  is a parameter called the inertia weight, 1c and 2c are positive constants referred to as 

cognitive and social parameters respectively, and 1r and 2r are random numbers generated from a 

uniform distribution in the region of [0, 1].  

As the original PSO algorithm was proposed to solve problems with continuous solution space, 

it cannot be applied to solve the optimization problem with binary decision variables. Therefore, 

transformation of solutions from continuous space to binary space is required. As the solution space 

of the optimization problem formulated is binary, we define a procedure )(aCS in Table 3 to transform 

continuous solution (CS) space to binary solution space. The procedure )(aCS will be invoked as 

needed in different variants of PSO algorithms and DE algorithm. 

Table 3. The pseudocode for procedure )(aCS . 

Procedure )(aCS  

If maxVa   

maxVa   

End If 

If maxVa   

maxVa   

End If 

a
as




exp1

1
)(  

Generate a random variable rsid with uniform distribution )1,0(U  



 


otherwise

asrsid
b

0

)(1
 

Return b  

 

Figure 1 shows the flowchart for the discrete PSO algorithm. Table 4 shows the pseudocode for 

the discrete PSO algorithm. 
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Figure 1. A flowchart for the discrete particle swarm optimization (PSO) algorithm. 

Table 4. The pseudocode for the discrete PSO algorithm. 

Discrete PSO Algorithm 

0t  

Generate particle iz for each },...,2,1{ NPi in the population 

Evaluate the fitness function )(1 izF for particle iz , where },...,2,1{ NPi  

Determine the personal best iPz for each },...,2,1{ NPi  

Determine the global bestGzof swarm 

While (stopping criteria not satisfied)  

1 tt  
For each },...,2,1{ NPi  

For each },...,2,1{ Nn  

Generate a random variable 1r with uniform distribution )1,0(U  

Generate a random variable 2r with uniform distribution )1,0(U  

Calculate the velocity of particle iz  

)()( 2211 inninininin zGzrczPzrcvv   

Transform each element of inv into one or zero 
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)( inin vCSu   

End For 

Update personal best and global best 

If )()( 11 ii PzFuF   

iPz = iu  

         End If 

If )()( 11 GzFPzF i   

    Gz= iPz  

         End If 

End While 

4.2. Discrete CLPSO Algorithm 

The CLPSO algorithm [40] is a well-known variant of the PSO algorithm. The CLPSO algorithm 

works based on the learning probability, cp , where cp is greater than 0 and less than 1. The CLPSO 

algorithm generates a random number for each dimension of particle i . The corresponding 

dimension of particle i will learn from its own personal best in case the random number generated is 

larger than cp . Otherwise, the particle will learn from the personal best of the better of two randomly 

selected particles, 1m and 2m . Letmdenote the better particle. The velocity of the particle in dimension

n will be updated according to (10) as follows: 

)(11 inmninin zPzrcvv   (10) 

As the original CLPSO algorithm was proposed to solve problems with continuous solution 

space, it cannot be applied to solve the optimization problem with binary decision variables. 

Therefore, transformation of solutions from continuous space to binary space is needed. Figure 2 

shows the flowchart for the discrete CLPSO algorithm. Table 5 shows the pseudocode for the discrete 

CLPSO algorithm. 
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Begin

Generate particles randomly

Evaluate fitness function for
     each particle

Determine the personal best
     and the global best

Stopping criteria 
satisfied ?

Generate random variables to 
   update the velocity according to 
   formula (8) of the standard 
   PSO

Transform velocity to binary

Update the personal best
and the global best

No
End

Yes

Generate a random variable rp for each    
particle in each dimension

rp greater than 
learning probability ?

Randomly select two distinct
   particles and update the velocity
   according to formula (10)
   based on the better particle

 

Figure 2. A flowchart for the discrete CLPSO algorithm. 
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Table 5. The pseudocode for the discrete CLPSO algorithm. 

Discrete CLPSO Algorithm 

0t  

Generate particle iz for each },...,2,1{ NPi in the population 

Evaluate the fitness function )(1 izF for each },...,2,1{ NPi  

Determine the personal best iPz of each particle 

Determine the global bestGz of the swarm 

While (stopping criteria not satisfied) 

1 tt  

For each },...,2,1{ NPi  

For each },...,2,1{ Nn  

Generate a random variable rp with uniform distribution )1,0(U  

If rp > cp  

Generate 1r , a random variable with uniform distribution )1,0(U  

Generate 2r , a random variable with uniform distribution )1,0(U  

Calculate the velocity of particle i as follows 

)()( 2211 inninininin zGzrczPzrcvv   

  else  

            Randomly select two distinct integers 1m and 2m from },...,2,1{ NP  

   If ( )()(
21 11 mm zFzF   

Calculate the velocity of particle i as follows 

    )(
111 innminin zPzrcvv   

   Else 

Calculate the velocity of particle i as follows 

    )(
211 innminin zPzrcvv   

   End If 

  End If 

Transform each element of inv into one or zero 

)( inin vCSu   

End For 

Update personal best and global best 

If )()( 11 ii PzFuF   

     iPz = iu  

End If 

If )()( 11 GzFPzF i   

     Gz= iPz  

End If 

End While 

 

4.3. Discrete CCPSO Algorithm 

The discrete CCPSO algorithm adopts a divide-and-conquer strategy to decompose a problem 

into smaller ones. To decompose the original higher dimensional problem into smaller subproblems, 

a set of integers, DS , is defined first. Then, an integer ds is first selected from DS . The discrete 

CCPSO algorithm decomposes the decision variables into NS swarms based on the selected integer

ds . To present the discrete CCPSO algorithm, let z be the vector obtained by concatenating decision 

variables x and y of the problem formulation. To share information in the cooperative coevolution 
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processes, let ẑ be the context vector obtained by concatenating the global best particles from all NS
swarms. There are three algorithmic parameters used to update particles in the discrete CCPSO 

algorithm. These parameters include the weighting factor 1 and 2 as well as the scaling factor . 

