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Abstract: Thematic map analysis is a complex and challenging task that might result in map user
failure for many reasons. In the study reported here, we wanted to search for differences between
successful and unsuccessful map users, focusing—unlike many similar studies—on strategies applied
by users who give incorrect answers. In the eye-tracking study, followed by a questionnaire survey,
we collected data from 39 participants. The eye-tracking data were analyzed both qualitatively
and quantitatively to compare participants’ strategies from various perspectives. Unlike the results
of some other studies, it turned out that unsuccessful participants show some similarities that are
consistent across most analyzed tasks. The main issues that characterize bad solvers relate to improper
use of the thematic legend, the inability to focus on relevant map layout elements, as well as on
adequate map content. Moreover, they differed in the general problem-solving approach used as
they, for example, tended to choose fast, less cautious, strategies. Based on the collected results, we
developed tips that could help prevent unsuccessful participants ending with an incorrect answer
and therefore be beneficial in map use education.

Keywords: map analysis; strategy; map user expertise; accuracy; user study; eye-tracking;
thematic map

1. Introduction

Maps are an important and powerful tool for data visualization. However, this power depends
largely on the user [1–3]. Depending on their competencies and abilities, maps can be used in a proper
and in-depth manner [4].

Map users apply various ways of map-reading and analysis. Their strategy may be different
depending on various factors, e.g. level of experience [5–8] or educational background [9–12], resulting
in a better or worse result in acquiring information from maps. In the course of education, it is valuable
to learn the most effective and efficient strategies. In many empirical studies, authors, in fact, focused
on the best strategies of map usage applied by ‘good solvers’ (e.g., [6,13–15]). However, it is equally
important to learn what ‘wrong’ strategies look like in order to improve them and emphasize the
omission of ‘wrong steps’ taken when working with a map.

The aim of the study reported here is thus to explore the less successful strategies of users working
with maps. We want to learn if less successful users display distinct behavior when compared to more
successful users. Even though some studies suggested it was not possible to generally characterize
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the behavior of less successful users [13,16], we aim to verify if some similarities may be identifiable.
Ultimately, we want to develop a list of tips that may be valuable in map usage education and training
in order to indicate possible sources of confusion for users and inappropriate strategies.

Working with a map can be conducted on different levels of complexity. In many studies,
authors refer to primitives [17] and simple tasks (e.g., [5,18–21]), often relying on one of the developed
taxonomies (e.g., [12,13]). However, it is often emphasized that a map is also a tool for analysis and
general pattern exploration [4,22,23]. In this case, map users refer to different (thematic) map layers,
compare them, and conduct a series of mental operations to reach an ultimate answer. This is also
more prone to mistakes and inappropriate strategies than simple map-reading tasks. We thus want to
focus on more complex map analysis tasks to explore more challenging scenarios of map usage.

Unlike many previous studies, we propose the approach of searching for the reasons for incorrect
responses and examining the strategies that lead to incorrect tasks solutions. We thus aim to answer
the following questions:

1 What distinguishes less successful and more successful users when solving map analysis tasks?
2 Do strategies applied by less successful map users feature some similarities?
3 Are outliers from the perspective of task-solving strategies among the less successful users only?

With the empirical study conducted, we want to refine our understanding of how less and more
efficient users work when solving map analysis tasks. We thus want to define how strategies resulting
in incorrect solutions can be improved.

1.1. Searching for Group Differences among Map Users

When addressing the problem of map-reading and analysis, authors often characterize map users’
work, mainly focusing on more successful map use processes. The data collected are analyzed in order
to find similarities within subgroups of participants, searching for patterns of users’ behavior when
conducting given tasks. Authors applied various criteria to divide users into such subgroups.

A frequently employed factor when examining visual attention is the level of expertise; not only
in cartography but in many other domains (e.g., [24–27]). The focus on this factor is grounded in the
novice–expert paradigm which assumes a different approach by an expert and a novice in solving tasks,
and also independent variables influencing it [28,29]. There are several theories closely related to the
novice–expert differences, e.g., theory of memory and knowledge representation, theory of cognitive
load, theory of information reduction, and theory of the holistic model of image perception [30–34].
Regarding the research into map use strategies, the most important differences that can be identified
are as follows:

• experts are able to solve tasks faster than novices by recalling the necessary information from
long-term memory more easily and quickly and, therefore, also solving them more effectively;

• experts link information based on its similarity to the task being solved, while novices tend to link
information based on its visual similarity; therefore, it is more difficult for them to distinguish
non-essential from essential information;

• experts are able to process a greater part of the stimulus at a certain time than novices as they are
able to extract information from widely distanced and parafoveal regions;

• experts consider various possibilities when solving a task, they verify the solution obtained and,
based on that, they adjust their strategy for other task solving.

There are various ways of defining novices and experts. For instance, when analyzing wayfinding
strategies [35], expert participants in the sport of orienteering were selected. Whereas Ooms et al. [5],
when examining visual searching on dynamic and interactive maps, included employees from the
Department of Geography, who held at least a master’s degree in geography or geomatics, in the
group of experts; hence they referred to their educational background and professional work (see
also [7,12,19,36–38]). In general, this type of expertise can be called ‘top-down’ expertise as it refers to
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the participants’ previous related knowledge and experience that can be of use to them when solving
testing tasks.

