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Abstract: The ancient roof decorative components of the official-style architectures from the Ming
and Qing dynasties in China hold both physical and symbolic significance. These roof structures
are the essential objects in three-dimensional (3D) modeling of ancient architectures for traditional
Chinese cultural preservation. Although ancient architectures can be surveyed by a 3D laser scanner,
the complex geometry and diverse pattern of their roof decorative components make the 3D point
cloud reconstruction challenging, or at some points, nearly impossible in a fully automated manner.
In this paper, we propose a method to ensure that the 3D shape of each roof decorative component
is accurately modeled. First, we establish a decorative components template library (or “template
library” in short hereafter), which is the first of its kind for the roofs of Ming and Qing official-style
architectures. The process of establishing the decorative components template library begins with a
remote collection of survey data using a terrestrial laser scanner and digital camera. The next stage
involves the design and construction of different 3D decorative components in the template library
with reference to the manuscripts written in the Ming and Qing dynasties’ architectural pattern books.
With the point cloud data collected on any Ming and Qing official-style architecture, we further
propose a geo-registration mechanism to search for an optimal fitting of the decorative components
from the template library on the collected point cloud automatically. Based on the experimental
results, the accuracy of point cloud registration yields less than 0.02 m, which meets the accuracy
of the 3D model at LoD 300 level. Time consumption is less than 5s and stable, for large volume
computing capacity has good robustness. The proposed strategy provides a new way for the 3D
modeling of large and clustered historical architectures, particularly with complex structures.

Keywords: official-style architecture; decorative components; template library; point cloud registration;
level of details; BIM; 3D modeling

1. Introduction

The Ming and Qing dynasties (1368–1912) were the last feudal period in China. In this period,
the hierarchy was strictly divided, and the construction method of royal residence was unified,
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which created a unique official-style architecture system. The Ming and Qing official-style architectures,
which are considered as the last peak of Chinese architectural history, are an important carrier of
traditional Chinese culture [1]. The protection of these ancient architectures is imminent due to the
occurrence of natural disasters and man-made destruction. Traditional documentation methods of
the Ming and Qing official-style architectures mainly rely on the use of paper documents (including
paintings and tables), two-dimensional (2D) digital images, and so on. A paper document tends
to be abstract and is unable to reflect the detail geometry of the architecture. Additionally, a large
batch of storage results in inconvenient information retrieval. Although 2D digital images have the
privilege of intuitive display, it is mostly impossible to perform geometric measurements or retrieve the
dimension of the objects. Therefore, all these approaches are unable to provide reliable data support
for reconstruction and restoration, and it is not conducive to serve the purpose of accurate preservation
and scientific research. With the development of digital technology, especially the emergence of
the three-dimensional (3D) laser scanners (or LiDAR), digital preservation has become viable for
the Ming and Qing official-style architectures [2–4]. Nevertheless, the unstructured and bulky 3D
point clouds require intensive post processing. It thus gives rise to certain challenges—for example,
transforming the unstructured 3D point clouds into a digital 3D model for subsequent analysis and
cultural heritage management.

The use of point clouds for 3D reconstruction can be commonly divided into three categories:
data-driven methods [5–7], model-driven methods [8–10] and knowledge-driven methods [11–13].
Studies in [14,15] provide comprehensive reviews regarding the results of 3D building reconstruction
using point clouds. Comparing to modern buildings, the structure of historic architecture is rather
complex and heterogeneous. Therefore, it is mostly impossible to adopt any one of the aforementioned
methods to generate an accurate 3D model for historic architecture. Thus, integrated methods are
proposed in order to overcome the limitations [16–18]. In [19], two types of Milan Cathedral’s main
spire structure were individually reconstructed using different methods. The first type are mostly
regular shapes, they were reconstructed by a model-driven method. The second type of structure
consisted of flower decorations or artistic components, which cannot be modeled using parameters.
Thus, these components were represented by 3D mesh models based on the data-driven method.
The final digital 3D model of Milan Cathedral’s main spire was generated by merging these two types
of components. In [20], a similar method is also applied to the loggia of Castel Masegra (Sondrio, Italy).
For regular and irregular shapes, existing libraries and Non-Uniform Rational B-Splines (NURBS) are
used for 3D reconstruction, respectively. Although such an integrated method can also be adopted for
the reconstruction of the Ming and Qing official-style architectures, this approach heavily relies on
manual intervention and is time consuming. Hence, an automatic 3D reconstruction approach for the
Ming and Qing official-style architectures is still desired.

