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Abstract: This paper examines the relationship between pedestrian density and space syntax 

measures in a university campus using ordinal logistic regression analysis. The pedestrian density 

assumed as the dependent variable of regression analysis was categorised in low, medium, and high 

classes by using Jenks natural break classification. The data elements of groups were derived from 

pedestrian counts performed in 22 gates 132 times. The counting period grouped in nominal 

categories was assumed as an independent variable. Another independent was one of the 15 derived 

measures of axial analysis and visual graphic analysis. The statistically significant model results 

indicated that the integration of axial analysis was the most reasonable measure that explained the 

pedestrian density. Then, the changes in integration values of current and master plan datasets were 

analysed using paired sample t-test. The calculated p-value of t-test proved that the master plan 

would change the campus morphology for pedestrians. 
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1. Introduction 

A geographic area with buildings to visit and streets where pedestrians can easily walk 

encourages people to travel on foot [1–8]. Pedestrians generally prefer to move along linear lines 

characterised by a minimum number of turns, with movement guided by the perception of visual 

spaces. These spaces, defined by Hillier [9] as walkable physical environments for pedestrians in city 

centres where buildings’ density is high, physically coincide with the street network [10]. Space 

syntax (SS) techniques are often used to analyse pedestrian walking behaviour in an urban 

environment consisting of street and building configurations. Axial analysis (AA) and visual graph 

analysis (VGA) are two of them [11]. 

The last decade has seen a remarkable increase in studies that examine walking behaviours via 

AA measures. Lerman and Omer [12], for example, analysed the relationship between pedestrian 

movement in two neighbouring regions located in Tel-Aviv based on integration, choice, and 

connectivity measures. Monokrousou and Giannopoulou [13] incorporated integration and choice 

into a correlation analysis to explain pedestrian movement and predict the future condition of 

Athens. Ahmed et al. [14] inquired into the morphological changes that occurred from 1947 to 2007 

in Dhaka City, Bangladesh, using the integration, connectivity, and control measures. Hajrasouliha 

and Li [15] explained pedestrian movement in the centre of Buffalo City in New York through the 

connectivity measure. Liu et al. [16] used control and integration as the basis in determining the 
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walking behaviours of tourists in scenic Mt. Sanqingshan, one of China’s major tourism regions. 

Jabbari et al. [17] investigated the association between connectivity and pedestrian movement by 

conducting multi-criteria analyses in the city centre of Oporto, Portugal. In addition, some recent 

studies examine the relationships between measures obtained from VGA and pedestrian movements 

and evaluate them together with AA measures. Dessylas and Duxburry [18] and Hölscher et al. [19] 

compared some measures obtained from VGA and AA to determine the correlation of data with 

pedestrian movement. Heitor et al. [20] evaluated a campus of the Technical Institute of Lisbon in 

Portugal with the connectivity measures derived via the integration of VGA and AA. Bendjedidi et 

al. [21] used the connectivity and integration measures of VGA to look into the intensity of pedestrian 

movement in the city squares of Biskra in Algeria. Koutsolampros et al. [22] employed VGA measures 

to analyse indoor walking. Pagkratidou et al. [23] explored the behaviours of individuals unfamiliar 

with the Temple University campus using the integration, choice, and connectivity measures of both 

VGA and AA. 

All of these studies mentioned above showed that the researchers had a significant effort to 

explain pedestrian movements using the measures obtained from AA and VGA. However, it was 

striking that these researchers did not choose a general measure valid in their study areas to explain 

the pedestrian movement. The number of measures they used was usually more than one. This 

confusing situation points to a need to determine a proper measure that explains the pedestrian 

movement for each study area. The appropriate measure should be a specific measure that reflects 

the walkability character of the concerned area, except that it is a general measure valid for all study 

areas. This paper aims to determine the most appropriate measure defining the intensity of 

pedestrian movements in a specified test area to overcome this deficiency mentioned above. For this 

purpose, the relationships between pedestrian movements and measures are evaluated using 

regression analysis. In addition, the study aims to reveal how future changes in accordance with the 

master plan will affect pedestrian density. The general assessment of the effects of these changes is 

made based on the results of the paired sample t-test, which is commonly used to compare the 

differences between two samples. 

