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Abstract: Semantic segmentation plays an important role in being able to understand the content of 

remote sensing images. In recent years, deep learning methods based on Fully Convolutional 

Networks (FCNs) have proved to be effective for the sematic segmentation of remote sensing 

images. However, the rich information and complex content makes the training of networks for 

segmentation challenging, and the datasets are necessarily constrained. In this paper, we propose a 

Convolutional Neural Network (CNN) model called Dual Path Attention Network (DPA-Net) that 

has a simple modular structure and can be added to any segmentation model to enhance its ability 

to learn features. Two types of attention module are appended to the segmentation model, one 

focusing on spatial information the other focusing upon the channel. Then, the outputs of these two 

attention modules are fused to further improve the network's ability to extract features, thus 

contributing to more precise segmentation results. Finally, data pre-processing and augmentation 

strategies are used to compensate for the small number of datasets and uneven distribution. The 

proposed network was tested on the Gaofen Image Dataset (GID). The results show that the 

network outperformed U-Net, PSP-Net, and DeepLab V3+ in terms of the mean IoU by 0.84%, 

2.54%, and 1.32%, respectively. 

Keywords: remote sensing image; semantic segmentation; Fully Convolutional Network; 

Convolutional Neural Network; self-attention mechanism 

 

1. Introduction 

Semantic segmentation is a fundamental aspect of computer vision research. Its goal is to assign 

a category label to each pixel in an image. Together with other kinds of deep learning research, it 

plays an important role in the recognition of different types of land cover in remote sensing images 

[1–3]. Recognizing the information an image contains is a key part of remote sensing image 

interpretation. Semantic segmentation is widely used in land cover mapping and monitoring, urban 

classification analysis, tree species identification in forest management, etc. [4–12]. To accomplish it, 

land cover types need to be distinguished in terms of "same object, different spectrum", or "same 

spectrum, different object". For instance, "lake" and "river" are two different types of land cover, but 

in remote sensing, they can have a similar appearance. Places with a high density of buildings or a 

low density of buildings may still both be classified as urban residential areas. In addition, the 

boundaries between different types of land cover are intricate and irregular, which makes the 

remote sensing segmentation task even more difficult. Thus, discrimination between features at a 

pixel level is essential. 

In recent years, the state-of-the-art in semantic segmentation networks has progressed 

enormously [13–15]. One way to solve the above issues is by using a recurrent neural network to 

capture long-range contextual information. This kind of network can achieve remarkable results. For 

instance, a directed acyclic graph recurrent neural network [16] can capture the rich contextual 
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information present in local features. However, although this method is very effective, it is largely 

dependent on longer-term learning results. Obtaining such a large number of remote sensing image 

segmentation labels is very difficult, so it is of limited practical utility for the segmentation of remote 

sensing images. 

Another effective way of tackling the issues described above is to use self-attention 

mechanisms. These are popular and simple to adapt to semantic segmentation tasks because of their 

varied and flexible structure [17–22]. Self-attention mechanisms focus on local features by generating 

weight feature maps and fusing downstream feature maps. This may involve having one or more 

modules built upon a basic backbone, with each module focusing on things such as the channel or 

spatial information. However, downstream feature maps can lose a lot of spatial information, and 

the capture of the original spatial information directly is currently not feasible. Yet, having very 

precise spatial information is crucial for the effective segmentation of remote sensing images. 

To address the above issues, we propose here a novel self-attention mechanism model, called a 

Dual Path Attention Network (DPA-Net), which is designed for remote sensing semantic 

segmentation. It uses two attention modules: a total spatial attention module to capture spatial 

information and a channel attention module to capture the channel information separately. The two 

modules can easily be appended to other segmentation models such as PSP-Net [23]. At present, 

there are many methods for the efficient extraction of different kinds of feature information. 

However, the input of almost all spatial attention methods is the feature map after sampling. As 

mentioned above, compared with the original image, the downsampled feature map contains a lot 

less spatial information. Therefore, this kind of spatial attention is inevitably inefficient, as it is 

unable to fully utilize the spatial information in the data. Therefore, instead of the downsampled 

image, we changed the input of the spatial attention method to the original image. In the total spatial 

attention module, spatial information is captured from the original image according to the 

self-attention mechanism mentioned above. The output of the TSAM is a single channel weight 

matrix. Each pixel of the output can be updated again by fusing according to the corresponding 

weight, with the weight itself being generated by the module. After being fused with the final 

feature map of DPA-Net, the TSAM will provide a weight for each pixel. During the training, the 

network pays higher attention to the areas with larger weights. This means that each pixel has its 

own focus in the network. For the channel attention module, the self-attention mechanism captures 

the channel information according to the channel maps. As with the total spatial attention module, it 

generates a weight factor. The feature maps are updated by integrating this weight factor. Once the 

two modules have completed their operations, two feature maps are obtained that contain spatial 

information and channel information, respectively. Then, these two feature maps are aggregated to 

generate the final output. 

It is worth emphasizing that although the proposed method is more effective than the original 

self-attention method, it does not significantly change the memory footprint. Overall, it solves the 

conventional problems associated with self-attention mechanisms in a straightforward way. First of 

all, the TSAM makes its calculations on the basis of the original image. When compared to 

downstream feature maps, original remote sensing images contain more spatial information. 

Secondly, the output of the two modules acts on the last feature map in the model. Thus, the two 

modules can control the back propagation of the entire model. In addition, the simplicity of the 

module structure makes it easy for it to be used with any segmentation model. To verify the 

effectiveness of our method, we conducted experiments with U-Net, PSP-Net, and DeepLab V3+ 

[24,25] on the Gaofen Image Dataset (GID) [26]. It improved the mean IoU for each module by 0.84%, 

2.54% and 1.32%, respectively. 