As shown in Figure 1, the Ming and Qing official-style architectures mainly consist of four parts:
(1) platform or stylobate, (2) column or wall, (3) Dou-gong and (4) roof [21]. The components of
each part can be further divided into two categories: regular components and irregular components.
Generally speaking, the regular components have well-defined characteristics and follow the potential
geometric relationship [22,23]. Taking the roof structure as an example, it is mainly composed of
ridge, tile and decorative components. The section shape of the semicircular tile is a half-round ridge,
where the section shape of the board tile is one-eighth round [24]. The geometric features, such as
straight-line segments, curve and plane, can facilitate automatic 3D model construction from the point
cloud and/or image with the aid of this prior information. The irregular components mainly contain the
decorative components, especially the roof decorative components, which are hard to model based on
the geometric features. Hence, the mesh model is still needed in the process of 3D modeling. Since the
data points corresponding to the decorative components cannot be completely segmented, this makes
automatic reconstruction more challenging. To overcome this problem, it thus inspires us to create a
new template library for each decorative component. After the decorative components are detected
in the collected point clouds of any Ming and Qing official-style architectures, the 3D model of the
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detected decorative component from the pre-defined template library can be directly applied after
the rigid transformation. This not only reduces the 3D modeling work of repetitive complex type
components, save computational resources, but also better ensures the accuracy of the constructed
model. There is no denying that establish a template library requires a great deal of preparation,
including the inevitable manual modeling effort, and that getting the template library to cover the
full range of components will be a challenging task. However, since the decorative components
on the roof of the Ming and Qing, official-style architectures are highly similar and with a limited
number of types, the constructed template library can be universally adopted on any Ming and Qing
official-style architectures.

Figure 1. Decomposition of the Ming and Qing official-style architecture structures [21].

A similar approach for constructing a template library can be found in [25–28] (see Table 1).
Most of the existing template libraries do not bundle with an automatic mechanism of identifying
components. Instead, the majority of them rely on manual operation to identify a specific component
type, and subsequently let the operator perform “drag and drop” in order to align the component
into the corresponding location. Although this method ensures the accuracy of the reconstructed 3D
model, its efficiency is limited. Therefore, having an automatic 3D reconstruction with reference to
the decorative component template library is sound, particularly for the large number of existing and
complex structure of the Ming and Qing official-style architectures.

Table 1. A comparison of existing template library used in 3D reconstruction.

Study Object Type Basis for Library Software/Tools Method of Application Analysis

Zdeněk
Poloprutský

[24]

Coaching inn in
Kostelec nad Vltavou
(Písek District, Czech

Republic)

Surveying data (Photo
documentation, point
cloud and drawings)

Autodesk Revit
software /

This modeling method
can design a library

usable for detailed BIM
models.

Murphy
[25]

European classical
architecture

Vitruvius to the 17th
and 18th century

Architectural Pattern
Books

GDL embedded in
the Graphisoft

ArchiCAD.
Decoration and

non-uniform shapes
based on NURBS,

meshing and
Boolean operations

The library is designed
as a plug-in for existing
software platforms for
mapping these objects
onto point clouds and

image surveys.

Placing a construction
element or GDL object,
the default parameters

need to be manually
edited in order to

correspond with the
survey data.

A. Baik
[26]

Old Jeddah historical
buildings

Laser scanning point
clouds and

photogrammetric
survey

Modeling library
elements in 3D

modeling software
such as Autodesk

Revit and Rhinoceros

The library is used as
plug-in of existing BIM
software platforms such

as Autodesk Revit.

Determining the
accurate position of the

object’s elements
requires preprocessing.

C Dore
[27] Building facades

Laser scanning,
photogrammetric data,

and references to
Vitruvius to Palladio to

the architectural
pattern books of the
eighteenth century

Parametric objects
were built using GDL

embedded in the
ArchiCAD BIM

software

Automatically position
library components

based on architectural
rules and proportions,

but manually resize and
plot the components.

Users have a full control
over the global and local

facade for simple
structure components.
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2. Method

In this study, the contributions are twofold. First, we establish a decorative component template
library, which is the first of its kind for the roofs of Ming and Qing official-style architectures.
The library development is based on several studies that constructed decorative components and
template libraries for different architectures [29–31]. Second, this template library can be used
to automatically reconstruct 3D roof decorative components of any Ming and Qing official-style
architecture based on a geo-registration mechanism.

After the template library was constructed, a geo-registration mechanism based on object
identification and point cloud matching is proposed for 3D reconstruction. In this process,
each decorative component can be positioned, located and scaled automatically in accordance
with the architectural rules and proportions, and thus the process is instructive for other similar
work. The automatic geo-registration mechanism is divided into four steps (see Figure 2).
First, the corresponding decorative component type is detected based on the “You Only Look Once
v3” (YOLOv3) algorithm [32]. Second, the corresponding decorative component model from the
template library is transformed into a 3D point cloud. Third, a coarse registration based on the Sample
Consensus Initial Alignment (SAC-IA) algorithm [33] is performed. Fourth, a fine registration based
on the Scaling Iterative Closest Point (SICP) algorithm [34] is performed. The YOLOv3 detection
results are further filtered by the following criteria: (1) if the confidence coefficient of the YOLOv3
detection result is greater than the set threshold, then the subsequent point cloud registration will be
carried out directly; (2) if the confidence coefficient of the YOLOv3 detection results is less than the
set threshold, then the first three results with the highest confidence coefficient are selected for point
cloud registration. The object whose registration result reaches the preset accuracy value and performs
best is regarded as successful; (3) if it does not conform to 1 and 2, it will be considered as a failure.
The operation of this component will be skipped directly.