There is also a possible opposite way of defining expertise. Some authors find the (results of)
collected data useful for defining participants’ proficiency. Çöltekin et al. [13] chose answer time as
a criterion for division into groups and their further comparison (see also [39]) in terms of sequence
analysis of viewing delimited AOIs (areas of interest), whereas Opach et al. [14] relied on answer
correctness in order to distinguish more and less effective solvers (see also [16]) when comparing visual
behavior when viewing a multi-component animated map.

Both general approaches described above are appropriate. Selecting how to distinguish the
subgroups for further comparison depends on the aim of the study. What is common to most
approaches is the focus on discussing what constitutes expert participants, paying less attention to the
less experienced participants [5–7]. Authors mainly wanted to characterize more successful approaches
and strategies, as an ultimate pattern of behavior to be achieved.

1.2. Methods of Gaining Insight into Map-Reading and Analysis

When empirically studying how users work with maps, various methods of data collection can
be taken into account. Usability performance metrics [40] are most commonly employed (e.g., [41]),
such as satisfaction, efficiency, and effectiveness. These metrics refer to users’ opinions and preferences
(satisfaction), time taken to answer a given task (efficiency), and correctness of answers (effectiveness).

However, the metrics mainly provide information on the effects of map usage and do not allow
an in-depth insight into the process of task solving. The process of map-reading and analysis can
be thus examined using additional data collection techniques. The data may be collected after the
execution of tasks, as well as concurrently, while solving the given tasks. When applying the first
approach questionnaires can be used [42,43]. The other possible choice is retrospective think-aloud
(RTA), in which participants verbalize the reasoning they applied during a test that has already been
completed [44,45]. RTA is often stimulated by using a visual reminder such as a video replay. However,
this method, although it does not affect working memory while solving the task, has an important
drawback, as many details may be forgotten [46].

Thinking aloud may also be applied upon task completion [47]. This method helps to collect
valuable qualitative data on the map-reading process (e.g., [35,37,48]); however, it may also result
in cognitive overload [49]. Another commonly applied method is eye-tracking that enables direct
data collection and does not distract visual behavior during performance [50]. Eye-tracking allows
the locations of an individual’s points of regard (PORs), i.e. the points a user is looking at, to be
recorded [51]. Visual behavior can be retrieved from the analysis of locations of PORs, since, according
to the ‘mind-eye hypothesis’ [52], people tend to look at things they are thinking about. Eye-tracking
has been applied to various GIS empirical studies: to evaluate enhanced imagery evaluation [53], size
and color of text on maps [54], comparison of 3D maps and 2D maps [55], features of flow maps [18],
etc. The combination of eye-tracking and other methods has been used in recent studies with confirmed
effectiveness [37,56–58]. For instance, Çöltekin [41] integrated eye-tracking and a traditional usability
assessment into map-reading research. It is worth mentioning that GIS researchers keep searching
for new methods and techniques of empirical data collection, often referring to the methods already
grounded in other scientific disciplines, as EEG method that can be also integrated with eye-tracking
(see e.g., [59]).

2. Materials and Methods

The main aim of this study was to identify users’ strategies during the execution of thematic map
analysis tasks. Specifically, we wanted to find out if a chosen strategy was related to participants’
expertise. The user’s success in task solving was chosen as an indicator of their expertise, as applied
by [13,14].
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2.1. Methods and Materials

Eye-tracking and follow-up questionnaire were chosen as data collection methods. Because the
eye-tracking data, despite the advantages mentioned, cannot clarify the causes of the bottlenecks
during task solving and the reasoning behind the strategy selection, both quantitative and qualitative
methods of data collection were applied. Thanks to applying different methods we refer to the strategy
in a visual context (captured by eye tracking) as well as participant’s overall problem-solving strategy
(investigated also through a questionnaire).

The achievement test (see [60]) was modified for the purpose of the study reported here. The test,
modified based on the pilot study results [57], consists of 12 tasks that focus on thematic map analysis
(Table 1). Four frequently used mapping methods—namely area-shading, line symbols, choropleth,
and diagram mapping—were chosen based on the conducted content analysis of school geography
atlases and textbooks [60] Each of the twelve tasks was presented as a separate stimulus with three
possible answers while only one was correct and the rest two were distractors. To eliminate the
influence of familiarity with the area depicted on task-solving process and its efficiency, fictional maps
were created (see Figure 1). Similarly, the stimuli layout was set identically for all maps to eliminate its
different influence on participants’ accuracy, efficiency, and mainly on their strategy between tasks
(Figure 1).

Table 1. Examples of tasks with three possible answers used in eye-tracking testing. The stated tasks
were chosen for further analyses.