The main contributions of the paper can be summarized as follows: 

 We propose a Dual Path Attention Network (DPA-Net) that uses a self-attention mechanism to 

enhance a network's ability to capture key local features in the semantic segmentation of 

remote sensing images. 

 A total spatial attention module is used to extract pixel-level spatial information, and a channel 

attention module is proposed to focus on different features. After the dual path feature 
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extraction has taken place, the performance of the sematic segmentation is significantly 

improved. 

 As the number of images in the test dataset, GID, was rather small, processing strategies were 

developed to improve the quality of our tests. By extension, these strategies can be used more 

generally to improve the segmentation of small datasets. 

2. Related Work 

Remote Sensing. High-resolution remote sensing images form the basic data for spatial 

information technology in geographic information systems. They are also an important national and 

international strategic information resource [1,26–30]. The images collected by remote sensors 

installed on aircraft or satellites underpin remote recognition techniques that aim to recognize land 

cover, such as buildings, farmland, vegetation, bare soil, rivers, etc. After the land cover has been 

recognized, thematic maps are often produced to visually represent its distribution. When combined 

with computer vision algorithms, remote recognition techniques have significant advantages 

regarding real-time capture and cost when compared to traditional field surveys. Therefore, they are 

increasingly used in the fields of land-use planning, forestry, and soil-loss monitoring [31–34]. 

Semantic Segmentation. Semantic segmentation aims to segment and parse a scene image into 

different regions associated with semantic categories. In recent years, various methods based on 

FCNs [35] have led to important breakthroughs in semantic segmentation. One way to improve the 

performance of a segmentation model is to enhance its contextual aggregation. Several models such 

as U-Net use an encoder–decoder structure [24,36,37] to integrate midstream features and 

downstream features. The encoder module gradually reduces the size of the feature maps and 

captures higher-level semantic information. The spatial information is recovered by the decoder 

module. Models such as DeepLab V3+ apply atrous spatial pyramid pooling to fuse features at 

several different scales and across various different sub-regions [25,38–40]. Outside of this, parallel 

dilated convolutions with different dilation rates can enlarge the receptive field. Another effective 

approach is to capture rich context dependencies. For instance, Peng [41] developed the concept of 

large kernel matters for learning contextual dependencies using a global convolutional network 

(GCN). Mnih et al. [42] added an attention mechanism to a recurrent neural network (RNN) to 

reduce its complexity. Wang et al. [43] were the first to propose a recurrent attention structure for 

remote sensing images. Here, a mask matrix is used for the attention weights, which then multiply 

the feature map to obtain an attention-based representation of high-level features. 

Self-Attention Mechanisms. Self-attention mechanisms provide an effective way of enhancing 

the ability of a neural network to capture critical local features. The approach [44] was first proposed 

for machine translation, but it is now widely used in image classification [1], image segmentation 

[22], and other fields [45–47]. Many studies have shown that attention mechanisms can enhance the 

identification of neurons with key characteristics and improve a network's performance. For 

example, Convolution Block Attention Modules (CBAM) [19] draw on top-level information to get 

weights channel-wise or spatial activations by concatenating channel and spatial attention modules. 

In a different approach, DA-Net [22] runs a channel attention module and spatial attention module 

in parallel in a non-local autocorrelation matrix, which has delivered good results. 

3. Methods 

In this section, we first present the overall framework of our network; then, we introduce the 

two attention modules, which capture spatial and channel-related contextual information. The 

section concludes with a description of how the output from the two modules is aggregated to give 

the final output. 

3.1. Overview 

For regular semantic segmentation, the scene for segmentation will include a variety of objects 

of diverse scales with different lighting that are visible from different viewpoints. However, because 
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of the same shooting angle and distance of the samples in different remote sensing images, the 

boundary problem can be considered as more than just a multi-scale and multi-angle problem. In a 

remote sensing image, there will be many different types of land cover. In general, different types of 

land cover have their own spectral and structural characteristics, which are visible in different 

brightness values, pixel values, or spatial changes in remote sensing images. On account of the 

complexity of the composition, nature, distribution, and imaging conditions of the surface features, 

remote sensing images can be thought of in terms of "same object, different spectrum" and `'same 

spectrum, different object". There are also two or more kinds of "mixed pixels" that can occur in a 

single pixel or the instantaneous field of view, making the work of recognition in remote sensing 

images even more complex. All of these factors can affect the accuracy of the result. To deal with 

this, our proposed method seeks to enhance the aggregated channel and spatial features separately, 

thus improving the feature representation for remote sensing segmentation. 

Our method can be used with any semantic segmentation model, such as U-Net, PSP-Net, etc. 

Taking PSP-Net as an example, its basic structure is shown in Figure 1 [22]. The input image (a) is 

fed into a Convolutional Neural Network (CNN) to obtain the feature map of the last convolutional 

layer (b). Then, a pyramid parsing module (c) is used to get different sub-region representations, 

followed by upsampling and concatenation layers to form the final feature representation. This 

contains both local and global context information. Finally, a convolutional layer is used to get the 

per-pixel prediction (d) according to the required representation. 

 

Figure 1. Overview of PSP-Net. 