Figure 2. The workflow for reconstructing 3D roof model using the template library.
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3. A Template Library of Roof Decorative Components

The understanding of the roof decorative components is an important prerequisite for the
establishment of the decorative component template library which include their category, shape,
location, function, rule, and cultural connotation. These are required to reconstruct the roof according
to the architectural pattern books and manuscripts (see Section 3.1. for more details). In this template
library, the coarse 3D model of decorative components is reconstructed based on point cloud data
with the aid of photogrammetric computer vision or laser scanning technology. The collected point
cloud can be classified into two main categories: dense image matching (DIM) point cloud and laser
scanning point cloud. Subsequently, the roof decorative components in the 3D model are refined with
reference to the design and detail listed in the architectural pattern books and manuscripts using 3D
modeling software. These roof decorative components are then stored in the template library following
a pre-defined coding schema. In general, this strategy is not bound by historic architecture. It also
applies to any type of building with specific design rules so that a corresponding template library can
be established accordingly.

3.1. An Overview of Roof Decorative Components in the Template Library

The “Qing Structural Regulations”, compiled by SiCheng Liang in 1934, lists the details of the Ming
and Qing official-style architectures, including the construction method, layout, shape and structure of
the buildings, as well as the name, dimension, topology and function of each component [35]. As shown
in Figure 3, the roof can be classified into five main categories according to the structure, which are hip
roof, gable-and-hip roof, pyramidal roof, overhanging gable roof, and flush gable roof (Figure 3a–e).
The hip roof, gable-and-hip roof, and pyramidal roof can be further divided into double-eave and
single-eave (Figure 3f–h). Moreover, the gable-and-hip roof, gable roof, and overhanging gable roof can
derive another type of round ridge roof (Figure 3i). These roofs not only inherit the style of the Ming
and Qing official-style architectures but also represent the social hierarchy of the inhabitants. From a
high to low rank, the roof type is double-eave hip roof, double-eave gable-and-hip roof, double-eave
pyramidal roof, hip roof, gable-and-hip roof, pyramidal roof, overhanging gable roof, round ridge roof,
and flush gable roof [21].

Figure 3. The roof types: (a) hip roof; (b) gable-and-hip roof; (c) pyramidal roof; (d) overhanging gable
roof; (e) flush gable roof; (f) double-eave hip roof; (g) double-eave gable-and-hip roof; (h) double-eave
pyramidal roof; (i) round ridge roof.

With reference to the template library, the procedure of 3D modeling the roofs of Ming and Qing
official-style architectures follows certain rules and schemes [36]. First, the number of roof decorative
components located on different types of roof is specified. For instance, the Hall of Supreme Harmony
in Forbidden City (Beijing, China) is the highest-grade Ming and Qing official-style architecture, and the
roof type is double-eave hip. The number of Zou shou, which is a divine creature on the roof ridge that
is said to ward off evil, is ten. Since the grade of the other Ming and Qing official-style architectures is
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lower, the number of Zou shou, which can only be nine or less, has to be an odd number [37]. In addition,
some roof decorative components can only be found on a specified type of roof. We thus divide the
roof decorative components into five categories: Chui shou, Tao shou, Wen shou, Zou shou and other
types of decorative components (see Figure 2) according to historical records, especially the records
from the Qing Dynastic Ministry of Works [38]. These specific rules and proportions outlined in the
manuscripts related to the official-style architectures can provide an initial estimate of the position
and size of the roof decorative components. This prior knowledge certainly helps reduce the amount
of further editing when performing a digital 3D modeling of the official-style architectures from the
collected data and facilitates the possibility to use the template library automatically.

3.2. Construction of the Template Library

The Ming and Qing official-style architectures are composed by different complicated and irregular
components. The constructed 3D model in the proposed template library should possess different
levels of detail (LoDs) that can be used to serve different purposes. For roof decorative components,
they need to be accurately and adequately represented so that the geometry, attribute, and parameter
proportion are preserved. Therefore, the LoDs and the desired accuracy of these components should
be determined before creating the template library.

In terms of modeling the buildings, previous studies [39] mostly followed the standardized
protocol of LoDs in Building Information Modeling (BIM) defined by the American Institute of
Architects to specify the LoD of 3D architectural models [40], although some studies followed the level
of geometry [41,42] and the grades of generation [43]. Similarly, we also classify the 3D model into five
LoDs (see Table 2). LoD 100 models the decorative components using 2D historical manuscripts and
pattern books without accurate parameter information. LoD 200 describes the outline of decorative
components by prismatic extrusion solid with certain parameter information. LoD 300 represents
the character of decorative components by the collected data (point cloud or digital image), and the
outline is represented by either a Delaunay triangular mesh or raster data. At LoD 400, the external
geometric form is represented by detailed surfaces and shapes, allowing the proper orientation of
Heritage Building Information Models (HBIMs) for in-depth BIM-based analyses. LoD 500 provides
the geometric details of external and internal forms and new levels of information sharing for
different purposes.

Table 2. The description and accuracy of the level of details.