The remainder of the paper is organised as follows. Section 2 briefly describes the study area 

and the datasets used in this study. Section 3 introduces the use of SS techniques and statistical 

methods to determine the most proper measure related to pedestrian density, and Section 4 presents 

the results. Section 5 concludes the paper with final remarks. 

2. Study Area 

University campuses with a high student population are substantial settlements with 

characteristics that are similar to those of urban areas. Several university campuses can be found in 

most of the densely populated metropolitan cities in Europe. One of these cities is Istanbul, which 

has a population of more than 15 million and is home to the leading higher education institutions of 

Turkey. Among these institutions, Yildiz Technical University is the fourth oldest, founded in 1911. 

It offers most of its educational services in Davutpasa Campus, which occupies an area of 

approximately 124 ha and is the largest educational expanse in Istanbul. The campus had eight 

faculties, two institutes, and various administrative units at the end of 2019. The total area of the 

buildings and length of the road network is about 13 ha and 14.5 km, respectively (grey areas in 

Figure 1). 

The historical building in the centre of the campus was built in 1832. According to inventory 

records, the rest of the buildings were constructed after 2001. The master plan that the university 

administration intends to implement after 2019 will expand the total building area and road network 

length by approximately 1 ha and 4.2 km, respectively (orange areas in Figure 1). The new buildings 

will be built on open spaces in the northwestern and southeastern sides of the campus, and the planned 

roads will provide access to these buildings. Some walking paths leading to the open spaces in the 

campus centre will also be built. The morphological changes occurring from 2001 to 2019, together with 

the data in the master plan, reflect the dynamic structure of the study area. 
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Figure 1. Buildings and roads of Davutpasa Campus digitised from orthophotos. 

3. Materials and Methods 

The datasets needed to derive AA and VGA measures in the study area were obtained by 

digitizing from the existing orthophotos of the region. The axial map and building footprints are the 

baseline data used in the AA and VGA, respectively. The axial map used for AA consists of a 

minimum number of axial lines. Each axial line in this map shows the direction between the two 

points where the pedestrian movement starts and ends [24,25]. All of them must be compatible with 

the street network configurations [24,26,27]. VGA is implemented depending on the building 

configuration of the space [28–30]. This technique entails dividing geographic areas into grid cells 

and subsequently calculating measures through an examination of empty cells, together with nearby 

neighbours where pedestrians can move. In this study, a total of 15 measures, described below, were 

obtained using both analyses. 

3.1. AA and VGA Measures 

Open source tools were used to calculate the measures derived from the AA and VGA. One of 

these was the SS toolkit, the Geographic Information System (GIS) software Quantum GIS (QGIS) 

plug-in used to obtain AA measures from an axial map. It is a multi-platform spatial network analysis 

tool that integrates SS techniques with GIS data analysis and visualisation features [31]. Another 

open-source tool used in this study was DepthMap, which was developed as a platform for visibility 

analysis of urban and architectural designs [30]. Both SS toolkit and DepthMap allow researchers to 

use several measures (Figure 2). 

Integration describes accessibility from a location to all other locations [32]. Accessibility is one 

of the most important factors that increase or decrease the movement of pedestrians [33–35]. Both 

analyses can determine integration based on source data. Hillier and Hanson’s [24] integration (�����
�� ) 

is a global measure obtained from AA [11]; it also shows the topological proximity of an axial line to 

other lines in an axial map. When integration is calculated for axial lines delimited by a radius value, 

it is called local integration(����(�)
�� ). Mean depth (���� ) is an inverse of global integration and 
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provides the mean of the total depth of an axial line connected to other axial lines. VGA integration 

(�����
���) developed by Hillier and Hanson [24] yields the ratio of the visibility of any grid cell in the 

space to the visibility of other cells. Teklenburg [36] suggested normalising VGA integration (����
���) 

to secure an opportunity to compare the integration obtained from analyses performed in different 

areas. Similarly, Campos and Fong [37] normalised integration using a p-value (�������
��� ). The mean 

depth of VGA (�����) is the mean of the depth value calculated from one cell to other grid cells. 