The general structure of DPA-PSP-Net is shown in Figure 2. We employed a pretrained 

ResNet50 [48] and used a dilated strategy [38] for the backbone. Drawing upon the structure of 

ResNet50, the proposed framework has four residual blocks, a Pyramid Pooling Module (PPM), a 

channel attention module, and a spatial attention module. We removed the down-sampling 

operation and employed dilated convolutions in the last two residual blocks instead, which is 

identical to the process used in PSP-Net. Thus, the size of the final feature map was at 1/8 of the scale 

of the input image. Given an input image with a size of 256px × 256px, we used ResNet50 to get the 

feature map, F1, while the weighting factor for the spatial attention, Ws, was obtained by the spatial 

attention module. F1 was fed into the PPM and the channel attention module, respectively, to obtain 

the feature map, F2, after up-sampling and applying the weighting factor for channel attention, Wc. 

Finally, F2 was multiplied by Wc and Ws to obtain the features to obtain the channel 

attention-weighted feature map, FC, and spatial attention-weighted feature map, FS. Then, FC and FS 

were aggregated to get the final output. 
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Figure 2. The overall DPA-PSP-Net framework. DPA: Dual Path Attention. 

3.2. Total Spatial Attention Module 

The effectiveness of the feature extraction is directly related to the accuracy of the results in 

remote sensing image segmentation. Features can be obtained by using contextual information. 

However, many studies [23,41] have shown that local features generated by traditional FCNs can 

lead to the wrong classification of objects and inaccurate prediction of object shapes. The attention 

mechanism plays an important role in the human visual system. When confronted with complex 

scenes, human beings can quickly focus their attention on significant aspects and prioritize them. As 

with the human visual system, a computer-based attention mechanism can focus the computing 

power of a network on key features, so that important features can be extracted from remote sensing 

images more effectively and redundant information can be set aside. To enhance the local feature 

extraction ability for difficult remote sensing images, we have developed a total spatial attention 

module (TSAM). This module can capture the spatial boundary information of remote sensing 

images, which makes it easier to extract the boundary features and refine other adaptive features, 

while suppressing less important information. The structure of the module is very simple, and it can 

be embedded in any network to improve a network's feature learning ability. Numerous methods 

for handling spatial attention already exist [20,22]. However, in our spatial attention module, the 

input is data rather than a feature map, F1. In view of the high-resolution character of remote sensing 

images and the complex spatial information they contain, the accuracy of the boundary information 

is of vital importance. As a network deepens, the receptive field gradually expands, the semantic 

information becomes increasingly advanced, the feature map becomes smaller and smaller, and the 

spatial information is constantly reduced. The size of the feature map, F1, is only 1/8 of the input 

data, so a lot of spatial information has been lost. Therefore, the original image is a better resource 

for capturing the important spatial information in a remote sensing image. 

The structure of the total spatial attention module is illustrated in Figure 3a. The input data are 

the remote sensing image, I ∈ R4×H×W, which is the same as the input data in ResNet. Input I first 

passes through the layers conv3×3, BN [49], and ReLU, with channel number C, to generate the 

feature map, A ∈ RC×H×W. Then, A is fed into the conv1×1, BN, and ReLU layers to obtain the next 

feature map, B ∈ R1×H×W. Feature map B passes through another conv1×1 layer to generate the feature 

map, C ∈ R1×H×W. Finally, a sigmoid function is used to get the spatial attention weighting factor, Ws ∈ 

RH×W. The process is as follows: 

A = ReLU(BN(Conv3×3(Io))) (1) 

B = ReLU(BN(Conv1×1(A))) (2) 
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ReLU = max(Input, 0) (3) 

C = Conv1×1(B) (4) 

Ws = Sigmoid(C) (5) 

where Io denotes the original remote sensing image, and A, B, and C are the corresponding feature 

maps in Figure 3a. In this way, each value, ws in Ws, is between 0 and 1. This can be regarded as the 

weight of each corresponding pixel in the original image, reflecting the pixel's relative importance. 

This simple method makes it possible to generate a position weight with the same width and height 

as the original image, with the network enhancing the pixel level local feature extraction ability with 

almost no increase in computation. Thus, more effective remote sensing scene features can be 

extracted, thereby improving the classification performance. 

 
(a) 

 

(b) 

Figure 3. The two modules. (a) Total spatial attention module. (b) Channel attention module. 

3.3. Channel Attention Module 

There are some commonplace problems in remote sensing image datasets. These include the 

uneven distribution of samples and the varying complexity of different kinds of land cover. When a 

model is trained, as the network deepens, the semantic information becomes increasingly 

sophisticated. Each channel in the final advanced semantic features can be seen as a summary of 

different types of land cover. We introduced a channel attention module(CAM) to enhance the 

feature channels with similar values occurring in the same image location. If the same position in an 

image has similar values for different channels, it means that there may be at least two types of 

feature, with little or no difference between them. The output of the CAM aims to make the 

relationship between similar channels more obvious. The CAM can capture different kinds of 

important information in a remote sensing image relating to different channels in the high-level 

semantic feature map. This facilitates the extraction of key features, refining the balance in the 

adaptive feature extraction. The input for the CAM is the feature map, F1. This contains the 

highest-level semantic features in the whole model. 