Level of Details Accuracy of Planar/Elevation Scale

LoD 100 >LoD200 /
LoD 200 0.05 m/0.05 m 1:500
LoD 300 0.02 m/0.02 m 1:200
LoD 400 0.01 m/0.01 m 1:100
LoD 500 0.005 m/0.005 m 1:50

Brumana et al. [44] discussed the HBIM level of detail-geometry-accuracy. In their work,
they adopted a scale ranging from 1:1000 to 1:10. As a result, the models of decorative components at
LoD 100 to LoD 200 do not have shapes in detail. Hence, the accuracy of the decorative components
in the template library should not be less than that of LoD 300 (≤0.02 m), which corresponds to the
scale of 1:200. This thus meets the need for 3D reconstruction of the roof of the Ming and Qing
official-style architectures.

After the desired accuracy is defined, the following method was applied to construct each
decorative component in the template library. The library components were first generated from the DIM
point clouds that represent the geometry and fabric of the roof decorative components, and the Delaunay
triangulation was implemented to automatically reconstruct the 3D mesh models. Three-dimensional
mesh can be used to reconstruct standard shapes (lines, circles, parabolas, etc.) or free-form profiles.
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However, such an automatic reconstruction is unlikely to meet the expected accuracy requirements.
In addition, the details of decorative components cannot be revealed. Therefore, we imported the 3D
mesh models into the Autodesk 3Ds Max software and performed manual editing on the model with
reference to their materials, historical research, existing drawings and pictures.

An example of the reconstruction of decorative components is illustrated in Figure 4. This complex
component represents the Wen shou, which is usually located on either side of the main ridge. Ribs
have a circular structure that can be reconstructed with manual measurements on the point cloud.
This allows a geometric reconstruction that preserves the uniqueness in terms of both component style
and structure. The proposed approach can be summarized as follows:

• Acquisition and registration of the decorative component’s point cloud (Figure 4a);
• Surface generation using the point cloud and the mesh network (Figure 4b);
• Construction of a 3D model by editing the mesh model with a manual, semiautomated or

automated approach (Figure 4c).

Figure 4. The workflow of decorative component reconstruction (Wen shou).

At present, this template library includes 105 models of decorative components, which are
located in different regions of China and built by following the construction style of the Ming and
Qing dynasties. Among them, the official-style decorative components are divided into five most
representative types—Chui shou (16), Tao shou (12), Wen shou (18), Zou shou (32) and other types of
decorative components (27), as described in Table 3.

Table 3. The main roof decorative components of the Ming and Qing official-style architectures.

Categories Shape Location Function Rule Cultural Connotation

Chui shou
The Chui shou
is behind the
Zou shou.

The Chui shou is
also used to cover
and decorate the
iron nails that
prevent the vertical
ridge tiles from
slipping and
reinforce the roof
ridges

Both the levels of Zou shou
and Chui shou are the same.
The height of the Chui shou
is 1.5 times to the height of
the forehead height, and
the width to height ratio is
1~1.2 to 1.

/

Tao shou

The Tao shou
is located at
the top of the
wing corner
beam or
corner beam.

The Tao shou is
responsible for
waterproofing and
decoration.

The Tao shou has a
height-to-length ratio of 1
to 1.4, and its thickness is
consistent with height.
The shape usually is a lion
or the head of a dragon.

According to ancient Chinese
legend, Tao shou can protect
homes from fire.

Wen shou

The Wen shou
is located
above the
midline of the
ridge, and at
the ends of
the main
ridge

Seal the gap of the
tile ridge to avoid
water seepage,
enhance the
stability of the
main ridge, and
promoted the
Tenon-and-mortise
structure to be
tightly joined.

The levels of the wen shou
and the main ridge are the
same. When the
architecture has double
eaves, the level of the wen
shou can be one level
higher than the main ridge.
The width to height ratio
of the Wen shou is 7 to 10.

The moral of the Wen shou is to
protect the family rich in food and
clothes and has a large population,
and Wen shou can also keep their
homes safe in legend.
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Table 3. Cont.

Categories Shape Location Function Rule Cultural Connotation

Zou shou

Zou shou is
distributed in
the lower half
of the vertical
ridge.
Celestial being
is usually
located above
the hooks at
the corners of
the roof, with
Zou shou
behind it.

The tiles of the
vertical ridge are
fixed with iron
nails to prevent
slipping, and the
Zou shou is used to
cover and decorate
the iron nails.

The width to height ratio
of the Zou shou is about 4
to 10 more than 6 to 10,
and the ratio of thickness
to eyebrow height is 3 to
10. According to the social
hierarchy of the occupants
to determine the number
of placements. The total
number is usually singular
(not containing the
Celestial man). The order
of arrangement is Dragon,
Phoenix, Lion, Tian ma,
Hai ma, Suan ni, Xia yu,
Xie zhi, Dou niu, and
Xingshi.