Task Formulation Task Code

Near the borders with . . . we can find areas of both cold and warm climates. T1.1
Repsko Stralie Goran

An approximately . . . -kilometer-wide area of a warm humid climate edges the coast of the
Azure Sea. T1.2

25 40 55
All the regional capitals of the regions neighboring . . . are connected by a highway. T2.1

Goran Mulastan Stralie
Residents commuting by train from the capital of Chyslav to the capital of Virovice travel

approximately . . . T2.2
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2.3. Apparatus 

The SMI RED250 system with a sampling rate of 250 Hz and a 15.6-inch monitor (1920 × 1080) 
was used in the eye-tracking experiment. The experiment at both universities was conducted in a 
dedicated room with appropriate lighting and no disruptions. The experiment was prepared in SMI 
Experiment Center and recorded data were analyzed in the open-source application OGAMA [61]. 
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Even though the maps chosen and tasks were already used in other studies [57,60], the study
reported here involves a different set of empirical data, collected for other purposes. The study reported
in [60] focused primarily on the impact of the map type on the map skill level, and the data used were
collected among high school pupils and undergraduates in Czechia using paper achievement tests.
The pilot eye-tracking study [57] involved nine first-year undergraduates in Czechia and discussed
various methodological approaches (their advantages and limits) that can be used when visualizing
and analyzing the eye-tracking data to identify users’ strategies.

In total, there are 12 map analysis tasks for four map types, i.e., three tasks per map type.
Specifically, the first task given for each map require participants to analyze the spatial distribution of
phenomena. The second tasks are focused on distances, and therefore involve the use of the map scale
bar (Table 1). The third tasks require participants to describe spatial distribution by means of cardinal
points indicated by a north arrow.

The follow-up questionnaire consists of both closed-ended and open-ended questions, all of them
related to eye-tracking testing. First, the participants are asked about their perceived difficulty in taking
the test and its individual parts. Secondly, participants report on the usage of individual task elements
(e.g., task formulation, map, thematic legend, map title, etc.) during task execution. Subsequently,
questions related to the applied task-solving strategy are stated. Finally, participants are asked to
describe their reasoning regarding their incorrect answers to the test tasks.

2.2. Participants

A total of 41 participants voluntarily took part in the study. The participants represented two
groups of differing ‘top-down’ expertise levels—intermediates and experts. Intermediates (25) were
undergraduate students in their first and second year of university, majoring in geography. Experts
(16) were PhD candidates and employees of departments specialized in cartography. To increase the
external validity of the study, both intermediates and experts were recruited from two universities—
Charles University in Czechia (12 intermediates and 6 experts) and University of Warsaw in Poland
(13 intermediates and 10 experts).

All of the participants had normal or corrected-to-normal vision and completed the experiment
independently. The participants did not receive any reward for participation and all of them provided
their written informed consent to participate in the experiment.

2.3. Apparatus

The SMI RED250 system with a sampling rate of 250 Hz and a 15.6-inch monitor (1920 × 1080)
was used in the eye-tracking experiment. The experiment at both universities was conducted in a
dedicated room with appropriate lighting and no disruptions. The experiment was prepared in SMI
Experiment Center and recorded data were analyzed in the open-source application OGAMA [61]. For
data conversion between SMI and OGAMA, the SMI2OGAMA convertor (http://eyetracking.upol.cz/

smi2ogama) was used. The fixation threshold was set at 80 ms (duration) and 50 pixels (dispersion
radius; i.e., approximately 0.8◦ of visual angle given the average viewing distance of participants)
based on the general recommendations of Popelka [62]. Apart from the OGAMA application, MS
Excel, and SPSS software were used for the data analyses. ArcGIS software was used to produce
attention maps. Scangraph (www.eyetracking.upol.cz/scangraph; [63]) was applied for the calculation
of similarity between strings of hit AOIs, and graphs visualizing similarity values were created using
Gephi software.

2.4. Procedure

The participants were first welcomed and briefly acquainted with the study design (see Figure 2).
After the introduction, instructions regarding eye-tracking testing were provided and they were asked
to fill out the informed consent form and to provide some personal information. Once the participants

http://eyetracking.upol.cz/smi2ogama
http://eyetracking.upol.cz/smi2ogama
www.eyetracking.upol.cz/scangraph
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understood the instructions and were seated appropriately (at the viewing distance: 65 ± 5 cm), the
experimental session began.

A calibration threshold was set at 1◦ of visual angle [51]. Participant eyes were calibrated with a
9-point, full-screen calibration before the experiment began (see Figure 2). Due to persistent higher
values, some participants (two persons) did not participate in the experiment, and were therefore
excluded from the research sample.

Prior to the designed test, the participants were given a training task to verify their comprehension
of the given instructions. The experiment had a within-subject design as all participants answered
all tasks. Due to the learning effect identified in the pilot study [57] that substantially influenced
participants’ strategies, the option of rotating the tasks was not chosen. Therefore, the relatively
objective between-participant comparison of strategies was enabled. Subsequent to test solving, the
participants were informed about the tasks that they solved incorrectly to find out correct answers.

The eye-tracking experiment duration ranged from 5.1 to 18.8 minutes (mean duration = 10.5 min).
In total, all study phases lasted approximately 35 minutes for each participant. The study was
conducted in the participants’ native language (i.e., in Czech or Polish). Due to the kinship of these
languages, the task and possible answer formulations were almost identical from the point of view
of their length and sentence structure (which resulted in almost the same size AOIs being applied in
further eye-tracking data analysis).
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2.5. Data Analysis

The participants for whom data loss calculated in OGAMA was higher than 15% for whole
eye-tracking experiment or higher than 40% for a single task were excluded from the study sample.
Subsequently, for participants with single task data loss between 10% and 40% the sufficient data
quality was verified qualitatively using GazeReplay. Overall, five participants were excluded from the
sample (four intermediates and one expert). Thus, further data analysis covered recordings from 34
participants. For the analysis of fixation spatial distribution and participants’ strategies, AOIs were
designated around the elements of presented thematic maps in OGAMA (see Figure 1).
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2.5.1. Attention Distribution on Map AOI

To find out if the participants who solved the tasks incorrectly distributed their visual attention
differently comparing to successful participants, attention maps were created. The attention maps
were specifically created only for the map AOI itself. Given that the map is the main element from
which participants were expected to get information essential for task solving and coming to the right
solution. For each of the analyzed tasks two attention maps were created, i.e., for all participants
solving the task correctly and for all participants solving the task incorrectly.