The ith  particle in the sth  swarm sSW is denoted as is zSW . . The personal best of the ith particle in 

swarm sSW is denoted as
p
is zSW . . Let the global best of the component of the swarm sSW be denoted 

as zSWs ˆ. . In each iteration, personal best and velocity of each particle are updated according to (11) 

as follows: 

))ˆ..(,ˆ..( 2
21 zSWzSWzSWzSW s

p
iss

p
is    (11) 

The swarm best and the context vector are also updated.  

Figure 3 shows the flowchart for the discrete CCPSO algorithm. The discrete CCPSO algorithm 

can be presented by the pseudocode in Table 6.  

 

Figure 3. A flowchart for the discrete CCPSO algorithm. 
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Table 6. The pseudocode for the discrete CCPSO algorithm. 

Discrete CCPSO Algorithm 

0t  
While (stopping criteria not satisfied) 

 

Step 1: Select ds from DS and randomly partition the set of decision variables into

NS subsets, each with ds decision variables  

Initialize swarm sSW for each },...,2,1{ NSs  

Step 2: For each },...,2,1{ NSs   

             For each particle sSWi   

Construct the vector iz consisting of ẑwith its sth component being 

replaced by is zSW .  

Calculate )( ii zCSz   

Evaluate fitness function value )(1 izF of iz  

                 Update personal best
p
is zSW . if iz is better than

p
is zSW .  

             Update swarm best zSWs ˆ.  if
p
is zSW . is better than zSWs ˆ.  

             End For 

             Update the context vector ( ẑ ) 

      End For  

      For each },...,2,1{ NSs   

            For each particle sSWi   

             For each },...,2,1{ dsd   

               Update velocity ids vzSW . with a Gaussian random variable 

 ))ˆ..(,ˆ..( 2
21 zSWzSWzSWzSW s

p
iss

p
is     

             End For 

            End For 

      End For 

End While 

 

4.4. Discrete Firefly Algorithm 

The firefly algorithm was inspired by the flashing pattern and behavior of fireflies [24]. The 

firefly algorithm works under the assumption that all fireflies are attracted to other ones 

independently of their sex. The less bright fireflies tend to flow towards the brighter ones. A firefly 

moves randomly if no brighter one can be found. To describe the discrete firefly (DF) algorithm, we 

use ijr to denote the distance between firefly i and firefly j and use  to denote the light absorption 

coefficient. The parameter 0 represents the attractiveness when the distance ijr between firefly i and 

firefly j is zero and
2

0
ijre





is the attractiveness when the distance ijr between firefly i and firefly j is 

1 tt
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greater than zero. Let
t
in be a random number generated from a uniform distribution in [0, 1] and t

be a constant parameter in [0, 1]. We define a function )( xT =
1

1
2

2




x

x

e

e
to transform a real value into a 

value in [0, 1]. Consider two fireflies, iand j , in the discrete firefly PSO algorithm. Firefly iwill move 

towards firefly iif the fitness function value of firefly iis less than that of firefly j according to (12) as 

follows: 

ininjn
r

inin zzezvz ij 





)(
2

0  (12) 

Loosely speaking, for the monetary incentive optimization problem in ridesharing systems, a 

firefly may play the role of a leader or a follower depending on the quality of the solution it has found. 

In the ridesharing problem, a solution with better fitness function value means that it will provide a 

stronger monetary incentive for drivers and passengers to share rides. A firefly will play the role of 

a leader when it finds a solution with better fitness function value. In this case, it will attract other 

fireflies whose solutions are inferior to move closer to it in order to find better solutions. 

The discrete firefly algorithm can be described by a flowchart and a pseudocode. Figure 4 shows 

the flowchart for the discrete firefly algorithm. Table 7 shows the pseudocode for the discrete firefly 

algorithm. 

 

Figure 4. A flowchart for the discrete firefly algorithm. 
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Table 7. The pseudocode for the discrete Firefly algorithm. 

Discrete Firefly Algorithm 

0t  

Generate NP fireflies in the initial population of swarm 

While (stopping criteria not satisfied) 

        

Evaluate the fitness function )(1 izF for each firefly },...,2,1{ NPi  

For each },...,2,1{ NPi  

   For each },...,2,1{ NPj  

       If ))()(( 11 ji zFzF   

Move firefly i  toward j  in N  -dimensional space according to the 

following formula: 

ininjn
r

inin zzezvz ij 





)(
2

0  

Update firefly i as follows: 

Generate rsid , a random variable with uniform distribution 
)1,0(U  



 


otherwise

vzTrsid
z in
in

0

)(1
 

Evaluate )(1 izF  

End For 

End For 

Find the global best 

End While 

 

 

4.5. Discrete Differential Evolution Algorithm 

There are three parameters in the DE algorithm, including scale factor, crossover rate and the 

number of individuals in the population (population size). To describe the DE algorithm, let N , NP ,

CR and F denote the problem dimension, population size, crossover rate and scale factor, respectively. 

The scale factor for individual i is denoted by iF . We use itv to denote a mutant vector for individual

i , where i {1 , 2 , . . . , NP }. 