Dragon, a legendary creature that
can thrive in clouds and rain, and
is a symbol of imperial power;
Phoenix, a metaphor for a person
with virtue, is also the name of a
queen;
Lion, the guardian of Buddhism, a
symbol of bravery and majesty.
Tian Ma, a loyal beast, chasing the
wind;
Hai Ma, the brave beast, enters
the sea and enters the abyss.
Suan Ni, playing the role of the
mighty beast;
Xia Yu, strange beast in the sea,
making clouds rain, firefighting,
and disaster prevention;
Xie Zhi, brave and fair, implying
justice and fairness;
Dou Niu, a mascot for disaster
elimination;
Xing Shi, a bi-winged monkey
statue, magic reduction, and
lightning protection, is the last
beast.

Others
Wa dang,
Xuan yu and
tiles.

It not only
reinforces the roof
structure; they also
deemed to be an
important carrier
of Chinese folklore.

/

People place their hopes on
decorative components, looking
forward to every family’s peace,
and prosperity, health, and
happiness.

3.3. Template Library Coding Schema

A hierarchical coding schema is introduced in the template library in order to efficiently manage
the components according to the rules of the Ming and Qing official-style architectures. As shown
in Figure 5, the code of the decorative components consists of three blocks: the rigid code, flexible
code and flow code. The rigid code defines the Ming and Qing official-style architectural style by the
type of roof, as listed in Table 4. The flexible code is divided into three levels, as shown in Table 5.
The first-level code is named by a capital English letter, indicating the reconstruction object that belongs
to a certain part of the Ming and Qing official-style architectures. The second-level code is named by
two capital English letters, indicating the specific structure, and the third-level code refers to the name
of the decorative components. The flow code can be used to represent variations of the same category
of decorative components.

Figure 5. The codes of roof decorative components.

Table 4. Design of rigid code.

Type of Roof Code Type of Roof Code

double-eave hip roof DH pyramidal roof SP
double-eave gable-and-hip roof DG overhanging gable roof SO

double-eave pyramidal roof DP gable roof SG
hip roof SH flush gable roof SF

gable-and-hip roof SA
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Table 5. Design of flexible code.

First-Level Code Second Level-Code Third-Level Code

Platform or Stylobate P

Intermediate pier IP

. . .Step ST
Curb CU

Corner pier CP

Column or Wall C

Corner column CC

. . .

general bay
column GB

Base BA
Sill SI

Wall WA
Window WI

Dou-gong D
Corner set CS

. . .Lintel LI
Intermediate set IS

Roof R

Ridge RI
. . .Beam BE

Tile TI

Decorative element DE

Wen shou WS
Zou shou ZS
Chui shou CS
Tao shou TS
Others DO

Note: this table is only an example of the coding design of flexible code segment and does not include the complete
structural type of the Ming and Qing official-style architectures and does not represent the coding design of
all Ming and Qing buildings. This paper focuses on the decorative components of the roof, the rest parts are
simplified expression.

4. Geo-Registration Mechanism for Template Library

After the template library is established, the next task is to perform a geo-registration of the
corresponding model of the roof decorative components in the library with the point cloud collected for
any Ming and Qing official-style architecture. The process first detects the decorative components on the
collected digital images based on the You Only Look Once v3 (YOLOv3) algorithm and determines the
corresponding model in the template library according to the coding schema. Subsequently, the chosen
3D model in the template library is placed on the correct location of the roof using a point cloud
matching algorithm; i.e., the Iterative Closest Point (ICP) algorithm [45]. Although the ICP point cloud
registration method is proven accurate, it is also computationally demanding. Therefore, it is not
conducive to process a large amount of data and is contrary to our intention to improve the degree of
automation. It is worth noting that the registration results are better when the spatial location of the
two sets of point clouds are close to each other. In this case, the target point cloud is likely to converge
to a local minimum, which inspires us to propose a two-step mechanism with a coarse registration first
and then a fine registration. This geo-registration mechanism not only overcomes the drawbacks of
existing approaches relying on the manual operation of the template library, but also optimizes the
model fitting results.

4.1. Automatic Detection of Roof Decorative Components

Prior to the geo-registration, the roof decorative components should be automatically detected on
the collected images of any Ming and Qing official-style roof architecture. In this study, we adopt a
deep learning algorithm for roof object detection that includes two major steps. First, because the Ming
and Qing official-style architectures are famous and widely distributed in China and are very large
in number, using the web crawler to obtain abundant Ming and Qing architectural roof decorative
component images from the open network platforms is a good way to acquire this information. At the
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same time, a lightweight neural network was built to assist rapid image cleaning. After this, a dataset
of roof decorative components can be successfully constructed through a few artificial discrimination
and marks. Then, the YOLOv3 algorithm was applied to extract multi-level features of images and
further integrated them into high-level semantic features of images to realize the detection of decorative
components. The backbone of YOLOv3 is the Darknet-53 feature extractor. It has a stronger ability to
extract image depth features and performs better on ImageNet datasets than Darknet-19, Resnet-101
and Resnet-152 [46,47]. Moreover, it achieves the highest floating-point calculation per second and
higher efficiency [48]. Figure 6 shows the detection results of Chui shou and Zou shou on the roof of the
Hall of Supreme Harmony (Beijing, China).

Figure 6. Detection results of decorative components (The Hall of Supreme Harmony) [22].