The structure of the CAM is illustrated in Figure 3b. The input data are the feature map, F1 ∈ 

R512×H/4×W/4. The input, F1, first passes through a 3×3 convolutional layer, a BN layer, and a ReLU layer, 

with the channel number, C, to generate the feature map A ∈ RC×H×W. Then, Global Average Pooling 

is used to obtain the feature map, B ∈ RC×1×1. Then, B is fed into a 1×1 convolutional layer to get the 

feature map, C ∈ RC×1×1. Finally, we use a sigmoid function to get the channel attention weighting 

factor, Wc ∈ RC×1×1. The process can be summarized as follows: 

A = ReLU(BN(Conv3×3(F1))) (6) 

B =AvgPool(A) (7) 

C = Conv1×1(B) (8) 
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Wc = Sigmoid(C) (9) 

where F1 is the corresponding feature map in Figure 2; and A, B, and C are the corresponding feature 

maps in Figure 3a. As with Ws, each value in Wc is between 0 and 1. This can be regarded as the 

weight of each category, which reflects the feature extraction difficulty. By using this simple method 

to generate channel weights, the network can focus on more complex types of feature extraction, 

reduce the redundant information, and improve the land cover type classification. 

3.4. Feature Aggregation 

By using the above modules, the important information in high-resolution remote sensing 

images can be extracted more effectively. To make full use of the contextual information, the features 

are aggregated after the attention weights have been applied. This involves multiplying the output 

of the two modules (Ws and Wc) and the feature map, F2 (the PSP-Net output in our example), by the 

corresponding elements to get two feature maps of the same size, C×H×W. One is the feature map 

after application of the channel attention weight, Fc. The other is the feature map after application of 

the spatial attention weight, Fs. The feature aggregation is completed by summing the corresponding 

elements in Fc and Fs. It should be emphasized that the two attention modules are very simple and 

can be directly used in any segmentation model. They do not significantly increase the 

computational load, but they can significantly improve a network's performance. 

4. Experiments 

In this section, we first introduce the Gaofen Image Dataset (GID) and explain how the model 

was implemented. Then, we present how a comprehensive experiment was conducted on the GID 

dataset to evaluate our proposed method and to compare its semantic segmentation performance 

against other state-of-the-art algorithms. 

4.1. Dataset 

4.1.1. Dataset Description 

The high-resolution image dataset, GID [26], is a large-scale land cover dataset. It was 

constructed from GF-2 satellite images. As a result of its large coverage, wide distribution, and high 

spatial resolution, it has a number of advantages over existing land cover datasets. GF-2 is the 

highest resolution civil terrestrial observation satellite in China at present, so the image clarity of the 

dataset is exceptional. The categories covered by the dataset are also both varied and typical, so the 

characterization of the land cover types is representative of the distribution of the land cover in most 

parts of China. At the same time, the complexity of the land cover types make the dataset especially 

valuable for research. The GID dataset consists of two parts: a large-scale classification set and a 

fine-grained land cover classification set. The large-scale classification set contains 150 GF-2 images 

annotated at pixel level. The fine-grained classification set consists of 30,000 multi-scale image blocks 

and 10 pixel level annotated GF-2 images. We deliberately chose to use the GID dataset with 16 

kinds of land cover, which are more difficult to train. Each image is 6800px × 7200px, with 4 NirRGB 

channels and high-quality pixel-level labels for the 16 types of land cover. The 16 types of land cover 

are as follows: industrial land; urban residential; rural residential; traffic land; paddy field; irrigated 

land; dry cropland; garden plot; arbor woodland; shrub land; natural grassland; artificial grassland; 

river; lake; pond; and other categories. Figure 4 shows the distribution of the types of land cover. 
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Figure 4. Gaofen Image Dataset (GID) distribution. 

4.1.2. Dataset Preprocessing 

Due to the uneven distribution of the different types of land cover in the GID dataset and the 

fact that the images are very large, the dataset needed to be preprocessed, so that the training could 

be more effective. First of all, we manually cropped the 10 images to 1000px × 1000px to serve as a 

validation set, keeping the change in the distribution as small as possible. The reason for selecting 

the validation set was that our method was a full convolution network (FCN), so it was not 

sensitive to the size of the input image. Moreover, the size of remote sensing images are often 

very large, so we chose a larger size image to verify. Manual selection can also ensure a 

balanced distribution. The distribution of the types of land cover in the validation set is shown in 

Figure 5.  
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Figure 5. Validation set distribution. 

After removing the validation set from the GID dataset, 15,000 images were randomly cropped 

from the original images to 256px × 256px to create a training set. As there was an uneven 

distribution of different types of land cover, we cropped images with the lowest GID land cover 

distribution, such as garden plots and artificial grassland from the original images, giving about nine 

images of different sizes. Then, 1000 256px × 256px images were randomly cropped from these nine 

images and added to the training set to improve the distribution. Thus, the final training set was 

made up of 16,000 images with a size of 256px × 256px, as shown in Figure 6. Figure 7 shows the 

training set's distribution. We did not use a test set, as the size of the dataset was too small. 

Although there are 16,000 images in the training dataset, they are randomly cropped from the 

rest of the GID dataset. Therefore, there is an overlap between the pictures of the training set. 

This operation itself is a data enhancement process and would be difficult to train because it 

would take up too much memory. 

 

Figure 6. Training set. 
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Figure 7. Training set distribution. 

4.1.3. Data Augmentation 

High-resolution remote sensing images can very easily cause network overfitting because it is 

hard to obtain a sufficient number of labeled images. The limited number of types in the small GID 

dataset also made the network training more difficult. Therefore, a data augmentation strategy was 

employed to enhance the generalizability of the network. We used Albumentations 

(https://github.com/albumentations-team/albumentations) to augment the dataset and applied the 

horizontalflip, verticalflip, randomrotate90, and transform functions to enrich the training dataset. 