A DE algorithm starts by generating a random population of trial individuals

),...,,,( 321 iNiiii zzzzz   for i = 1 , 2 , . . . , NPand n  = 1 , 2 , . . . , N . The DE algorithm attempts to 

improve the quality of the trial populations. In each iteration, a new generation replaces the previous 

one. In the course of generating a new generation, a new mutant vector ),...,,,( 321 iNiiii tvtvtvtvtv   is 

generated for individual iz by applying a search strategy or mutation strategy, S . In existing 

literature, several search strategies have been proposed for DE. Six well-known search strategies in 

DE are as follows: 

)(
321 nrnrinrin zzFztv   (13) 

)(
32 nrnribnin zzFztv   (14) 

)()(
54321 nrnrinrnrinrin zzFzzFztv   (15) 

)()(
4321 nrnrinrnribnin zzFzzFztv   (16) 

1 tt
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)()(
21 nrnriinbniinin zzFzzFztv   (17) 

)()()(
4321 nrnrinrnriinbniinin zzFzzFzzFztv   (18) 

where the index b refers to the best individual bz . 

Similarly, nrz 1
, nrz 2

, nrz 3
, nrz 4

and nrz 5
 are some random individuals, namely, 1r , 2r , 3r , 4r and 

5r are random integers between 1 and NP . 

The standard DE algorithm was originally proposed to solve the problem in continuous search 

space. Therefore, it is necessary to transform each element of individual vector into one or zero in the 

discrete DE algorithm. The discrete DE algorithm can be described by a flowchart and a pseudocode. 

Figure 5 shows the flowchart for the discrete DE algorithm. Table 8 shows the pseudocode for the 

discrete DE algorithm. 

 

Figure 5. A flowchart for the discrete DE algorithm. 
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Table 8. The pseudocode for the discrete DE algorithm. 

Discrete DE Algorithm 

0t  
Set parameters 

5.0CR  

)1,0(NF   , where )1,0(N is a Gaussian random variable with mean 0 and standard 

deviation 1.0 

For NPtoi 1  

FFi   

End For 

S : A mutation strategy defined in (13) through (18) 

Generate an initial population S randomly 

While (stopping criteria not satisfied) 

 

For NPtoi 1  

Compute mutant vector iv  

Compute iv according to mutation strategy S  

Compute trial vector iu by crossover operation 

For },...,2,1{ Nn  



 


otherwisez

CRRandifv
u

in

in
in

)1,0(
 

End For 

Transform each element of inu into one or zero 

)( inin uCSu   

Update individual i  

If )()( 11 ii zFuF   

    iz = iu  

End If 

End For 

End While 

 

5. Results 

In this section, we conduct experiments by generating the data for several test cases and then 

apply four discrete variants of PSO algorithms, discrete variants of DE algorithms and the discrete 

firefly algorithm to find solutions for the test cases. First, we briefly introduce the data and 

parameters for test cases and the metaheuristic algorithms. We then compare different metaheuristic 

algorithms based on the results of experiments. The outputs obtained by applying different 

metaheuristic algorithms to each test case are summarized and analyzed in this section. 

5.1. Data and Parameters 

The input data are created by arbitrarily selecting a real geographical area first. Then, locations 

of drivers and passengers are randomly generated based on the selected geographical area. Therefore, 

the procedure for selecting input data is general and can be applied to other geographical areas in 

the real world. The test cases are generated based on a real geographical area in the central part of 

Taiwan. The data for each example are represented by bids. The data (bids) for these test cases are 

available for download from: 

1 tt
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https://drive.google.com/drive/folders/1pl_bYMtWUCbGODYDmDr2aX2h_7WXSeNZ?usp=sh

aring.  

To illustrate the elements of typical test cases’ data, the details of the data for a small example is 

introduced first. 

 

An Example: 

Consider a ridesharing system with one driver and four passengers. The origins and destinations 

of the driver and passengers are listed in Table 9. Table 10 shows the bid generated for Driver 1 by 

applying the bid generation procedure in Appendix II of Reference [31]. The bids generated for all 

passengers are shown in Table 11. Four discrete variants of PSO algorithms, six discrete variants of 

DE algorithms and the discrete firefly algorithm (FA) are applied to find solutions for this example. 

The parameters used for each metaheuristic algorithm in this study are as follows. 

Table 9. Origins and destinations of participants. 

Participant Origin Destination 

Driver 1 
24.13046, 

120.7047 

24.2493791, 

120.6989202 

Passenger 1 
24.13745, 

120.68354 

24.15294, 

120.65751 

Passenger 2 
24.17119, 

120.65015 

24.13423, 

120.65639 

Passenger 3 
24.2033643, 

120.7047477 

24.1344881, 

120.6674565 

Passenger 4 
24.2057, 

120.67951 

24.2261, 

120.65644 

Table 10. Bid submitted by Driver 1. 

Driver ID( d ) 11dq  12dq  13dq  14dq  1do  1dc  

1 1 0 0 0 55.4325 58.815 

Table 11. Bids submitted by Passengers. 

Passenger ID( p) 1ps  2ps  3ps  4ps  pf  

1 1 0 0 0 11.8775 

2 0 1 0 0 13.01 

3 0 0 1 0 24.33 

4 0 0 0 1 10.155 

The parameters for the discrete CCPSO algorithm are: 

DS = {2, 5, 10} 

1 = 0.5 

2 = 0.5 

  = 1.0 

maxV = 4 

GENMAX _ = 10,000 

The parameters for the discrete PSO algorithm are: 

= 0.4 

1c = 0.4 

2c = 0.6 

maxV = 4 
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GENMAX _ = 10,000 

The parameters for the firefly algorithm (FA) are: 

0 = 1.0 

 = 0.2 

 = 0.2 

maxV = 4 

GENMAX _ = 10,000 

The parameters for the CLPSO algorithm are: 

= 0.4 

1c = 0.4 

2c = 0.6 

cp = 0.5 

maxV = 4 

GENMAX _ = 10,000 

The parameters for the DE algorithm are: 

CR = 0.5 

F : Gaussian random variable with zero mean and standard deviation set to 1.0 

maxV = 4 

GENMAX _ = 10,000 

Population size NP= 10 

For this example, all the above algorithms obtain the same solution 11,1 x , 11,1 y , 01,2 y , 

01,3 y , 01,4 y . The solution indicates that Driver 1 will share a ride with Passenger 1 only to 

optimize monetary incentive. The objective function value for this solution is 0.12. Figure 6 shows the 

results on Google Maps. 