4.2. Transformation of 3D Template Roof Model into 3D Point Cloud

Once the roof object is successfully detected, the corresponding roof decorative components in
the template library can be used to perform geo-registration. However, the 3D model cannot be used
directly to match with the collected point cloud data. Therefore, it is necessary to transform the 3D
model in the template library into a 3D point cloud. There may be a difference in terms of the point
cloud density and the scale between the collected point cloud P and the point cloud transformed from
the template library Q; therefore, we intend to adjust the selected decorative component in the template
library to be consistent with the collected point cloud. We reduce the density of the 3D point cloud of
the decorative components to a specific density level that matches with the point cloud of the collected
architecture prior to geo-registration. The ratio of the scales S between two sets of point cloud data is
shown in Equation (1).

SP

SQ
=

DP

DQ
(1)

In this equation, the DP is equal to the average distance from each point from collected point
cloud P to its centroid, and the DQ is equal to the average distance from each point from transformed
point cloud Q to the centroid.

4.3. Coarse Registration Based on SAC-IA

The coarse registration aims to determine an initial relative relationship between the two sets
of point clouds based on a classical method named SAC-IA. SAC-IA was selected because this
algorithm can ensure that the “match point cloud” and “target point cloud” roughly have the same
spatial position. Because this algorithm uses Fast Point Feature Histogram (FPFH) features for point
registration, compared with other algorithms (such as 3D scale-invariant feature transform (SIFT)
feature matching algorithm), the computational efficiency is higher. Moreover, this algorithm adopts
the matching strategy of random sampling, which can also realize registration quickly. Prior to the
coarse registration, the FPFH features of each point were calculated, which can make the operation
more efficient [33]. The SAC-IA can be divided into three steps.
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(1) Select n points from the collected point cloud P on the unknown Ming and Qing official-style
architecture. In order to ensure that the selected points have different FPFH features, the distance
between each selected point should be greater than a pre-defined minimum distance threshold d.

(2) In the transformed point cloud Q derived from the template library, the SAC-IA first searches
the points which have similar FPFH features of the selected points from collected point cloud P.
Then, these points found within the searched points are selected as the corresponding points.

(3) Calculate the transformation matrix between the corresponding points, and then evaluate the
performance of the coordinate transformation based on the sum of the distance error after using
the corresponding points for transformation. In this paper, the sum function of the distance errors
can be expressed as the Huber penalty measure H as follows:

f =
n∑

i=1

H(li) (2)

where,

H(li) =
{ 1

2 l2i , if‖li‖ ≤ ml
1
2 ml(2‖li‖ −ml), if‖li‖ > ml

(3)

where ml is a pre-defined threshold and li is the difference of distance between the corresponding
points. Figure 7c shows the initial registration result.

Figure 7. The registration process of point cloud.

4.4. Fine Registration Based on SICP

The scale of the two sets of point clouds has been preliminarily unified after the coarse registration.
However, their spatial positions are still not uniform and so this algorithm requires a further refinement.
In this section, we adopt the improved SICP algorithm to register the transformed point cloud Q to
the collected point cloud P. SICP was selected because the algorithm is not limited to local matching
but considers the overall scaling of two sets matching point cloud data, which made the result more
accurate [34]. This algorithm can be expressed as Equation (4).

argmin
S, R, t, j ∈{1, 2,...,Nq}


Np∑
i=1

‖(RSpi + t) − q j‖
2
2

 (4)

In Equation (4), S = diag(s1, s2, . . . , si, . . . , sm), si ∈
[
ai, b j

]
is a non-zero scale matrix, R is an

orthogonal matrix, and t is a translation vector. The implementation of this algorithm is an iterative
process and is described as follows:

• Step 1: the correlation is established by the current transformation (Sk, Rk, tk). The calculation can
be expressed as Equation (5).

ck+1(i) = argmin
j∈{1,2,...,Nq}

(
‖(RkSkpi + tk) − q j‖

2
2

)
(5)
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• Step 2: make S = diag(s1, s2, . . . , si, . . . , sm), and calculate the new transformation (Sk+1, Rk+1, tk+1).
The calculation can be expressed as Equation (6).

(Sk+1, Rk+1, tk+1) = argmin
s j∈[a j,b j],R,t


Np∑
i=1

‖RS(RkSkpi + tk) + t− qck+1(i)‖
2
2

 (6)

• Step 3: repeat step 1 and step 2 until the changed amount ∆S =
∣∣∣S(k+1) − Sk

∣∣∣ is less than the
threshold or the iteration number is more than the maximum iteration number. Figure 7d shows
the result of fine registration.

After the fine registration, the location information is calculated. The corresponding template 3D
model from the template library can be retrieved and placed on the roof directly.

5. A Case Study: A Classic Official-Style Architecture

In this section, we use the constructed decorative components template library for the 3D
reconstruction of the Ming and Qing official-style architecture roof without oversimplifying the details
of the irregularly shaped decorative components. Here, we aim to demonstrate and verify the feasibility
of our template library and the geo-registration mechanism by using a real modeling case. A classic
Ming and Qing official-style architecture, which resides in the Forbidden City, was selected in the
case study.