Connectivity is another measure that can be obtained from AA and VGA. AA connectivity (�����) is 

the total number of axial lines connected to an axial line, whereas VGA connectivity (������) refers 

to the total number of adjacent grids connected to a grid cell in the space. AA can be used to derive 

another measure called choice (�ℎ��), which reflects the total distance of an axial line to other axial 

lines. It provides the number of shortest paths that connect an axial line to other axial lines. The 

distance between two axial lines is the shortest route calculated topologically [38]. 

 

Figure 2. Measures obtained from the space syntax (SS) analyses. 

The other measures evaluated in this study were obtained through VGA. Hillier and Hanson’s 

[24] control measure (������) and Turner’s [30] controllability (������) are two measures. Control 

involves visually selecting dominant areas, whereas controllability determines easily monitored 

regions during a walk. Visual entropy (������) is adopted in the examination of the depth values of 

a grid cell and other adjacent cells. If the depth value of neighbouring cells is approximately equal to 

that of an investigated cell, entropy is high. If the depth values between adjacent cells differ from one 

another, then entropy is low. Relativized entropy ( ������� ) is a calculation of the expected 

distribution of mean depth value. The clustering coefficient (�����) is employed to ascertain how a 

pedestrian’s space perception changes in case of moving away from a current location. The loss of 

visual information due to pedestrian movement reduces the value of the clustering coefficient [30]. 

3.2. Determining the Most Proper Measure 

In this study, regression analysis was used to explain the relationships between abovementioned 

measures and pedestrian density. It was decided the most appropriate measure by evaluating the 

results of its analysis models. Regression analysis is a statistical approach implemented to analyse 

the relationship between a dependent variable and one or more independent variables. In this study, 

the pedestrian density data calculated according to the number of people counted at 22 gates in the 

campus area (blue marks in Figure 1) was accepted as the dependent variable. People counting, also 

known as the gate-count method [39], is the most straightforward approach to sensitively 

determining pedestrian movement in a location where an automated data collection method cannot 

be used [40]. The appropriate selection of places from where people will be counted is critical in 

effectively reflecting pedestrian mobility. Enough points with different characteristics that reveal the 

frequency of use in a region by pedestrians are also needed [41]. The counts at 22 gates continued on 

weekdays for two weeks. Each gate was tried to count for 15 min at least once in four different periods 

(08.30–10:30, 10.30–12:30, 12:30–14:30, 14:30–16:30). Besides, it was counted two more times over 
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random periods. The 15-min count for totally 22 gates was 132 times. Then, the authors categorised 

all data elements into three classes that represent ordered density groups (low, medium, and high). 

Three groups were sufficient for 132 gate-count data in this study. On the other hand, if researchers 

achieve more repetitive counts at more gates for a more extensive study area, they can also increase 

the number of density groups. 

Before the classification, a pre-check process was applied to determine whether there were 

potential outliers among the gate-count data. One of the essential methods to reveal the potential 

outliers in statistics is to choose a criterion value known as z-score. Data elements with a value greater 

or less than the z-score are investigated as the outliers. In this study, the z-score of each data element 

in the dataset is calculated using Equation (1) [42]. 

�(�) =
� − �

�
 (1) 

where x indicates the value of data element, � and � are the mean and the standard deviation values 

of the dataset, respectively. The default threshold values in this study were selected as ±2.5. The 

identified potential outliers were not considered as insignificant data elements that need to be 

deleted; it was investigated whether they distorted the limit values of the classes. 

In this study, the Jenks natural break (JNB) algorithm, which identifies the best groups that have 

similar values, was used to categorize the data into ordinal three classes. JNB is an optimization 

technique that maximises the differences among classes. It addresses the problem of how to split a 

range of numbers into contiguous classes to minimise the squared deviation within each class [43]. 

This algorithm iteratively processes the data and assigns it into classes whose names are specified by 

the user. It then returns the sum of squares of deviations (SSD) of data elements from the sample 

mean (Equation (2)) within each class and calculates the total value for all classes. The classification 

that gives the minimum total value among iterative processes is optimum [44]. 

��� = �(� − �)� (2) 

The goodness of variance fit (GVF) for the specified class elements gives the strength of the 

classification process (Equation (3)). GVF takes a value between 0 and 1. The closer GVF to 1, the 

better the fit is.  