To enable objective visual comparison of the attention maps created based on a different number
of participants for whom the task duration also varied, relative gaze duration attention maps were
created. More specifically, first the grid was placed over the map AOI and the accumulated time a
participant spent fixating on spots in a certain square cell was relativized compared to the total time the
participant spent fixating on the map. Secondly, the attention maps created for each of the participants
were summed up over individual cells and divided by the number of participants represented to create
a single relativized attention map for all participants solving the task correctly/incorrectly. Moreover,
to enable inter-task comparison the same color scale was used for all the attention maps created (see
Section 3.2.1 in Results). An equivalent method of attention map creation was used by [7].

As this type of attention map is not supported either by SMI BeGaze or OGAMA software, the
ArcGIS Desktop software, specifically the ArcMap application, was used. The type of attention maps
chosen and the method of development enabled limits of attention maps mentioned recently by [64,65]
to be avoided. Namely, the resulting attention maps are not biased towards participants with a long
task duration, tasks with higher mean answer time, or a higher number of participants for which the
attention map was created. Moreover, biased map comparison is prevented by using the same settings
(e.g., fixation detection, cell size) and design (e.g., set thresholds and color scheme).

2.5.2. Cluster Analysis of Relative Fixation Duration Distribution

Subsequently, to identify the differences in participants’ visual behavior in general, cluster analysis
of the distribution of fixation duration among AOIs was conducted. Cluster analysis is an exploratory
analysis that enables a partitioning of collected data into meaningful subgroups (called clusters) when
the number of the subgroups and the specific characteristics distinguishing them might be unknown
to the researcher. Therefore, the general aim of this method is to group the data so that the ones in the
same subgroup would be more similar to each other than to data in other identified subgroups [66].

The relativized fixation duration was chosen as a variable upon which the identification of clusters
was based to eliminate the influence of variance in participants’ task solving duration and, similarly, to
enable inter-task comparison. The share of relative fixation duration in several AOIs (map title, north
arrow, and topographic legend) was low across all participants and tasks and would therefore not
contribute to the identification of different behavior. As a consequence, they were excluded from the
cluster analysis.

As the categorization of visual behavior was data-driven, hierarchical cluster analysis was selected.
This method enables any hidden structure in the data to be understood and, subsequently, based on
the dendrogram created, a suitable number of clusters into which the data should be divided to be
chosen. This will therefore provide results that can be easily interpreted and, eventually, generalized.
Consequently, square Euclidean distance was chosen as a distance measure as the data clustered were
ratio scale. Finally, a between-groups linkage was set as the cluster method. This agglomerative
method starts with combining two cases (i.e., two participants) with the smallest distance (i.e., highest
similarity) into one cluster. Then it continues either with iteratively adding a case to an existing cluster
that is the most similar to the cluster average similarity value or with the creation of a new cluster from
two unclustered cases with the highest similarity. This single linkage method is helpful in identifying
the outliers which was one of the aims of the study.

Based on the arrangements of the clusters (i.e., dendrograms) produced by the primary cluster
analysis, five clusters were set as a required solution during the final cluster analysis. This setting
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represented a balance between using too many clusters that would hinder the identification of the main
differences among participants’ strategies and too few clusters that would link together participants
with substantially different approaches. Given the number of participants (34 persons), a group with
four and more participants was considered as a cluster.

2.5.3. Data-Driven Analysis of Task Solving Similarity

To identify participants’ spatio-temporal strategies, quantitative, data-driven, analysis was first
conducted. String edit distance, one of the most frequently used methods of scanpath comparison in
related studies [13,37,67–69], was chosen. Recorded scanpaths of individual participants for each task
were therefore replaced with strings of AOI labels (see Figure 1) in the order in which a participant
fixated on them.

Since the deviation in single task solving duration among participants was quite substantial,
collapsed strings were selected for the identification of similarity in strategies. In the collapsed strings
any consecutive hits in the same AOI (e.g., ‘TTTTTT’) are represented by only one character (e.g., ‘T’).
Therefore, the collapsed strings are less influenced by the different attention durations. Calculation of
string similarity was carried out using the Scangraph [63]. The Needleman–Wunsch algorithm [70] was
chosen. The algorithm is based on the identification of the number of concordant characters between
two strings. Compared to the commonly used Levenshtein algorithm [71], the Needleman–Wunsch
algorithm is more likely to not identify two strings in which the order of two AOI visits is frequently
switched (e.g., TMALT and TAMTL) as similar, based on its definition (for relevant experimental testing
see [72]).