 

Figure 6. The results (obtained with population size NP  = 10 for Test Case 1) displayed on Google 

Maps. 
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5.2. Comparison of Different Metaheuristic Algorithms 

Experiments for several test cases have been conducted to compare different metaheuristic 

algorithms. The parameters for running all the algorithms for Case 1 through Case 6 are the same as 

those used by the Example in Section 5.1, with the exception that the population size NP is either set 

to 10 or 30. The parameters for running all the algorithms for Case 7 and Case 8 are the same as those 

used by the Example in Section 5.1, with the exception that the maximum number of generations

GENMAX _ is set to 50,000 and the population size NP is either set to 10 or 30. The results are as 

follows. 

By setting the population size NP to 10 and applying the discrete PSO, discrete firefly (FA), 

discrete ALPSO and discrete CCPSO algorithms to solve the problems, we obtained the results of 

Table 12. It indicates that the discrete CCPSO algorithm outperforms the discrete firefly algorithm 

and discrete ALPSO algorithm. Although the average fitness function values of the discrete PSO 

algorithm and the discrete CCPSO algorithm are the same for small test cases (Case 1 through Case 

6), the average number of generations needed by the discrete CCPSO algorithm is less than that of 

the discrete PSO algorithm for most test cases. In particular, the discrete CCPSO algorithm 

outperforms the discrete PSO algorithm in terms of the average fitness function values and the 

average number of generations needed for larger test cases (Case 7 and Case 8). This indicates that 

the discrete CCPSO algorithm outperforms the discrete PSO algorithm for most test cases when the 

population size NP is 10. 

For Table 12, the corresponding bar chart for the average fitness function values of discrete PSO, 

CCPSO, CLPSO, ALPSO and FA algorithms is shown in Figure 7. 

Table 12. Fitness function values for discrete PSO, CCPSO, CLPSO, ALPSO and FA algorithms 

(population size NP = 10). Avg. = average. 

Cas

e 
D P 

PSO FA CLPSO ALPSO CCPSO 
Avg. Fitness 

Value/Avg. 

Generation 

Avg. Fitness 

Value/Avg. 

Generation 

Avg. Fitness 

Value/Avg. 

Generation 

Avg. Fitness 

Value/Avg. 

Generation 

Avg. Fitness 

Value/Avg. 

Generation 

1 1 4 0.12/3.2 0.12/4.6 0.12/3.1 0.12/3.3 0.12/3.9 

2 3 
1

0 

0.292/216.4 0.2849/344 0.292/410.4 0.292/263.3 0.292/156.9 

3 3 
1

0 

0.204/267.9 –0.2373/95.1 0.204/297.6 0.204/205.3 0.204/177.2 

4 5 
1

1 

0.371/1222.1 –0.3558/1252.6 0.3667/2855.7 0.371/1365.6 0.371/568.7 

5 5 
1

2 

0.279/1381.2 0.2663/2513.6 0.2721/3388.9 0.279/1756.5 0.279/184.4 

6 6 
1

2 

0.268/2147.6 –0.9662/1195.2 0.2638/4282.2 0.2679/3187.

1 

0.268/364.5 

7 
2

0 

2

0 

0.2111/24,501 –

1.0659/10,817.

5 

0.2023/20,843.

7 

0.2298/24,68

1 

0.381/13,288.

5 

8 
3

0 

3

0 

0.1423/29,449.

2 

–

1.6923/23,324.

6 

–

0.5304/26,707.

3 

0.0125/29,17

2 

0.508/11,036.

7 
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Figure 7. The bar chart for the average fitness function values of discrete PSO, CCPSO, CLPSO, 

ALPSO and FA algorithms (population size NP = 10) created based on Table 12. 

For Table 12, the corresponding bar chart for the average number of generations of discrete PSO, 

CCPSO, CLPSO, ALPSO and FA algorithms is shown in Figure 8. 

 

 

Figure 8. The bar chart for the average number of generations of discrete PSO, CCPSO, CLPSO, 

ALPSO and FA algorithms (population size NP = 10) created based on Table 12. 

By setting the population size NP to 10 and applying the discrete DE algorithm with six well-

known strategies to solve the problems, we obtained Tables 13 and 14. By comparing Table 13, Table 

14 and Table 12, it indicates that the discrete CCPSO algorithm outperforms the discrete DE algorithm 

for most test cases. The discrete DE algorithm performs as good as the discrete CCPSO algorithm 

only for Test Case 1. For Test Case 2, only two DE strategies (Strategy 1 and Strategy 3) perform as 

good as the discrete CCPSO algorithm. The discrete CCPSO algorithm outperforms the discrete DE 

algorithm for Test Case 3 through Test Case 6. This indicates that the discrete CCPSO algorithm 

outperforms the discrete PSO algorithm when the population size NP is 10. 
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Table 13. Average (Avg.) fitness function values/generations for discrete DE algorithms with strategy 

1, strategy 2 and strategy 3 (population size NP = 10). 

Case D P 

DE_Strategy 

1 

DE_Strategy 2 DE_Strategy 3 

Avg. Fitness 

Value/Avg. 