��� = 1 −
������

�����

 (3) 

where SSD���  is the minimum total value of SDD for optimum classification, and SSD�� is the 

squared deviation of all elements in the dataset. 

The first independent variable used to create a regression model is the measures whose 

relationship with pedestrian densities are investigated. They take continuous values calculated with 

the software. Since the measures obtained from AA and VGA are typically inter-correlated, a multi-

colinearity problem occurs when all measures are given as input data in the regression model. 

Therefore, a separate model was established for each measure, and they were evaluated separately. 

The second independent variable for the regression model was the periods of pedestrian counts. Since 

the measures are collected in four different periods, this independent variable takes categorical values 

ranging from nominal 1 to 4. 

An analyst has to use a proper regression model depending on the data types of dependent and 

independent variables entering the model. The dependent variable used in this study includes 

numerical data grouped in three ordered classes. When the ordered data that constitutes the 

dependent variable has at least three groups in a natural order, it is modelled using ordinal logistic 

regression [45]. The ordinal logistic regression model is based on the existence of a continuous and 

unobserved random Y* latent variable under the categorically dependent Y variable. The categories 

in this variable are predicted as sequential intervals in a continuous plane called a threshold value 

[46,47]. Four separate tests check the robustness of the ordinal logistic regression model. These tests 

are (1) model fitting, (2) goodness of fit, (3) pseudo R2, and (4) parallel lines. Model fitting examines 

−2 log-likelihood. A significant (p < 0.05) change in the −2 log-likelihood statistics between the baseline 
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model and the final model indicates that the predictors were significant based on these tests [48]. Two 

types of the goodness of fit tests called Pearson chi-square, and deviance statistics evaluate the 

discrepancy between the current model and the full model. However, these tests are sensitive to 

empty cells. If there are many empty cells in the model, −2 log-likelihood is considered a more robust 

indicator than Pearson chi-square and deviance statistics [49,50]. Pseudo R2 values are used to 

estimate the variance explained by the independent variable. When these values are closer zero, 

model fitting diminishes. Lower R2 values do not prevent interpreting parameters. One of the 

assumptions underlying ordinal logistic regression is based on that the relationship between each 

pair of outcomes is the same. In other words, ordinal logistic regression assumes that the coefficients 

defining a relationship between the lowest and all higher categories of the response variable are the 

same as those that describe the relationship between the next lowest category and all higher 

categories. This is called the parallel lines assumption, and the chi-square test is used to test the 

validity of the assumption of parallelism. At the end of the regression analysis process, the test 

sensitivities of each ordinal logistic regression model created in this study were checked. The most 

suitable model reflecting the pedestrian density was determined according to the results of parameter 

estimation tables. 

3.3. Analysing the Effect of Master Plan 

At this stage, it was aimed to determine how the new walkways to be added in the future, 

according to the master plan could affect the pedestrian density in the study area. Pedestrian density 

was examined according to the reference measure determined by regression analysis in the previous 

stage. The evaluations were made analysing measure values of the same features both in the current 

situation and master plan.  

The number of features in the master plan dataset is higher than the current dataset due to newly 

added walking paths. The reference measure values of features in both datasets were normalised to 

make a reasonable comparison between the newly added and current walking paths. In this study, 

the normalisation process was performed using the interval between zero and one (Equation (4)). 

�∗
� =

�� − ����

���� − ����
 (4) 

where ��  represents the measure values, and ����  and ����  pertain to the maximum and 

minimum values in the datasets, respectively. 

The differences between the current and master plan datasets were compared using a paired 

sample t-test, which is a parametric inferential procedure designed to evaluate two means calculated 

from two related samples. The three assumptions espoused in the paired sample t-test are the same 

as those adopted in an independent sample t-test. The first assumption indicates that the dependent 

variable contains a scale or ratio scale and is distributed normally. The second assumption holds that 

the variances in raw scores are equivalent to populations estimated by ��
� . The third assumption 

posits that represented populations exhibit homogeneous variances. The number of samples in the 

two groups for before and after situations must be equal to generate score pairs from the relevant 

samples. The paired samples are based on H0 and Ha. The t-value is used in the statistical evaluation 

of the test. The calculated t-value is compared with the corresponding value from the t distribution 

table for a selected confidence level. If the calculated t-value is higher than the critical value, H0 is 

rejected. Rejection shows that means statistically differ from one another [42]. 