Based on the Scangraph outcomes, graphs visualizing the top 5% of similarity values (i.e., the
highest values) were created. The 5% of similarity values represent 10% of all potential edges between
nodes, i.e., links between participants. Therefore, the density of the graph was set twice as high as is
recommended by [63]. This aspect of data analysis was particularly important since one of the aims was
to identify outliers that solved given tasks differently to the rest of the participants (see Section 3.3.1. in
Results).

2.5.4. Theory-Driven Analysis of Similarity in Task Solving

In addition to the data-driven analysis, a theory-driven analysis was realized. Based on a cognitive
walk-through with experts and theories related to problem-solving [30,73,74], four possible ways of
how to generally approach a problem for the task type used in this study were identified:

1. getting familiar with the problem » solving the problem » comparing the solution found with
given possible solutions (Task » Map » Answer, i.e., TMA; the approach expressed using the
abbreviations for the key AOIs representing individual task-solving phases);

2. getting familiar with the problem » checking given possible solutions to the problem » solving
the problem (finding which of the possible solutions is the correct one) (TAM);

3. getting familiar with the problem » starting to solve the problem » checking given possible
solutions to the problem » continuing to solve the problem (TMAM);

4. getting familiar with the problem » solving the problem (TM).

As the stage of ‘solving the problem’ usually requires using and combining information from more
than one element, the solving approaches described above can be further divided into sub-approaches
based on the elements used and the order of usage:

• map;
• map » map layout element(s) (i.e., map title, thematic and topographic legend, map scale, north

arrow);
• map layout element(s) » map;
• map layout element(s) » map » (an)other map layout element(s).
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Based on these theoretical assumptions, a list of all strategies that would be potentially used was
created (similarly in [13,57]). Subsequently, the strategies that participants actually used during task
solving were assigned to these theoretically set strategies. This was done by means of a repeated
detailed study of the eye-tracking recordings (GazeReplay) in OGAMA. The recordings of each
participant’s task solving were divided into individual solving cycles (starting with getting familiar
with the problem) and each cycle was studied and coded separately. The analyses resulted in a table
that included strategy codes for each participant and each task (see Section 3.3.2. in Results).

3. Results

3.1. Comparing Intermediates and Experts

Prior to the identification and comparison of participants’ strategies, the correctness of answers
was analyzed. The overall success rate was 79.9%. More specifically, the best solvers were able to solve
the test without any mistakes (see Table A1). On the other end of the scale, two participants gave only
seven correct answers (out of 12). As shown in Table A1, the majority of incorrect answers was given
in the first half of the testing tasks.

Subsequently, the differences between intermediates (undergraduate students in geography) and
experts (cartographers) were verified. On average, intermediates had a lower success rate than experts
(see Figure 3). Notwithstanding, the difference in the overall accuracy was not proven to be statistically
significant (Mann–Whitney U (34) = 87, p = 0.061).

Additionally, the participants’ ‘top-down’ expertise did not have a statistically significant influence
on other parameters of task solving and commonly analyzed eye-tracking metrics. Specifically, the
intermediates (Mi = 10.4 min) did not differ significantly from the experts (Me = 9.0 min) in time needed
for solving the test (U (34) = 164, p = 0.416). Similarly, participants’ expertise did not significantly
influence the average fixation count per task (Mi = 193.5 vs. Me = 176.9; U (34) = 148, p = 0.796). In
terms of other eye-tracking metrics, the intermediates did not differ significantly from the experts in
average fixation duration (Mi = 190.3 msec vs. Me = 190.6 msec; U (34) = 132, p = 0.796), average
saccade length (Mi = 213.5 px vs. Me = 227.0 px; U (34) = 90, p = 0.083), and average saccade velocity
(Mi = 5.8 px/s vs. Me = 6.5 px/s; U (34) = 91, p = 0.090).
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Based on these results, we assume that the influence of the ‘top-down’ expertise in solving tasks
requiring thematic map analysis is not substantial in either effectiveness or eye-tracking metrics.
Therefore, the research sample can be considered as sufficiently homogenous for further analyses of
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participants’ strategies focusing on identifying the influence of expertise in solving given test. For this
purpose, four tasks with a substantially higher share of incorrect answers (i.e., the success rates lower
than 75%) were selected (Table A1; see Table 1 for the formulation of the selected tasks). Given the
similar (and sufficient) number of participants solving the task correctly and incorrectly, analysis
of these tasks enabled similarities among participants solving the tasks correctly/incorrectly to be
identified and characterized.

3.2. Visual Attention Distribution

To comprehend the distribution of participants’ attention among key elements during task solving,
the participants’ strategies were first explored from the spatial perspective only.

3.2.1. Attention Spread on the Map

First, to get an overview of visual behavior during map analysis and to see its patterns and their
differences between successful and unsuccessful participants, relative attention maps were compared
(see Figure 4).

Generally, differences were identified for the tasks focusing on extracting the spatial distribution
of phenomena: T1.1 and T2.1, given that each of the three stated possible solutions indicated a different
area on the map. It is possible to see that participants solving the task incorrectly devoted more of their
attention to both regions and labels that were irrelevant for finding the correct solution compared to
successful participants (see hot spots of negative values, i.e., red spots, in difference attention maps in
Figure 4). Similarly, the opposite pattern is visible, i.e., the successful participants focused more on
relevant parts of the map than the unsuccessful participants (hot spots of positive values, i.e., green
spots, in difference attention maps in Figure 4).