Generation 

Avg. Fitness 

Value/Avg. 

Generation 

Avg. Fitness 

Value/Avg. 

Generation 

1 1 4 0.12/3.1 0.12/4.4 0.12/2.3 

2 3 10 0.292/86.7 0.281/574.8 0.292/102.7 

3 3 10 0.1995/867 0.2023/180.2 0.1903/146.4 

4 5 11 0.3389/220.5 0.2896/1027.4 0.3177/1179.6 

5 5 12 0.2745/1914.2 0.2553/2233.4 0.2681/574 

6 6 12 0.2542/417 0.2307/894.2 0.2521/541.3 

7 20 20 0.2622/2764.4 0.1819/13,610.3 0.3266/6310.3 

8 30 30 
0.256/15,267.8 –

0.0367/11,861.2 

0.3258/10,241.7 

Table 14. Average (Avg.) fitness function values/generations for discrete DE algorithms with strategy 

4, strategy 5 and strategy 6 (population size NP = 10). 

Case D P 

DE_Strategy 

4 

DE_Strategy 5 DE_Strategy 6 

Avg. Fitness 

Value/Avg. 

Generation 

Avg. Fitness 

Value/Avg. 

Generation 

Avg. Fitness 

Value/Avg. 

Generation 

1 1 4 0.12/2.3 0.12/2.8 0.12/2.4 

2 3 10 0.2834/79.9 0.2834/1867.6 0.2801/170.2 

3 3 10 0.2017/63.3 0.202/1065.3 0.2031/475.8 

4 5 11 0.3416/835.4 0.3536/1393.3 0.3263/1201.9 

5 5 12 0.261/2318.2 0.2332/1491.5 0.2758/256.1 

6 6 12 0.2606/219.1 0.2491/2854.4 0.2677/796.9 

7 20 20 0.2219/9339.7 0.1898/14,519.7 0.0485/10,533.6 

8 30 30 
0.227/18,229.7 –

0.0598/13,292.6 

0.1072/20,699.7 

For Tables 13 and 14, the corresponding bar chart for the average fitness function values of 

discrete DE algorithms with strategy 1, strategy 2, strategy 3, strategy 4, strategy 5 and strategy 6 

(population size = 10) is shown in Figure 9. 
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Figure 9. The bar chart for the fitness function values of discrete DE algorithms with strategy 1, 

strategy 2, strategy 3, strategy 4, strategy 5 and strategy 6 (population size NP = 10) created based on 

Tables 13 and 14. 

For Tables 13 and 14, the corresponding bar chart for the average number of generations of 

discrete DE algorithms with strategy 1, strategy 2, strategy 3, strategy 4, strategy 5 and strategy 6 

(population size = 10) is shown in Figure 10. 

 

 

Figure 10. The bar chart for the average number of generations of discrete DE algorithms with strategy 

1, strategy 2, strategy 3, strategy 4, strategy 5 and strategy 6 (population size NP= 10) created based 

on Tables 13 and 14. 

We obtained Table 15 by applying the discrete PSO, the discrete firefly, the discrete CLPSO, 

discrete ALPSO and discrete CCPSO algorithms to solve the problems with population size 30NP
. Table 15 indicates that the average fitness function values found by the discrete PSO, discrete ALPSO 

and discrete CCPSO algorithms are the same for small test cases (Test Case 1 through Test Case 6). 

The results indicate that the discrete PSO, discrete ALPSO and discrete CCPSO algorithms 

outperform the discrete FA and discrete CLPSO algorithms for small test cases (Test Case 1 through 
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Test Case 6). The discrete CCPSO algorithm outperforms the discrete PSO, the discrete FA, the 

discrete CLPSO and the discrete ALPSO algorithms for larger test cases (Test Case 7 and Test Case 

8). The discrete CCPSO algorithm does not just outperform the discrete PSO, the discrete FA, the 

discrete CLPSO and the discrete ALPSO algorithms in terms of the average fitness function values 

found, also, the average numbers of generations needed by the discrete CCPSO algorithm to find the 

best solutions are less than those of the discrete PSO algorithm and the discrete ALPSO algorithm for 

most test cases. This indicates that the discrete CCPSO algorithm is more efficient than the discrete 

PSO, the discrete FA, the discrete CLPSO and the discrete ALPSO algorithms for most test cases when 

the population size NP is 30. 

Table 15. Average (Avg.) fitness function values/generations for discrete PSO, CCPSO, CLPSO, 

ALPSO and FA algorithms (population size NP = 30). 

Cas

e 
D P 

PSO FA CLPSO ALPSO CCPSO 
Avg. Fitness 

Value/Avg. 

Generation 

Avg. Fitness 

Value/Avg. 

Generation 

Avg. Fitness 

Value/Avg. 

Generation 

Avg. Fitness 

Value/Avg. 

Generation 

Avg. Fitness 

Value/Avg. 

Generation 

1 1 4 0.12/2.1 0.12/2 0.12/2.3 0.12/2.1 0.12/2.4 

2 3 
1

0 

0.292/114.7 0.292/34.7 0.292/176.3 0.292/65.3 0.292/40.1 

3 3 
1

0 

0.204/69.6 0.204/29 0.204/241.1 0.204/118.4 0.204/84.2 

4 5 
1

1 

0.371/371.7 –0.1032/236.4 0.371/1074.1 0.371/383.4 0.371/141.8 

5 5 
1

2 

0.279/619.8 0.279/450.5 0.279/2424.8 0.279/586.9 0.279/93.8 

6 6 
1

2 

0.268/2090.9 0.268/958.8 0.2678/3479.7 0.268/1325.2 0.268/116.8 

7 
2

0 

2

0 

0.2609/22,957.