4. Results 

4.1. Calculated Values for Measures 

In this study, AA and VGA values calculated for 22 gates are given in Tables 1 and 2, 

respectively. Since the local integrations of AA were calculated for two different radii (r = 3 and r = 

6), the total number of measures in the two tables was 16. Besides, the grid spacing was used as 10 m 

while calculating the VGA measures. 
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Table 1. Axial analysis (AA) values calculated for each observation gate. 

Obs. Gates �����
��  ����(�)

��  ����(�)
��  ���� ���� ����� 

1 0.639 0.211 0.627 7.39 0 1 

2 1.310 2.396 1.730 4.12 1219 4 

3 1.063 2.081 1.526 4.84 306 3 

4 1.527 3.339 2.117 3.67 4474 7 

5 1.063 2.021 1.417 4.84 786 3 

6 1.131 2.396 1.620 4.61 852 4 

7 0.941 1.571 1.400 5.34 1051 2 

8 0.759 2.081 1.451 6.38 407 3 

9 0.906 1.833 1.289 5.51 538 3 

10 0.992 1.379 1.175 5.12 785 2 

11 1.201 2.212 1.456 4.40 2708 4 

12 1.361 2.081 1.672 4.00 2309 3 

13 1.015 1.896 1.364 5.02 1153 3 

14 1.255 2.933 1.750 4.25 1411 6 

15 1.319 3.476 1.820 4.09 2856 8 

16 1.037 1.819 1.381 4.94 133 2 

17 0.910 2.218 1.347 5.48 596 4 

18 0.979 1.774 1.330 5.17 622 3 

19 0.823 1.698 1.089 5.96 72 3 

20 0.923 1.274 1.197 5.42 168 2 

21 0.796 1.819 1.405 6.13 471 2 

22 0.720 3.923 1.729 6.67 739 8 

Table 2. Visual graph analysis (VGA) values calculated for each observation gate. 

Obs. Gates �����
�������

��� �������
���  ����� ������ ������ ������ ������ ������� ����� 

1 16.0 1.0 1.36 1.7 7457 1.1 0.4 1.4 1.9 0.8 

2 17.1 1.0 1.49 1.7 8211 1.1 0.5 1.3 1.9 0.7 

3 14.0 1.0 1.24 1.8 8146 1.1 0.5 1.6 1.8 0.8 

4 16.0 1.0 1.35 1.7 7308 1.0 0.4 1.4 2.0 0.7 

5 10.9 0.9 0.95 2.0 3107 1.0 0.2 1.3 2.3 0.7 

6 10.8 0.9 0.93 2.1 2890 0.5 0.2 1.3 2.3 0.7 

7 12.5 0.9 1.06 1.9 2363 1.0 0.1 0.9 2.6 0.4 

8 10.1 0.9 0.86 2.2 1460 1.2 0.1 1.1 2.5 0.6 

9 14.5 1.0 1.25 1.8 6939 1.0 0.4 1.5 1.9 0.7 

10 17.0 1.0 1.46 1.7 7914 1.1 0.4 1.3 1.9 0.7 

11 16.8 1.0 1.43 1.7 7630 1.1 0.4 1.3 2.0 0.7 

12 18.0 1.0 1.53 1.7 8464 1.2 0.5 1.3 1.9 0.7 

13 13.0 0.9 1.10 1.9 4599 0.8 0.3 1.3 2.2 0.6 

14 13.5 0.9 1.17 1.9 6071 1.0 0.4 1.5 2.0 0.8 

15 10.7 0.9 0.90 2.1 1759 0.9 0.1 1.1 2.5 0.5 

16 10.1 0.9 0.87 2.2 2189 0.7 0.2 1.3 2.4 0.6 

17 11.8 0.9 1.02 2.0 3389 0.9 0.2 1.3 2.3 0.8 

18 9.5 0.9 0.81 2.3 675 0.3 0.0 1.0 2.7 0.5 

19 9.4 0.9 0.80 2.3 943 0.6 0.1 1.1 2.6 0.6 

20 14.2 0.9 1.22 1.8 7224 1.2 0.4 1.6 1.9 0.7 

21 10.0 0.9 0.86 2.2 1677 0.8 0.1 1.2 2.5 0.5 

22 10.8 0.9 0.93 2.1 1351 0.9 0.1 0.9 2.7 0.4 
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4.2. Ordinal Logistic Regression Analysis 