This also gave the features extracted from the network rotation invariance. Elastictransform, blur, 

and cutout were also used for every image during the training to suppress the likelihood of the 

network capturing insignificant features. The probability for all of the above operations was 0.5. 

4.2. Implementation Details 

We used the pixel accuracy (Acc), mean IoU, and F1-score as performance evaluation metrics 

for the semantic segmentation results. Pixel accuracy is the number of correctly classified pixels 

divided by the total number of pixels in the image. It can be calculated as follows: 

Acc = 
∑ ���

�
���

∑ ∑ ���
�
���

�
���

 (10) 

where k is the number of foreground categories; pii is the number of pixels predicted correctly; and pij 

represents a pixel that belongs to class i but that is predicted to belong to class j. 

With regard to semantic segmentation, the mean IoU calculates the mean 

intersection-over-union of two sets with the same kind of category: the ground truth and the 

predicted segmentation. This is a valuable measure for establishing segmentation performance. The 

results fall in the range of 0 to 1, with a higher value indicating a better segmentation performance. 

The mean IoU can be calculated as follows: 

MIoU = 
�

���
∑

���

∑ ���
�
���  �∑ ��� - ���

�
���  

�
���  (11) 

where k is the number of foreground categories; pii is the number of pixels predicted correctly; and pij 

and pji are the false positive and false negative interpretations.  

Another indicator that is used is the F1-score. The F1-score is the weighted harmonic mean of 

the precision and recall. The F1-score and recall can be obtained as follows: 
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�
���

�
���

�
���

 (13) 

where Acc is the pixel accuracy mentioned above; pii is the number of pixels predicted correctly; and 

pji denotes the false negative interpretations. 

After augmenting the training set using the above method, we set the training period to 100 

epochs for all of the experiments and employed an apex to obtain semi-precise training. We used a 

weight decay of 0.00001 and a momentum of 0.9. All of the backbones of the model were set to 

Resnet50, which was pretrained on ImageNet to facilitate ablation experiments. Cross-Entropy Loss 

was used at the end of the model to supervise the final results. This can be calculated as follows: 

CELoss = - ∑ p��(p�)log(p���(p�)
�
��� ) (14) 

where n is the total number of pixels; pgt is the ground truth of pixel pi; and ppre is the prediction for 

pixel pi. The base learning rate was set to 0.15 and decreased to 0.00001 through cosine annealing 

until the end of the training was achieved. We used the Ubuntu 18.04 system for the experiment and 

the GPU was an NVIDIA RTX2080TI. The experiment was implemented by using Pytorch and was 

optimized by adopting a stochastic gradient descent (SGD) approach. 

4.3. Results 

4.3.1. Ablation Study of Total Spatial Attention Module-Related Improvements 

Numerous approaches have used channel and spatial attention modules in recent years 

[20,22,26]. Most use the feature map, F1, as input (see Figure 2). In our total spatial attention module 

(TSAM), the basic idea of a spatial attention module is modified by moving its location and 

simplifying the structure to ensure the method's overall simplicity. The part to be played by a CAM 

is well-established, so there is no need to repeat studies of the CAM here. Therefore, our experiments 

primarily focused on the potential improvements arising from using a TSAM. 

Experiment 1: Effect of High-Level Semantic Information on the TSAM 

As the TSAM extracts features from the original image, it is possible that a lack of advanced 

semantic information might affect its effectiveness. To assess this possibility, we extracted a spatial 

weighting factor matrix from the backbone and fused it with the TSAM’s output to increase the 

high-level semantic information. Then, a method without any high-level spatial attention (HLSA) 

was compared with methods that use high-level spatial attention in various ways. We used PSP-Net 

for the experiment (DPA-PSP-Net) because DPA-Net can be appended to any network. The 

experiment showed that using the TSAM without HLSA for the original image was sufficiently 

effective. It delivered results of 82.75% for Acc and 67.92% for the mean IoU. HLSA did not improve 

the network performance, so we did not employ it. The experimental results are shown in Table 1. 

Table 1. Performance comparison between different DPA-PSP-Net structures. 

Method with HLSA without HLSA Acc (%) Mean IoU (%) 

DPA-PSPNet √   0.8277 0.6792 

DPA-PSPNet  √(concat) 0.8235 0.6772 

DPA-PSPNet   √(add) 0.8258 0.667 
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Experiment 2: Effect of the TSAM Location 

As a network deepens, the feature map becomes smaller, and the spatial information decreases. 

This was the basis of our reasoning that it would be more effective to capture the spatial information 

from the original image. To verify this assumption, we calculated the TSAM for three different 

locations in the model: at the beginning, in the middle, and at the end of the backbone. ResNet 

consists of five blocks in series. We chose the original image, the 3rd block’s ResNet output and the 5th 

block’s ResNet output as the TSAM input. The feature maps corresponding to the blocks in ResNet 

were 1, 1/4, and 1/8 times the size of the original image. As shown in Table 2, the performance of the 

TSAM improved in line with an increase in the input size, confirming that our initial conjecture was 

correct. 

Table 2. Performance comparison for the total spatial attention module (TSAM) at different 

positions. 

Method Input of TSAM Acc (%) Mean IoU (%) 

DPA-PSP-Net 5th block’s ResNet output  82.44 67.09 

DPA-PSP-Net 3rd block’s ResNet output  82.55 67.32 

DPA-PSP-Net Original image 82.77 67.92 

Experiment 3: Effect of the Depth of the TSAM 

To assess the effect of the depth of the TSAM, we tested different numbers of parameters to find 

the most efficient structure. We only changed the number of layers before the layer that makes up 

the feature map's channel 1. In other words, we kept the last two 1×1 convolutions and increased or 

decreased the number of 3×3 convolutions. The experimental results show that the performance was 

most effective when there were three layers in the TSAM. Table 3 shows the results for models using 

different numbers of layers. 