7 

0.2149/19,716.

8 

0.1971/36,331.

3 

0.2432/2663.7 0.381/2909.

8 

8 
3

0 

3

0 

0.1875/30,923.

7 

–

0.213/19,855.3 

–

0.2449/24,290.

3 

0.1811/30,853.

2 

0.508/5266.

9 

For Table 15, the corresponding bar chart for the average number of generations of discrete PSO, 

CCPSO, CLPSO, ALPSO and firefly (FA) algorithms is shown in Figure 11. 
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Figure 11. The bar chart for the average fitness function values of discrete PSO, CCPSO, CLPSO, 

ALPSO and FA algorithms (population size NP = 30) created based on Table 15. 

For Table 15, the corresponding bar chart for the average number of generations of discrete PSO, 

CCPSO, CLPSO, ALPSO and FA algorithms is shown in Figure 12. 

 

 

Figure 12. The bar chart for the average number of generations of discrete PSO, CCPSO, CLPSO, 

ALPSO and FA algorithms (population size NP = 30) created based on Table 7. 

We obtained Tables 16 and 17 by setting the population size NP to 30 and applying the discrete 

DE algorithm with six well-known strategies to solve the problems. Tables 16 and 17 indicate that the 

performance of the discrete DE algorithm is improved for most test cases. For example, the average 

fitness function values obtained by the discrete DE algorithm with Strategy 3 are the same as those 

obtained by the discrete PSO, discrete ALPSO and discrete CCPSO algorithms for small test cases 

(Test Case 1 through Test Case 6). Although the average fitness function values obtained by the 

discrete DE algorithm with other strategies are no greater than those obtained by the discrete PSO, 

discrete ALPSO and discrete CCPSO algorithms, the performance of the discrete DE algorithm are 

close to the discrete PSO, discrete ALPSO and discrete CCPSO algorithms. The discrete CCPSO 
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algorithm still outperforms the discrete DE algorithm with any of the six strategies for larger test 

cases (Test Case 7 and Test Case 8). Note that the average number of generations needed by the 

discrete DE algorithm to find the best solutions is significantly reduced for all strategies for most test 

cases. This indicates that the discrete DE algorithm works more efficiently for larger population size. 

Table 16. Average (Avg.) fitness function values/generations for discrete DE algorithms with strategy 

1, strategy 2 and strategy 3 (population size NP = 30). 

Case D P 

DE_Strategy1 DE_Strategy2 DE_Strategy3 
Avg. Fitness 

Value/Avg. 

Generation 

Avg. Fitness 

Value/Avg. 

Generation 

Avg. Fitness 

Value/Avg. 

Generation 

1 1 4 0.12/1.2 0.12/1.5 0.12/1.6 

2 3 10 0.292/22.5 0.292/25.875 0.292/25.625 

3 3 10 0.204/22.3 0.1966/478.3 0.204/30.7 

4 5 11 0.3458/756.7 0.3624/94.8 0.371/79.9 

5 5 12 0.279/66.4 0.27/216.2 0.279/88.5 

6 6 12 0.2646/97.2 0.2571/548.8 0.268/76.9 

7 20 20 0.3758/10,239 0.3027/6492.6 0.3528/6385.7 

8 30 30 0.4316/15,061.3 0.0142/11,460 0.3754/18,206.9 

 

Table 17. Average (Avg.) fitness function values/generations for discrete DE algorithms with strategy 

4, strategy 5 and strategy 3 (population size NP = 30). 

Case D P 

DE_Strategy4 DE_Strategy5 DE_Strategy6 
Avg. Fitness 

Value/Avg. 

Generation 

Avg. Fitness 

Value/Avg. 

Generation 

Avg. Fitness 

Value/Avg. 

Generation 

1 1 4 0.12/1.5 0.12/1.1 0.12/1.5 

2 3 10 0.28425/577.375 0.283/88.75 0.292/16.123 

3 3 10 0.2011/1162.5 0.2035/160 0.204/30.9 

4 5 11 0.3624/1290.4 0.3667/1063 0.371/395.9 

5 5 12 0.2647/310.9 0.2546/667.8 0.279/38.7 

6 6 12 0.2637/1179.8 0.2538/922.4 0.2607/160.4 

7 20 20 0.3218/8211.2 0.3157/6530.8 0.1311/5601.5 

8 30 30 0.3003/17,476.7 0.3393/11,709.7 0.3413/13,503.9 

For Tables 16 and 17, the corresponding bar chart for the average fitness function values of 

discrete DE algorithms with strategy 1, strategy 2, strategy 3, strategy 4, strategy 5 and strategy 6 

(population size = 30) is shown in Figure 13. 
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Figure 13. The bar chart for the fitness function values of discrete DE algorithms with strategy 1, 

strategy 2, strategy 3, strategy 4, strategy 5 and strategy 6 (population size NP = 30) created based on 

Tables 16 and 17. 

 

For Tables 16 and 17, the corresponding bar chart for the average number of generations of 

discrete DE algorithms with strategy 1, strategy 2, strategy 3, strategy 4, strategy 5 and strategy 6 

(population size = 30) is shown in Figure 14. 

 

 

Figure 14. The bar chart for the average number of generations of discrete DE algorithms with strategy 

1, strategy 2, strategy 3, strategy 4, strategy 5 and strategy 6 (population size NP= 30) created based 

on Tables 16 and 17. 