5.1. Historical Background

The Gate of Supreme Harmony was built in the 18th year of Yongle of the Ming Dynasty (1420),
which is located south of the Forbidden City (see Figure 8). It is the largest palace gate in the Forbidden
City and the main gate of the imperial palace of the Outer Court. The Gate of Supreme Harmony
has nine rooms in width and four rooms in depth, with a construction area of 1300.00 m2. The roof
is a double-eave gable-and-hip type and occupies more than half of the main building; the beams
and ridges are covered with exquisite dragon patterns, in addition to the Chui shou, Tao shou and Wen
shou being fixed on the ridges, and there are seven Zou shou and a fairy man on each hip ridge. In the
Ming Dynasty, the Gate of Supreme Harmony was the place where the emperor received worship and
reports from his subordinates, issued imperial edicts, and handled political affairs.

Figure 8. The Gate of Supreme Harmony [49].
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5.2. Data Collection

In order to construct a 3D model, a complete 3D point cloud of the Gate of Supreme Harmony
was collected. The survey was mainly carried out based on an image-based approach. A complete
photogrammetric survey was conducted using an Unmanned Aerial Vehicle (UAV) to capture oblique
images and a digital camera to collect nadir images. To improve the LoDs for a better documentation of
the bottom part (including the walls and platform), the UAV data were integrated with the close-range
digital images.

Regarding the UAV equipment, we selected the DJI Phantom4 quadcopter. The design of flight
line is shown in Figure 9. The environment and weather will undoubtedly directly affect the collected
data’s quality. Therefore, it is necessary to select cloudless and sunny conditions to carry out the data
collection work. Using a photogrammetric five-direction flight function, the angle of inclination is about
45–48 degrees. The down-looking images had a forward overlap and side overlap of approximately
60% and 30%, respectively. The flight plan was implemented at an altitude of approximately 60 meters
above the ground, and the camera equipped with a lens of focal length 8.8 mm. Finally, a total of 225
oblique images were collected with a 2cm ground resolution of pixels. DJI Phantom 4 is a professional
photogrammetric system. Since this study uses small-area data collection, the POS system of this device
can fully support the demand for photogrammetric accuracy, so no checkpoint is set up. The terrestrial
acquisitions were recorded using a Nikon D750 full-frame digital camera equipped with a lens of focal
length 17 mm, and the ground resolution of the terrestrial photo acquisition pixel is 2 cm. The shooting
distance was controlled within 5 m, and a total of 474 digital images were captured. Finally, the image
acquired by the UAV and the terrestrial image were processed jointly by the bundle adjustment method.

Figure 9. Airline and route design of the data collection.

The image data were registered and transformed into DIM point cloud data using the Context
Capture Center software [50], and then the DIM point cloud data underwent the process of coloring,
filtering, registration, and geo-referencing, etc. Through the point cloud accuracy evaluation method
described in the paper [51], the platform and walls of The Gate of Supreme Harmony were used to
evaluate the accuracy of the overall point cloud data. Figure 10 shows the result of the point cloud
with a precision close to ±3 mm.
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Figure 10. The final point cloud data obtained using an unmanned aerial vehicle (UAV) and
digital camera.

5.3. From the Point Cloud to the 3D Model

Once the data collection was accomplished, the digital photos and generated point cloud of the
Gate of Supreme Harmony underwent the proposed geo-registration process in order to generate a
3D model. The entire process was implemented based on the integrated development environment,
Microsoft Visual Studio 2015, running on a DELL Precision 5510 with a CPU of Intel Core i7-2760QM
2.4 GHz, memory 2.98 GB, and a Windows 10 operating system. Autodesk 3Ds Max was chosen as the
3D modeling environment.

Components, which follow simple design rules, such as ridges and tiles, can be directly modeled
with the tools provided in the software. The accuracy of the modeled components can certainly
meet the requirement of LoD 300. Regarding the decorative components, the performance of the
YOLOv3 algorithm (i.e., YOLOv3, see Section 4.1. for more details) was tested by datasets obtained by
web crawlers. A total of 572 samples were selected and tested, which contain 2809 roof decorative
components of five categories of Ming and Qing official-style architecture. The overall Average
Precision (AP) value of this algorithm reached 0.74. Under the conditions of the confidence threshold of
0.5 and the Intersection over Union (IOU) threshold of 0.6, the test accuracy was 82.2% and the average
single-image reasoning speed was 66ms per frame. Both accuracy and speed can meet the application
requirements of the geo-registration mechanism proposed in this paper, and then the corresponding
component model was directly retrieved from the template library according to the coding schema.
The result in this case is accurate compared with the actual situation of the roof (see Figure 11).

Figure 11. The roof detection result based on You Only Look Once v3 (YOLOv3) algorithm.

Among all the detected roof decorative components, we selected the following representative
components—Chui shou (DHRDECS01), Tao shou (DHRDETS01), Wen shou (DHRDEWS01), and Zou shou
(DHRDEZS01) from the roof of the Gate of Supreme Harmony for further 3D modeling, as illustrated
in Figure 12. In the YOLOv3 detection, the confidence values were 0.86, 0.71, 0.89, and 0.88, satisfying
the threshold setting.
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Figure 12. Experimental component objects.