Furthermore, the attention maps visualizing the relative gaze duration of participants who gave
incorrect answers are more scattered. Therefore, they devoted equivalent attention to more areas on
the map, contrary to the successful participants, who were able to concentrate more only on the areas
relevant to solving the task correctly. This pattern is also visible for the tasks requiring the use of a
scale bar for distance estimation, i.e., T1.2 and T2.2 (Figure 4).
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3.2.2. Attention Distribution among Layout Elements

To identify the reasons behind the differences in attention spread on the map, it is necessary to
analyze the overall distribution of attention among individual task elements that was conducted in the
next step of data analysis.

In general, the AOI crucial for solving the tasks was not only the map itself but also the task
formulation (Figure 5). The majority of participants read the task a few times in a row and many of
them repeatedly returned their attention to it during the whole task-solving process. On the contrary,
the importance of basic thematic map layout elements—i.e., thematic legend and map scale—differed
substantially among tasks. The difference partially resulted from their specific focus (see Table 1 for
task formulation). On the contrary, participants generally paid almost no attention to the possible
answers presented (see Figure 5), as some of the participants stated it was more natural for them to
solve the task and then just match it to the given answers, i.e., verify if their own solution is among the
possible answers.
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Nevertheless, the relative distribution of attention differed substantially among individual
participants. Therefore, the hierarchical cluster analysis was conducted to group participants based
on their attentive behavior (see Figure 5). Moreover, it was found that these differences can also be,
at least partially, attributed to the correctness of participants’ answers.

As for the first task (T1.1), the participants’ attention was relatively evenly distributed among
the three AOIs: task, map, and thematic legend. The clusters mainly differ in relative attention given
to reading and comprehending the thematic legend (see Figure 5), i.e., discriminating and decoding
colors. It was the lack of attention paid to the thematic legend that distinguished the majority of
participants who solved the task incorrectly from successful participants.
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On the contrary, the second task that focused on the analysis of the area-shading map (T1.2) did
not require the thematic legend to be used; instead, the participants had to use the map scale. However,
attention was primarily distributed between the task and the map only. Moreover, no substantial
differences among the identified clusters were found. This resulted from identifying only one main
cluster and several outliers in the first phase of the hierarchical cluster analysis. For that reason, this
cluster, consisting of almost all participants, was subsequently further divided into four clusters based
on the dendrogram (see Figure 5). Therefore, even though the clusters specific for participants solving
T1.2 task incorrectly were identified, it is not possible to clearly describe the difference between them
and the participants who solved the task correctly. This indistinguishability resulted from the specific
cause of incorrect task solving. It is likely that the majority of participants who gave the wrong answer
did not correctly comprehend the term used in the task question, as several participants directly stated
in the follow-up questionnaire (P7, P15, P17, P20, P24, P27, P37). Moreover, they did not sufficiently
reflect on their task solution as none of the possible answers stated could be correct from the point of
view of their task comprehension.

Similarly, the unsuccessful solution of the T2.1 task was also partially caused by not verifying
if the task solution found was certainly the correct one. Given that the significantly shorter answer
time is specific to the clusters (cluster 1 and cluster 2) with the majority of participants solving the task
incorrectly (Mcluster1 = 40.8 s, Mcluster2 = 81.5 s vs. Mcluster3 = 99.4 s, Mcluster4 = 158.3 s). The influence
of the answer correctness on the answer time was proven to be generally significant (regardless of the
identified clusters) using the Mann–Whitney U Test (U (34) = 240, p = 0.001). Some participants were
aware that their task solving was fast at the expense of accuracy (P15, P16, P22, P24, and P28) since
they stated in the questionnaire that they did not devote sufficient time to reading the thematic legend
and to checking if their solution was correct.

Identically, the difference among the clusters identified for the T2.2 task could be attributed to
hasty task solving, as the average task duration differs (Mcluster1 = 26.8 s vs. Mcluster2 = 57.7 s, Mcluster3

= 36.2 s). However, a more essential and specific characteristic that distinguishes the participants
providing incorrect answers from participants solving the task correctly is the lack of attention paid to
the thematic legend (similar to the case of the T1.1 task; see Figure 5). The majority of unsuccessful
participants did not look at the thematic legend while solving this task.

Finally, yet importantly, it is necessary to describe the participants identified as outliers, based on
their visual behavior. The outliers’ behavior differed across the tasks and, therefore, does not allow for
general characterization. Moreover, only one participant (P34) was identified as an outlier for more
than one of the analyzed tasks (T1.2, T2.1). Furthermore, it is not possible to generalize outliers either
from the perspective of correctness of their answers (seven participants solving a task incorrectly vs.
seven participants solving it correctly) or ‘top-down’ expertise (eight intermediates vs. six experts).

3.3. Spatio-Temporal Pattern Discovery

To understand the differences in map analysis between the successful and unsuccessful task
solvers it is equally important to explore their strategies from a spatio-temporal point of view.