To study the convergence speed of the discrete PSO, discrete CLPSO, discrete ALPSO, discrete 

DE and discrete FA algorithms, we compare the convergence curves of simulation runs for several 

test cases. Figure 15 shows convergence curves for Test Case 2 ( NP= 10). 
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It indicates that the FA performs the worst for this simulation run. For this simulation run, the 

PSO algorithm converges the fastest. The CCPSO algorithm, the CLPSO algorithm, the ALPSO 

algorithm, the DE algorithm with Strategy 1, the DE algorithm with Strategy 3 and the DE algorithm 

with Strategy 6 also converge to the best fitness values very fast. The slowest algorithms are the firefly 

algorithm, the DE algorithm with Strategy 4 and the DE algorithm with Strategy 5. 

 

Figure 15. Simulation runs of Test Case 2 obtained by discrete PSO, CCPSO, CLPSO, ALPSO, FA and 

DE algorithms with population size NP= 10. 

Figure 16 shows convergence curves for Test Case 5 ( NP= 10). Again, FA is the slowest among 

all the algorithms for this simulation run. 

 

 

Figure 16. Simulation runs of Test Case 5 obtained by discrete PSO, CCPSO, CLPSO, ALPSO, FA and 

DE algorithms with population size NP= 10. 

Figure 17 shows convergence curves for Test Case 7 ( NP= 10). FA and the CLPSO algorithms 

are the two slowest algorithms in terms of convergence rate. 



ISPRS Int. J. Geo-Inf. 2020, 9, 590 31 of 37 

 

 

Figure 17. Simulation runs of Test Case 7 obtained by discrete PSO, CCPSO, CLPSO, ALPSO, FA and 

DE algorithms with population size NP= 10. 

Figure 18 shows convergence curves for Test Case 8 ( NP= 10). The CCPSO algorithm and the 

DE algorithm with Strategy 1 are the fastest to converge to the best fitness values. All the other 

algorithms fail to converge to the best values.  

 

 

Figure 18. Simulation runs of Test Case 8 obtained by discrete PSO, CCPSO, CLPSO, ALPSO, FA and 

DE algorithms with population size NP= 10. 

Figure 19 shows convergence curves for Test Case 2 ( NP= 30). All algorithms converge very 

fast to the best solution in this simulation run for Test Case 2 when population size NP= 30. 
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Figure 19. Simulation runs of Test Case 2 obtained by discrete PSO, CCPSO, CLPSO, ALPSO, FA and 

DE algorithms with population size NP= 30. 

Figure 20 shows convergence curves for Test Case 5 ( NP= 30). All algorithms converge very 

fast to the best solution in this simulation run for Test Case 5 when population size NP= 30. 

 

Figure 20. Simulation runs of Test Case 5 obtained by discrete PSO, CCPSO, CLPSO, ALPSO, FA and 

DE algorithms with population size NP= 30. 

For larger test cases, depending on the algorithm used, the convergence speed varies 

significantly. Figure 21 shows convergence curves for Test Case 7 ( NP = 30). The two fastest 

algorithms are the CCPSO algorithm and the DE algorithm with Strategy 6. In this run, the firefly 

algorithm is the slowest one and fails to converge to the best fitness value.  
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Figure 21. Simulation runs of Test Case 7 obtained by discrete PSO, CCPSO, CLPSO, ALPSO, FA and 

DE algorithms with population size NP= 30. 

The variation in convergence speed is significant for another larger test case, Test Case 8. Figure 

22 shows convergence curves for Test Case 8 ( NP= 30). The fastest algorithm is the CCPSO algorithm. 

In this run, the slowest algorithms are the PSO, CLPSO, ALPSO and FA. Note that the CLPSO, ALPSO 

and FA fail to converge to the best fitness value. 

 

 

Figure 22. Simulation runs of Test Case 8 obtained by discrete PSO, CCPSO, CLPSO, ALPSO, FA and 

DE algorithms with population size NP= 30. 

The results presented above indicate that the proposed discrete CCPSO algorithm outperforms 

other metaheuristic algorithms. Superiority of the discrete CCPSO algorithm is due to its capability 

to balance exploration and exploitation in the evolution processes. According to (11), ids zSW . is 

updated with a Gaussian random variable ))ˆ..(,ˆ..( 2
21 zSWzSWzSWzSW s

p
iss

p
is    . Exploration 

and exploitation characteristics of the discrete CCPSO algorithm strongly depend on the magnitude
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zSWzSW s
p
is ˆ..  . The balance between exploration and exploitation of the discrete CCPSO is as 

follows: As long as the personal best of a particle is not the same as the global best, the magnitude

zSWzSW s
p
is ˆ..  is nonzero. In this case, the variance of the Gaussian random variable

))ˆ..(,ˆ..( 2
21 zSWzSWzSWzSW s

p
iss

p
is   will be nonzero. If the magnitude zSWzSW s

p
is ˆ..  is 

large, the variance of the Gaussian random variable ))ˆ..(,ˆ..( 2
21 zSWzSWzSWzSW s

p
iss

p
is   will 

be large. This makes it possible to search a larger region around zSWzSW s
p
is ˆ.. 21   . If the personal 

best of a particle is close to the global best, the magnitude zSWzSW s
p
is ˆ..  will be small. In this case, 

the variance of the Gaussian random variable ))ˆ..(,ˆ..( 2
21 zSWzSWzSWzSW s

p
iss

p
is    tends to 

be small. This leads to a very small search region. Therefore, exploration and exploitation 

characteristics of the discrete CCPSO algorithm are balanced automatically in the solution searching 

process through the magnitude zSWzSW s
p
is ˆ..  . 

Although the subject of ridesharing/carpooling has been studied for over a decade, it is still not 

in widespread use. Motivated by this fact, several papers attempt to identify factors that contribute 

to ridesharing/carpooling [11–14]. Waerden et al. investigated factors that stimulate people to change 

from car drivers to carpooling. They identified several attributes that may influence the attractiveness 

of carpooling, including flexibility/uncertainty in travel time, costs and number of persons [13]. Their 

study indicates that the most influential are costs and time-related attributes in carpooling. 