The corresponding 3D model detected in the template library was automatically placed on the
roof of the Gate of Supreme Harmony according to the geo-registration mechanism. Since the point
cloud density is an important parameter that affects the final registration result, in this experiment we
randomly diluted the 3D model of the template library into a set of point clouds by 10%, 25%, 50%
(the total number of point clouds is 10,000), and evaluated their registration results. This approach also
simulated point clouds collected from different data acquisition devices with different LoDs. Figure 13
shows the best registration results with 10,000 data points. The accuracy and time consumption of this
process are further analyzed below.

Figure 13. Experimental component objects with 10,000 points reserved.

The experimental results of 3D reconstruction were assessed based on computing the Root Mean
Square (RMS) error. As shown in Figure 14, the average value of RMS was less than 0.02 m most
of the time for the four decorative components. Thus, the registration results certainly fulfilled the
construction requirement of modeling the precision of LoD 300. When the number of points was
diluted into 1000 points from the roof decorative component 3D model retrieved from the template
library, the registration result was the worst with an average RMS error of 0.019 m. When the number
of points was diluted to 10,000, the registration result yielded to the best with an average RMS error of
less than 0.01m. Although the RMS error of the registration slightly reduced with the increased number
of points, the reduction was not significant after multiple experiments, meaning that the point density
has no influential impact on the results. It thus proves that the higher the point density of the registered
object is, the better the registration accuracy that can be achieved. Among the four experimental
roof decorative components, the registration result of Chui shou was the worst. Comparing to the
other components, Chui shou has the most complex structure. Therefore, it can be inferred that the
complexity of components also affects the registration result. When the number of points yielded to
10,000, the RMS of Zou shou dramatically increased. We suspect that the registration is misleading due
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to the fixed tile found in the Zou shou. Therefore, when establishing the template library, we should
fully consider the actual situation and enrich its content to cater different decorative components.
Moreover, the processing time was stable or had a slight increase with an increase in the number of
points. The experimental results show that not only the accuracy of the registration results can meet the
requirements of reconstruction, but also the working efficiency can be guaranteed under the condition
of stable computational time consumption.

Figure 14. The experimental results.

The final 3D roof model of the gate of Supreme Harmony was made up of the following components:
2 ceilings, 1 beam, 12 ridges, 6326 tiles and 58 decorative components, as shown in Figure 15. The rest
of the building structures were reconstructed according to the pattern books manually with reference
modeling tools, which offers a good representation of the proportion and spatial relationship between
these structures of the Gate of Supreme Harmony.

Figure 15. The final 3D model of the Gate of Supreme Harmony.

6. Conclusions

In this study, we establish a roof decorative components template library for the Ming and
Qing official-style architectures and propose a 3D reconstruction method based on an automatic
geo-registration mechanism combined with the template library. The contribution of this work
is twofold. First, based on the proposed geo-registration, the roof decorative components
can be positioned, located, and scaled correctly on the roof of any surveyed Ming and Qing
official-style architecture through matching a corresponding component from the template library.
Second, our template library is of high universality and can facilitate the 3D reconstruction of most
of the Ming and Qing official-style architectures’ roofs. The core idea of this work is to ensure
the details of each roof decorative component can be accurately represented under automatic 3D
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reconstruction. In addition, this method allows an accurate and efficient 3D modeling of any historic
architecture collected by laser scanning or photogrammetric image data. The constructed 3D model
can be considered as a reasonable representation and interpretation of the architecture with different
levels of complexity (e.g., ridges, simple structures, decorative components, complex structures, etc.).

The proposed strategy not only provides an effective method for the 3D reconstruction of the
Ming and Qing official-style architectures’ roof, but can also be applied to other building components
or parts, and other similar architectures which follow certain design rules, for instance, the Dou-gong
of the Song dynasty architectures, the dome of Islamic architectures, the statues of European churches,
and so on. However, it is worth noting the topological relationships between the “component to
component” and “component to architecture”, which were not addressed in this paper. The topology
is especially important for creating physical copies of the scanned components (e.g., using 3D printing),
which will be a particular focus of further study.

The content of the template library is currently under expansion in order to cover more roof
decorative components, as well as other architectural components of Ming and Qing official architectures.
In future, it is intended to build an interoperable platform with the template library for supporting
fully- or semiautomated process of detection/matching and geo-registration, by following related
standards. Through information sharing and exchange among different HBIM systems, the template
library can be further expanded and enriched, and thus provides an effective way for its further
development and benefits from a wider application. As such, the template library can be extended
to not only contain roof decorative components, but also cover various types of roof components
(roof ridges, tiles, etc.), and even all parts of the whole building. The variety of component forms
and rich datasets also provide better test conditions for the success/failure rates detection of the
geo-registration mechanism. Further, such a collaborative platform can certainly improve the feasibility
for the long-term management of the corresponding ancient architectural heritage and HBIM.
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