The dependent variable of the ordinal logistic regression process is based on gate-count data in 

this study. The mean and the standard deviation values of totally 132 data elements were calculated 

as 189.16 and 228.97, respectively. Depending on these values, z-scores were generated using Eq.1 for 

each element, and those that could be outliers were determined. Figure 3 shows the distribution range 

of the gate-count data. In this graph, three data elements with z-score values outside the ±2.5 default 

threshold can be considered as potential outliers (shown with the blue rings). Attention should be 

paid to these elements in a classification process using the JNB algorithm. 

 

Figure 3. Box plot graphic for gate-count data. 

According to the first JNB classification with 132 data elements, 106 data were assigned to the 

low, 25 data to the medium, and only one data to the high classes (Table 3). The GVF value for this 

classification is calculated as 0.823. Assigning only one element to the high class and the GVF value 

lower than 0.850 led the authors to exclude the outliers in the first JNB classification. According to 

the second classification with 129 data elements, 75 data were assigned to low, 44 data to medium, 

and 10 data to high classes (Table 3). The GVF value for this classification is 0.870. The more successful 

distribution of the data to the classes and the GVF value higher than 0.850 showed that this procedure 

was applicable. Besides, the three outliers were added to the high class and the number of data of 

this class was 13. 

Table 3. Jenks natural break (JNB) classification results with the class limits. 

JNB Class Min. Limit Max. Limit Num. of Data GVF 

1st 

low 9 262 106 

0.823 medium 284 856 25 

high 2040 2040 1 

2nd 

low 9 154 75 

0.870 medium 159 370 44 

high 414 676 10 

Descriptive information about the dependent and independent variables used in this study is 

presented in Table 4. A total of 16 different models were created. The dependent variable pedestrian 

density and the independent variable periods were used in each model. The independent variable 

measures were included in each model one by one. 
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Table 4. Descriptive statistics for all variables. 

Variables Types Classes Num. of Data Percentage 

Dependent Pedestrian 

density 

Ordinal low 75 56.8% 

medium 44 33.3% 

high 13 9.8% 

Independents Periods Nominal T1(08:30–10:30) 31 23.5% 

T2(10:30–12:30) 40 30.3% 

T3(12:30–14:30) 29 22.0% 

T4(14:30–16:30) 32 24.2% 

Measures Continuous Covariates data (Tables 1 and 2) 100.0% 

The significance of the models created in this study was examined by the model fitting and 

parallel lines tests (Table 5). The goodness of fit and pseudo R2 tests were not evaluated because the 

data contained a large number of empty cells and sorting the models was unnecessary. All of the 16 

models provided the assumption of parallel lines because of p > 0.05. When the fit values explaining 

the significance of the model were evaluated, the four models highlighted in gray in Table 5 were 

found statistically significant because of p < 0.05. 

Table 5. Results of model fitting and parallel lines tests. 

Measures 
Significance (p-Value) 

Model Fit Test of Parallel Lines 

�����
��  0.005 0.170 

����(�)
��  0.095 0.841 

����(�)
��  0.090 0.294 

���� 0.021 0.126 

�ℎ�� 0.024 0.277 

����� 0.111 0.941 

�����
��� 0.110 0.937 

����
��� 0.106 0.941 

�������
���  0.107 0.939 

����� 0.112 0.942 

������ 0.102 0.940 

������ 0.037 0.776 

������ 0.776 0.940 

������ 0.107 0.632 

������� 0.108 0.857 

����� 0.107 0.183 

The effects of independent variables (periods and measures) on the dependent variable 

(pedestrian density) were analysed with parameter estimation statistics for the four significant 

models identified above. Parameter estimation uses a table of statistics to explain the direction, 

strength, and statistical significance of the relationships between variables. 