Table 3. Performance comparison for TSAMs with different depths. 

Position of TSAM Depth of TSAM Acc (%) Mean IoU (%) 

Original image  [Conv1×1] × 2 82.14 66.97 

Original image [Conv3×3] × 1, [Conv1×1] × 2 82.77 67.92 

Original image [Conv3×3] × 2, [Conv1×1] × 2 82.19 67.55 

Original image [Conv3×3] × 3, [Conv1×1] × 2 82.5 67.71 

4.3.2. Ablation Study for Both Attention Modules 

In order to assess any potential differences between the effect of the two modules on improving 

the remote sensing semantic segmentation performance, we conducted experiments with different 

combinations. The results are shown in Table 4. 

Table 4. Ablation study for different attention module combinations. 

Model CAM TSAM Acc (%) Mean IoU (%) F1-score (%) 

PSP-Net    81.60 65.38 63.97 

DPA-PSP-Net √   81.56 66.90 71.45 

DPA-PSP-Net  √ 81.30 67.37 70.04 

DPA-PSP-Net √ √ 82.75 67.92 72.56 

Table 4 makes evident the performance improvements brought about by using both the CAM 

and the TSAM. Compared with a baseline PSP-Net, applying a CAM delivered a mean IoU result of 

66.90% and an F1-score of 71.45%, which amounts to a 1.52% and 7.48% improvement, respectively. 

Employing just a TSAM increased the mean IoU to 67.37% and F1-score to 6.07%. However, the 

biggest performance improvement came from using both modules together. When we integrated the 

CAM and TSAM, the mean IoU result was 67.92%, which was 2.54% higher than the baseline. The 

F1-score result was 72.56%, which was 8.59% higher than the baseline. These experimental results 
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confirm that the dual path attention approach with two modules is a more effective strategy for 

improving the performance of semantic segmentation models on remote sensing images. 

We also considered the feasibility of a Squeeze-and-Excitation(SE) operation, so we added SE 

operations to CAM and TSAM for comparative experiments. The structure is illustrated in Figure 8. 

For TSAM, we add a convolutional layer to reduce its size to H/2×W/2. Then, we used an 

upsampling operation to restore it to its original size. For CAM, we used a fully connected layer to 

reshape its size to C/2×1 and restore it. The output of TSAM was also changed to 16 channels, i.e., the 

number of channels and the number of land cover types were the same. The experimental results are 

shown in Table 5. 

 

(a) 

 

(b) 

  

Figure 8. Squeeze-and-Excitation operations added to (a) the total spatial attention module and 

(b) the channel attention module. 

Table 5. DPA-Net performance using the structure in Figure 8. 

Method SE, 16 channel 1 channel Acc (%) Mean IoU (%) F1-score (%) 

DPA-UNet √  82.72 66.58 63.73 

DPA-UNet  √ 82.78 67.07 65.03 

DPA-PSPNet √  82.70 66.71 65.75 

DPA-PSPNet  √ 82.75 67.92 72.56 

DPA-DeepLab √  81.58 66.93 67.10 

DPA-DeepLab  √ 82.83 67.37 67.31 

We noticed that the performance of TSAM using Squeeze-and-Excitation operations was not 

always as good as expected. The structure of the attention module also became more complex, 

although its performance was not better. The mean IoU results for the SE operations were also lower 

than the results using our method by 0.59%, 1.21%, and 0.44% for U-Net, PSP-Net, and Deeplab V3+, 

respectively. The F1-score results for the SE operations were lower than those produced by our 

proposed method by 1.30%, 6.81%, and 0.21%, respectively. This may be because the function of the 

Squeeze-and-Excitation operation is to remove redundant information. However, our CAM focuses 

on the features of categories and is no longer able to remove redundancy. The purpose of setting the 

TSAM input as the original image is to have better resolution, retain better state features, and 

provide a better positioning function. Therefore, the Squeeze-and-Excitation operation may not be 

best applied to a TSAM. 

4.3.3. Comparison with Different Models 

In view of the small amount of GID data, we used augmentation to offset the potential problem 

of network overfitting. To verify the validity of our chosen augmentation method, we conducted 

experiments where we trained DPA-Net on the U-Net, PSP-Net, and DeepLab V3+ semantic 

segmentation models, using the original dataset and the augmented dataset. The results are shown 

in Table 6. 

Table 6. DPA-Net performance using the original dataset and the augmented dataset. 

Method Acc (%) Mean IoU (%) F1-score (%) 

DPA-UNet 81.63 65.88 57.41 

DPA-UNet Aug 82.78 67.07 65.75 
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DPA-PSP-Net 81.38 65.45 65.43 

DPA-PSP-Net Aug 82.75 67.92 72.56 

DPA-DeepLab 80.84 64.95 61.49 

DPA-DeepLab Aug 82.83 67.37 67.31 

 

The results indicate that the augmentation strategy we employed was effective. The semantic 

segmentation mean IoU increased to 67.07%, 67.92%, and 67.37% for U-Net, PSP-Net, and DeepLab 

V3+, respectively. The F1-score increased to 65.75%, 72.56%, and 67.31% for the above techniques, 

respectively. This suggests that augmentation strategies can enhance the scope for network 

generalization by enriching the data. 