Delhomme and Gheorghiu investigated the socio-demographics and transportation accessibility 

factual data to study motivational factors that differentiate carpoolers from non-carpoolers and 

highlight the main determinants of carpooling [12]. Their study indicates that the main incentives for 

carpooling are financial gains, time savings and environmental protection. Shaheen et al. studied a 

special type of carpooling called casual carpooling, which provides participants the benefits through 

access to a high-occupancy vehicle lane with tolling discounts. The study of Shaheen et al. indicates 

that monetary savings and time savings are the main motivations for casual carpooling participation 

[14].  

Santos and Xavier [15] studied the ridesharing problem in which money is considered as an 

incentive. The study by Watel and Faye [16] focuses on a taxi-sharing problem, called Dial-a-Ride 

problem with money as an incentive (DARP-M). They studied the taxi-sharing problem to reduce the 

cost of passengers. Watel and Faye defined three variants of the DARP-M problem: max-DARP-M, 

max-1-DARP-M and 1-DARP-M, to analyze their complexity. The objective of max-DARP-M is to 

drive the maximum number of passengers under the assumption of unlimited number of taxis 

available. The max-1-DARP-M problem is used to find the maximum number of passenger that can 

be transported by a taxi. The 1-DARP-M problem is used to decide whether it is possible to drive at 

least one passenger under the constraints stated. Although the max-DARP-M, max-1-DARP-M and 

1-DARP-M problems can be used to analyze complexity, they do not reflect real application scenarios. 

In addition, the problem to optimize overall monetary incentive is not addressed in References [15] 

and [16]. In Reference [17], Hsieh considered a monetary incentive in ridesharing systems and 

proposed a PSO-based solution algorithm for it. However, there is still lack of study on comparison 

with other variants of metaheuristic algorithms for solving the monetary incentive optimization 

problem formulated in this study. The results presented in this study serve to compare the 

effectiveness of applying several different metaheuristic algorithms to solve the monetary incentive 

optimization problem. The effectiveness of applying metaheuristic algorithms to solving a problem 

is assessed by performance and efficiency. Performance is reflected in the average number of fitness 

function values found by the metaheuristic algorithm applied, whereas efficiency is measured by the 

average number of generations needed to find the best fitness function values in the simulation runs. 

In this study, the comparative study on performance and efficiency was helpful for assessing the 

effectiveness of applying these metaheuristic approaches to solve the monetary incentive 

optimization problem. 
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6. Conclusions 

Motivated by the fact that the performance indices considered in most studies on ridesharing 

are not directly linked to monetary incentive, this study focused on how to deal with the monetary 

incentive issue in ridesharing systems to promote the ridesharing transportation model. This study 

contributes to the literature by (1) proposing a monetary incentive performance index, (2) formulating 

a monetary incentive optimization problem formulation, (3) developing solution algorithms based 

on several metaheuristic approaches to find drivers and passengers with the highest monetary 

incentive for ridesharing and (4) providing a guideline for selecting a proper metaheuristic algorithm 

to solve the problem through comparing the effectiveness of several metaheuristic algorithms.  

As the performance indicator for this problem is a highly non-linear and non-separable function 

and the decision variables are discrete, the optimization problem is a non-linear integer programming 

problem. It is computationally complex to find the solutions for this problem. To cope with 

computational complexity, metaheuristic approaches were adopted to solve the problem. Several 

discrete algorithms have been developed based on variants of PSO, DE and the firefly algorithms. To 

assess the effectiveness of these proposed algorithms, experiments for several test cases were 

conducted. The results show that the discrete CCPSO algorithm outperformed the variants discrete 

PSO algorithms, DE algorithm and the firefly algorithm when the population size was 10 or 30. The 

average fitness function values obtained by applying the discrete PSO algorithm were the same as 

those obtained by the discrete CCPSO algorithm for small test cases when the population size was 

10. But, the average number of generations needed by the discrete CCPSO algorithm was less than 

those of the discrete PSO algorithm for most test cases. This indicates that the discrete CCPSO 

algorithm outperformed the discrete PSO algorithm when the population size was 10. The 

effectiveness of the variants of DE algorithms were significantly improved when the population size 

was increased to 30. The variants of DE algorithms were competitive with the discrete CCPSO 

algorithm in terms of performance and efficiency when the population size was increased. However, 

the variants of DE algorithms were more sensitive to population size in comparison with the discrete 

CCPSO algorithm. The discrete CCPSO algorithm worked effectively even if the population size was 

10. These results provide guidelines for selecting metaheuristic algorithms to solve the monetary 

incentive optimization problem. The results indicate that many metaheuristic algorithms perform 

poorly as the problem grows due to premature convergence and/or the complex structure of 

constraints in the optimization problem, although they can be applied to develop solution algorithms 

for the nonlinear integer programming problem. The cooperative coevolution approach copes with 

these shortcomings of metaheuristic algorithms.  

An interesting future research direction is to develop new methods to study the sensitivity with 

respect to algorithmic parameters of metaheuristic algorithms such as the population size. As the 

results indicate that the discrete CCPSO algorithm can solve non-linear integer programming 

problems effectively, another future research direction is to study whether the proposed discrete 

CCPSO algorithm can effectively deal with an integer programming problem with non-linear 

objective function and non-linear constraints. The first step to carry out this future research direction 

is to identify the optimization problem with non-linear objective function and non-linear constraints 

to pave the way for extending the proposed discrete CCPSO algorithm to general non-linear integer 

programming problems. The second step is to develop a method for handling non-linear constraints.  
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