Table 6 gives the model results of the integration measure obtained from AA. Since the authors 

demanded to analyze the variables that increased the pedestrian density, they selected the high 

pedestrian density group as a reference in this study. This preference causes ß-value of the 

independent variables that increase the pedestrian density to be positive. The p-value lower than 0.05 

for �����
��  notifies that integration has a significant effect on the established model. According to 

periods variable, T2 was statistically significant (p < 0.05); T1 and T3 were not significant (p > 0.05), 

when T4 was selected as a reference. The non-significant effects for T1 and T3 explain that the 

pedestrian density in these periods was not significantly different from T4. ß is a coefficient that 

expresses how the effect of variables on the dependent variable proportionally. A variable with a 
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high ß-value has more effect in the model than others. In this study, since �����
��  has greater ß-value 

than the others, integration was accepted as the most significant variable in explaining the pedestrian 

density. On the other hand, the ß-values of the periods are not statistically as effective as the 

integration in explaining the pedestrian density. eβ and w-values are used to interpret the effects of 

variables like ß-values. eβ-value takes values less than one when ß-value is negative and greater than 

one when it is positive. A high ß coefficient for a variable indicates that its effect on the dependent 

variable is considerable. Briefly, AA integration in this model was more effective than the periods in 

explaining the pedestrian density. 

Table 6. Parameter estimation for �����
�� . 

Variables Estimate (ß) Wald (w) Odds Ratio (eβ) Significance (p) 

Dependent 

Variable 

low 1.967 4.680 
 

0.031 

medium 4.064 17.475 0.000 

Independent 

variables 

�����
��  2.132 6.930 

8.432 
0.008 

T1 −0.966 3.546 0.060 

T2 −1.058 4.696 
0.347 

0.030 

T3 −0.069 0.020 0.888 

Table 7 gives the model results of the mean depth measure obtained from AA. The p-value lower 

than 0.05 for ���� notifies that mean depth has a significant effect. The results for periods variable 

are similar to the model established with �����
�� . Because ���� is an inverse of �����

�� , its ß-value is 

negative, and therefore its eβ-value is lower than one. The ß-value, eβ-value, and w-value for ���� 

were lower than the values of �����
��  has. These statistical results show that ���� does not reflect 

pedestrian density as successful as �����
��  does. 

Table 7. Parameter estimation for ����. 

Variables Estimate (ß) Wald (w) Odds Ratio (eβ) Significance (p) 

Dependent 

Variable 

low −2.383 4.797 
 

0.029 

medium −0.321 0.088 0.766 

Independent 

variables 

���� −0.416 4.256 0.660 0.039 

T1 −0.942 3.428  0.064 

T2 −1.069 4.861 0.343 0.027 

T3 −0.092 0.035  0.852 

Table 8 gives the model results of the choice measure obtained from AA. The p-value higher 

than 0.05 for �ℎ��  notifies that choice does not have a significant effect on pedestrian density. 

Therefore the authors could not evaluate ß-value, eβ-value, and w-value for choice. The results for 

periods variable are similar to the models established with �����
��  and ����.  

Table 8. Parameter estimation for �ℎ��. 

Variables Estimate (ß) Wald (w) Odds Ratio (eβ) Significance (p) 

Dependent 

Variable 

Low 0.059 0.023 
 

0.879 

medium 2.117 22.033 0.000 

Independent 

variables 

�ℎ�� 0.000 3.398  0.065 

T1 −0.949 3.493  0.062 

T2 −1.080 4.988 0.340 0.026 

T3 −0.101 0.042  0.837 

Table 9 gives the model results of the control measure obtained from VGA. The p-value higher 

than 0.05 for ������ notifies that control does not have a significant effect on pedestrian density. 
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Therefore the authors could not evaluate ß-value, eβ-value, and w-value for control. The results for 

periods variable are similar to the models established with �����
�� , ���� and �ℎ��. 

Table 9. Parameter estimation for ������. 

Variables Estimate (ß) Wald (w) Odds Ratio (eβ) Significance (p) 

Dependent 

Variable 

low −1.501 3.453 
 

0.063 

medium 0.545 0.456 0.499 

Independent 

variables 

������ −1.273 2.639  0.104 

T1 −0.915 3.311  0.069 

T2 −1.150 5.688 0.317 0.017 

T3 −0.181 0.138  0.711 

The four tables prepared for parameter estimations of ordinal logistic regression analyses verify 

that integration was the most effective measure to predict the pedestrian density in this study area. 