To verify the effectiveness of our method in relation to actual remote sensing image 

segmentation tasks, we compared it against more mainstream methods based on self-attention 

mechanisms. These methods were Non-Local NN, SE-Net, CBAM, and DA-Net. The results of the 

experiment are shown in Tables 7 and 8. 

Table 7. Mean IoU for each category of the different self-attention models. 

Class Non-Local NN SE-Net CBAM DA-Net DPA-PSP-Net 

in-l 1 35.37 32.35 41.17 35.03 32.37 

ur 2 60.09 58.91 61 52.29 59.27 

rr 3 71.14 69.85 70.16 63.75 71.05 

tl 4 82.35 85.06 81.08 82.39 88.01 

pf 5 87.59 87.41 81.33 85.23 87.4 

ir-l 6 57.32 55.6 54.9 56.21 57.7 

dc 7 63.6 73.22 63.67 50.81 69.95 

gp 8 49.13 44.58 49.8 47.87 67.44 

aw 9 57.34 57.49 55.21 53.97 52.13 

sw 10 0 25.5 4.93 30.6 0 

ng 11 66.71 66.73 69.54 72.99 71.59 

ag 12 78.97 85.81 82.99 73.96 87.63 

river 81.22 77.76 79.22 83.96 86.39 

lake 90.7 88.23 89.18 86.78 92.78 

pond  85.31 86.59 88.81 89.23 88.5 

else 74.12 74.61 74.32 69.59 74.52 

mean 65.06 66.86 65.45 64.67 67.92 

1 industrial land, 2 urban residential, 3 rural residential, 4 traffic land, 5 paddy field, 6 irrigated land, 7 

dry cropland, 8 garden plot, 9 arbor woodland, 10 shrub woodland, 11 natural grassland, 12 artificial 

grassland. 

Table 8. F1-score for each category of the different self-attention models. 

Class Non-Local NN SE-Net CBAM DA-Net DPA-PSP-Net 

in-l 1 52.26 48.88 58.33  51.89  48.55  

ur 2 75.07 74.14 75.78  68.67  74.52  

rr 3 83.14 82.25 82.46  77.86  83.01  

tl 4 90.32 91.93 89.55  90.33  93.60  

pf 5 93.38 93.28 89.70  92.02  93.31  

ir-l 6 72.88 71.47 70.88  71.96  73.06  

dc 7 77.75 84.54 77.80  67.39  82.46  

gp 8 65.89 61.68 66.49  64.75  80.06  

aw 9 72.89 73.00 71.14  70.10  67.55  

sw 10 0 40.63 9.40  46.87  0.00  

ng 11 80.03 80.05 81.97  84.39  83.39  

ag 12 88.25 92.36 90.71  85.03  93.52  

river 89.64 87.49 88.40  91.28  92.70  

lake 95.12 93.75 94.28  92.93  96.21  

pond  92.08 92.81 94.07  94.31  93.95  

else 85.14 85.46 85.27  82.07  85.44  

macro 65.09 66.74 60.57 62.01 72.56 
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1 industrial land, 2 urban residential, 3 rural residential, 4 traffic land, 5 paddy field, 6 irrigated land, 7 

dry cropland, 8 garden plot, 9 arbor woodland, 10 shrub woodland, 11 natural grassland, 12 artificial 

grassland. 

The experimental results show that DPA-PSP-Net provided the most effective semantic 

segmentation. SE-Net was the next most effective. The mean IoUs for the supposedly stronger 

CBAM and DA-Net were only 65.45% and 64.67%, respectively. Non-local NN and SE-Net had 

better F1-scores. However, they were still lower than that of DPA-PSP-Net. This confirms that the 

segmentation of remote sensing images is different from normal scene segmentation, so, 

DPA-PSP-Net may have an advantage over existing methods. 

To further assess the effectiveness of the proposed method, we compared the mean IoU and 

F1-score for each type of land cover when using the three different models, U-Net, PSP-Net, and 

DeepLab V3+, with or without DPA-Net. 

Table 9. Mean IoU for each category using different models. 

Class UNet DPA-UNet PSP-Net DPA-PSP-Net DeepLab V3+ DPA-DeepLab 

in-l 1 29.06 42.48 32.15 32.37 29.22 50.83 

ur 2 59.16 60.88 57.04 59.27 56.49 61.54 

rr 3 74.05 73.65 70.63 71.05 71.17 73.62 

tl 4 85.66 88.43 87.86 88.01 83.48 84.89 

pf 5 88.35 86.23 86.49 87.4 87.03 82.53 

ir-l 6 57.53 57.83 54.01 57.7 60.09 58.82 

dc 7 68.45 69.51 66.12 69.95 67.88 62.37 

gp 8 38.82 47.09 49.01 67.44 43.4 47.79 

aw 9 60.32 60.31 59.31 52.13 55.66 57.29 

sw 10 2.03 1.07 0 0 2.45 0 

ng 11 71.9 72.9 69.95 71.59 71.66 71.84 

ag 12 80.4 79.62 80.52 87.63 82.3 84.67 

river 86.06 78.98 82.35 86.39 86.68 86.32 

lake 94.42 93.21 91.25 92.78 94.72 92.32 

pond  87.63 86.46 85.96 88.5 89.33 88.7 

else 75.91 74.47 73.48 74.52 75.19 74.43 

mean 66.23 67.07 65.38 67.92 66.05 67.37 

1 industrial land, 2 urban residential, 3 rural residential, 4 traffic land, 5 paddy field, 6 irrigated land, 7 

dry cropland, 8 garden plot, 9 arbor woodland, 10 shrub woodland, 11 natural grassland, 12 artificial 

grassland. 