3.3.1. Sequence Similarity Analysis

First, the similarity of strings of AOIs visited (e.g., TMTMTMTMSDSMADMSDA and
TIMTMTMTMSMA) was calculated. Despite using the collapsed strings, their average length was
about 50 characters for the four selected tasks (MT1.1 = 72, MT1.2 = 46, MT2.1 = 47, MT2.2 = 46). The mean
value of the calculated string similarity was also almost identical across the task (Figure 6). Hence, the
participants’ strategies were not generally getting more and more similar during the testing as could
be expected. Therefore, the participants’ task-solving process was concordant on 45% on average.
However, the similarity values between pairs of participants differ substantially as both the values
higher than 0.70 (70%) and lower than 0.15 (15%) were identified.
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Each dot in the graphs represents one participant and an edge connecting two dots represents the
participants whose value of sequence similarity is among the top 5%.

For that reason, graphs visualizing the top 5% of similarity values were created (see Figure 6).
These graphs enable groups of participants using a particularly similar approach to map analyzing to
be identified, as well as participants whose strategies differed substantially from the rest. In general,
the majority of the participants were connected in a way that only one or two large cluster(s) was/were
identified for each of the four tasks based on the top 5% similarity value (Figure 6). Nevertheless, not
all of the participants used highly similar strategies to the rest of the participants classified in the same
cluster (e.g., for the task T1.1 the participant P31 is in the same cluster as, for example, participants P04,
P16, P17, and P21; however, their strategy was identified as being highly similar only with the strategy
of the participant P17; see Figure 6). Therefore, the sub-clusters, with at least four participants, where
all the participants are interconnected were subsequently identified. Due to the interconnectedness
and their size, this/these sub-cluster(s) can be considered the core(s) of the identified large cluster(s).

As for the first task (T1.1), where the difference in the number of string characters is the highest
(Mcluster1 = 51, Mcluster2 = 100), the identified clusters can also be distinguished based on the number
of stages in which a participant worked mainly with two or three AOIs. For cluster 1, the beginning
of task solving cannot be generalized, as some participants mainly paid attention to the task and the
thematic legend, and some, on the other hand, focused mainly on the task and the map. Nevertheless,
their strategies were gradually getting more similar after they became familiar with the task, as they
were trying to get familiar and to remember the chosen colors. Therefore, they frequently moved from
the map to the legend and vice versa. The stage when they compared their find solution with the given
possible solutions followed. At the end of the task-solving, the individual participants differed only in
the frequency in which they went back to the map and the thematic legend.

As for the second cluster identified in the task T1.1, the two middle stages of task solving are
similar. However, the participants in cluster 2 repeated these stages (e.g., ML and MDA) three times or
even four times consecutively. Moreover, the participants paid more attention to the task elements
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that were not necessary for solving the task correctly (mainly to topographic legend and map title).
Nevertheless, it cannot be unequivocally said that this less efficient strategy is typical for participants
who were not able to solve the task correctly.

Similarly, it is not possible to state that the task-solving strategy has a substantial impact on
task-solving accuracy for the task T1.2, as only one cluster was identified (see Figure 6). Notwithstanding,
this cluster 1 is relatively diverse, based on the length of the strings of hit AOIs. While both identified
sub-clusters (P01, P18, P31, P32; and P16, P18, P31, P32) are characterized by short strings (M = 27),
the participants localized on the other side of the cluster (e.g., P04, P17) more frequently went back
to individual task elements. For that reason, the average length of their strings is approximately 74
characters. In addition, the share of incorrect answers is higher among these participants.

Nevertheless, the difference between the sub-clusters and the participants on the other end of
cluster 1 is not only in the string length, as it is possible to distinguish only two main stages of task
solving for the identified sub-clusters. First, the participants devoted their attention to the task and the
map. For the rest of the task solving, they transitioned among three main task elements—the map scale,
map, and possible answers. On the contrary, the participants with longer sequences (and more frequent
incorrect answers) flitted both between the task and map as well as between the task and thematic
legend in the first stage, even though the work with the legend was not essential for finding the task
solution. Furthermore, the participants had more transitions between the map scale and the map.
As some unsuccessful participants (e.g., P02, P28, P39) justified in the post-test questionnaire, they
found it challenging to correctly estimate the required distance solely based on its visual comparison
with the scale bar.

While there were typically longer strings for the unsuccessful participants in the previous task,
in the task T2.1 the participants solving the task incorrectly hit fewer AOIs on average (Mi = 38 vs.
Mc = 56). Above that, this difference was proven to be statistically significant (U(34) = 223, p = 0.006),
which is in concordance with the found significant difference in answer time (see Section 3.2.2). The
results again proved that the task-solving process of, at least some, unsuccessful participants was
hasty in comparison with the majority of successful participants, for the reason that participants in
cluster 1, where the share of incorrect answers was high, did not bring their attention back to the task
formulation after working mainly with the map and possible answers. This was in contrast to the
participants in cluster 2 who not only went back to the task but subsequently verified, working with
the map and possible answers, that their solution was correct.

The strategies identified for the task T2.2 strongly resembles the strategies identified for the T1.2.
Therefore, the participants adjusted their strategies to the specific task type and did not substantially
change it during the testing. The only thing that changed was the number of participants who needed
(cluster 1)/did not need (cluster 2) to frequently move their attention between the map and the scale
bar. The majority of the participants were able to solve this task more efficiently, similar to T1.1;
the higher number of transitions between the map and the scale bar was not characteristic for the
unsuccessful participants.