Since the p-values of T1 and T3 groups, which were among the periods used in all models, were 

higher than 0.05, the counts made in these periods were not significantly different from the reference 

T4 in determining the pedestrian density. The effect of the T2 group, which was statistically 

significant in each model, was negative compared to the reference T4 group. The significant effect for 

T2 implies that the pedestrian volume at T2 was significantly lower than at the reference T4. If it were 

aimed to determine the low pedestrian density of the study area, it would be appropriate to make the 

counts in the period corresponding to the T2 group. 

4.3. Evaluation of Current and Master Plan Datasets 

Figure 4a,b show the axial maps of Davutpaşa Campus created according to normalized AA 

integration values, respectively. Classes (low: green, medium: blue, and high: pink) representing 

integration values with colours were designed using the JNB classification algorithm. Standard class 

limits were used in both maps to facilitate visual comparison. 

 

Figure 4. AA Integration values for (a) current and (b) master plan dataset. 
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The new axial lines that were planned to be connected to the axes categorized in high class in 

the current axial map were generally grouped in high class. These axial lines often appeared in the 

central part of the campus in the master plan. However, other new axes planned to be added around 

the campus boundaries were in the medium and low classes. They increased overall accessibility by 

helping spread the centrality to the edges as well. 

Table 10 shows the paired sample t-test results for the current and master plan datasets. There 

are 96 axial lines in the current dataset, and their mean integration value is 0.388. According to the 

master plan, when 41 new walkways were added to the campus area, the mean integration value 

decreased to 0.356. Paired sample t-test was performed for 96 common walkways in both datasets. 

The mean integration value of these 96 paths in the master plan was calculated as 0.370. These 

differences between the mean values showed that new paths to be added would reduce the mean 

value of the current ones. Besides, the mean values of the new paths were lower than the current 

ones. The p-value of 0.002 indicated that the changes in the means mentioned above were statistically 

significant. The value proved that the master plan would change the campus morphology for 

pedestrians. 

Table 10. Results of paired sample t-test for AA. 

Years Number of Axial Lines Mean of the Integration Paired Samples Means p-Value 

2019 96 0.388 
96 

0.388 
0.002 

Master 137 0.356 0.370 

5. Conclusions 

This study investigated the relationship between pedestrian density and measures obtained 

from AA and VGA. These two analysis methods enabled the derivation of 15 different measures. The 

relationship of each measure to pedestrian density was analysed using ordinal logistic regression. 

The integration and mean depth of AA yielded statistically significant results to explain the 

pedestrian density. However, the coefficient values of the regression analysis revealed that 

integration was more effective than mean depth. For this reason, integration was accepted as the most 

effective tool to explain the pedestrian movement in the study area.  

According to the regression analysis results in the Davutpaşa Campus case, AA integration 

value of an axial line reflects usage intensity of walking path that physically coincides with this line. 

This axial line with high integration value enables to identify the walking path with high pedestrian 

density. Moreover, the analysis results prove that AA, as a SS technique, explain pedestrian density 

better than VGA. This assessment emphasises the importance of AA integration obtained from a two-

dimensional axial map. However, some environmental characteristics such as the topography of the 

region and land use characteristics are other factors affecting the walkability and pedestrian density 

on the walkways. Since Davutpaşa Campus has much less street connection than a large urban area, 

the environmental characteristics of the walking paths can be easily observed. Considering the 

environmental features, walking paths, which have high pedestrian density according to the 

integration measure, are also suitable for walking in the campus area. However, their effects have not 

been investigated statistically in this study. In the future, the authors intend to examine these 

relationships between the walkways with high integration values and the environmental factors on 

a broader study area that has many street connections. 

Increasing accessibility and pedestrian mobility to a maximum by adding minimum number of 

new walkways is the most optimal solution for planners. Statistical analysis of the effects of new 

walkways on the existing ones, depending on the alternative plans, helps to decide on the most 

appropriate solution. In the second part of this study, changes in integration values of axial lines in 

the current and master plan datasets were analysed by using paired sample t-test. This comparison 

only determines whether the master plan significantly affects existing walkways. In the case of more 

than one alternative plan, the significance of the changes created by each plan on existing walkways 

should be examined in order to compare the plans. 
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