Table 10. F1-score for each category using the different models. 

Class UNet DPA-UNet PSP-Net DPA-PSP-Net DeepLab V3+ DPA-DeepLab 

in-l 1 45.04  59.63  71.36  48.55  45.23  67.40  

ur 2 74.34  75.69  68.46  74.52  72.20  76.19  

rr 3 85.09  84.83  76.18  83.01  83.14  84.80  

tl 4 92.28  93.86  87.26  93.60  91.00  91.83  

pf 5 93.81  92.61  93.04  93.31  93.07  90.43  

ir-l 6 73.04  73.28  71.79  73.06  75.07  74.07  

dc 7 81.27  82.02  77.52  82.46  80.86  76.83  

gp 8 55.93  64.03  60.18  80.06  60.53  64.67  

aw 9 75.24  75.24  72.42  67.55  71.52  72.84  

sw 10 3.97  2.11  27.65  0.00  4.79  0.00  

ng 11 83.66  84.33  81.83  83.39  83.49  83.61  

ag 12 89.13  88.65  89.25  93.52  90.29  91.69  

river 92.51  88.25  89.92  92.70  92.86  92.66  

lake 97.13  96.49  93.44  96.21  97.29  96.01  

pond  93.41  92.74  89.98  93.95  94.37  94.01  

else 86.30  85.37  83.21  85.44  85.84  85.34  

macro 62.82  65.03  63.97  72.56  67.00  67.31  

1 industrial land, 2 urban residential, 3 rural residential, 4 traffic land, 5 paddy field, 6 irrigated land, 7 

dry cropland, 8 garden plot, 9 arbor woodland, 10 shrub woodland, 11 natural grassland, 12 artificial 

grassland. 
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As shown in Tables 9 and 10, every model performed better with DPA-Net than it did on its 

own. Note in particular that although PSP-Net had lower mean IoU results than U-Net and DeepLab 

V3+ on its own, DPA-PSP-Net outperformed any other approach. The same is true for the F1-scores. 

Another point to note is that because the distribution of shrubbery woodland was so small, no 

network had a good way of capturing its key features, so every approach had poor results. However, 

this did not change the fact that DPA-Net still improved the segmentation model. Several visual 

comparisons using PSP-Net as an example are shown in Figure 9. 

 

Figure 9. Visual performance of PSP-Net with and without DPA-Net on the GID dataset. 

The output of TSAM is shown in the rightmost column in Figure 9. Although the input of 

TSAM is the original image, the output does not seem to include a lot of noise. For some position 

attention modules, such as “lake” in the second row and “dry cropland” in the last row, the details 

and boundaries are even more clear. These results reveal the effectiveness of the visualized 

weighting factors of TSAM. 

To further assess the contribution made by TSAM to DPA-Net, we visualized the differences in 

the output of DPA-Net with different forms of attention. We randomly selected a test image as 

shown in Figure 10. We first compared the output of DPA-Net with just CAM, then with both TSAM 

and CAM, while saving the output feature maps that passed the softmax function. The size of these 

two feature maps was (C, H, W). Then, we performed an L1 Norm operation on these two feature 

maps for the C dimension, yielding a heat map with a size of (1000, 1000). This is shown in the 

right-hand column of Figure 10. 



ISPRS Int. J. Geo-Inf. 2020, 9, 571 17 of 20 

 

 

Figure 10. Visual performance of DPA-Net on the GID dataset with and without TSAM. 

This heat map shows the difference in output between DPA-Net with TSAM and without 

TSAM. The brighter the highlight, the greater the contribution of TSAM. In the images, we can see 

that the river and the lake areas are relatively pronounced. This means that the contribution of 

TSAM was especially significant in these regions. This heat map makes the contribution of TSAM to 

the overall prediction evident. 

We also counted the Multiplication and Accumulation (MAC) results for DPA-Net and the 

number of parameters required, and then, we compared them with the original U-Net, PSP-Net, and 

DeepLab V3+ models. As can be seen in Table 11, the MAC results only increased by 0.07G, 0.223G, 

and 0.069G, respectively, across the three models, and the number of parameters only increased by 

0.075M, 0.077M, and 0.075M, respectively. This shows that compared with the original method, 

DPA-Net only increases the memory footprint by a small amount. 

Table 11. Multiplication and Accumulation (MAC) results and number of parameters for different 

models. 

 U-Net DPA-UNet PSP-Net DPA-PSPNet DeepLab V3+ DPA-DeepLab 

MACs(G) 31.946 32.016 23.035 23.258 43.499 43.57 

Params(M) 28.118 28.193 31.968 32.045 29.98 30.055 

 

5. Conclusions 

In this paper, we have proposed a Dual Path Attention Network (DPA-Net) for the semantic 

segmentation of remote sensing images. It can be used with any segmentation model without having 
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any significant impact on the memory footprint or number of parameters. A remote sensing image is 

first processed via the backbone and a total spatial attention module to obtain a feature map and 

spatial weighting factor. Then, a CAM is calculated from the feature map to get the channel 

weighting factor. Finally, the output of the segmentation model is multiplied by the spatial 

weighting factor and channel weighting factor separately to get two feature maps that capture 

different aspects of the features. Then, these two feature maps are fused to obtain the final DPA-Net 

output. The proposed network was tested and found to improve the performance of various 

state-of-the-art segmentation models on the GID dataset. We believe the performance can be further 

improved by refining the structure of the two path attention modules, so this will be the focus of our 

future work. 
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