In general, the highest number of sub-clusters (6), where all participants were connected based
on the top 5% string similarity values, was identified for this task. Therefore, despite the almost
unchanging mean similarity value across the tasks, it is possible to state that one commonly used
strategy was more and more clearly formed as these sub-clusters are partially overlapping (see also the
thresholds for the top 5% similarity values in Figure 6).

Hence, the questions arise if also the outliers were also defined more clearly and who are the
outliers from the spatio-temporal point of view? Outliers, based on strategy similarities, can be defined
in two ways: by the low maximal similarity value of their strategy with another strategy (i.e., by no
connection with other participants when top x% value is visualized) and by the low mean similarity
value of their strategy with the rest of the strategies. Outliers defined based on the maximal value are
clearly distinguished in the graphs depicted in Figure 6.
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Similar to the case of relative attention distribution, it is not feasible to generalize the characteristics
of the outliers. Both successful and unsuccessful participants can have a unique strategy from the
spatio-temporal point of view based on the results (see Figure 6). Additionally, some participants were
identified as outliers both from the spatial and spatio-temporal point of view (specifically, P20 and P29
for the task T1.1; P34 for T2.1). Moreover, some participants were also identified as outliers for more
than one task (P03, P08, P20, and P25; Figure 6).

In contrast, only three participants were identified as outliers based on their mean similarity value.
Specifically, two of these participants, i.e., P03 (for T1.2 and T2.2) and P18 (for T1.1), not only solved
these tasks correctly using their atypical strategy but they were among the best solvers in this study
in general (see Table A1). On the contrary, the last outlier, i.e., P25 for the task T2.2, solved this task
incorrectly and, in addition, he/she was generally among the worst solvers.

However, from the point of view of the sequence length, the sequence of P18 was more similar to
the sequence of P25 than of P03. Both of them were among the shortest sequences in general, while
the sequences of P03 were by far the longest. The strategy of participant P18 differed substantially as
he/she started solving the task by getting familiar with the possible solutions. Similarly, the strategy of
P25 is distinguishable as he/she did not use the map scale when solving the task requiring its use.

3.3.2. Theory-Driven Identification of Task-Solving Strategies

Despite taking into account the collapsed simplified strings, the quantitative analysis of strategies
and their similarities has several limits for complex tasks such as map analysis. Despite being identified
as similar, the strings of individual participants can differ considerably. Moreover, the influence of
string length on the calculated value of similarity, and therefore on strategies not identified/identified
as highly similar, is apparent. However, the general strategy of participants of short and long strings of
AOIs hit can be in concordance and only the number of consequent transitions between two AOIs
can differ.

Even more importantly, in the quantitative analysis of string similarity, all differences in AOI order
are treated equally. However, from the perspective of problem-solving, the sequence map–legend is
more similar to the sequence map–scale than to the sequence map–answer. This is because, in the first
two cases, the sequences describe solely the phase of solving a problem while the third one describes
two different phases, i.e., solving a problem and subsequently comparing the solution found with
given possible solutions.

To eliminate these limits, the qualitative analysis of strategies and their similarities was
consequently conducted. The sequence simplifications during the detailed study of participants
eye-movements enabled the strategies used to be assigned to the ones theoretically set (see Section 2.5.4).
It was possible to group the participants based on these strategies and their combinations (see Figure 7).
This categorization enabled the strategies, even across all analyzed tasks, to be generally characterized
and compared.

Due to testing a relatively complex skill, the task-solving process of many participants was
composed of more than one solving cycle. Specifically, the participant went back to the task formulation,
i.e., to the phase of getting familiar with a problem. For example, P26’s strategy used during the second
task solving (T1.2) was coded as TMTLMASTMLA. This code can be decoded as TM (first solving
cycle, directly corresponding to the third solving approach stated in Figure 7) | TLMAS (second solving
cycle, corresponding to a sub-approach of the fourth solving approach stated, i.e., TxAx) | TMLA (third
solving cycle, corresponding to a sub-approach of the first solving approach stated, i.e., TMA).

Generally, the most widely used solving approach by the participants was the first one (TMA)
which covers getting familiar with a problem, followed by solving a problem and ends with comparing
the solution found with given possible solutions (Figure 7). This approach was used frequently both
alone and together with other approaches. Specifically, the approach was largely combined with the
fourth stated approach (TxAx) that differs only in the last phase as, after paying attention to possible
solutions, a participant continues solving a given problem. This approach was used particularly
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frequently during the task requiring the use of the map scale (T1.1, T2.1), i.e., an additional key task
element (see Figure 7). Moreover, several participants used the third approach (TM) in combination
with other approaches, where the phase involving working with possible solutions is omitted. This
applies particularly for the first three tasks where they needed more solving cycles to solve the task.
Therefore, the only task-solving approach that was hardly ever used was the second one (TAM) in
which prior to solving a problem a participant checks given possible solutions to the problem.

Notwithstanding, the size of the groups representing individual problem-solving approaches
and their combinations partially varies across the task—partially, given that any of the participants
used the same strategy or combination of strategies in all four tasks analyzed (see Figure 7). Contrary
to the data collected, many participants declared in the questionnaire that their strategy remained
the same throughout the testing and was not influenced by the task or the map type. However,
several participants used the same problem-solving approach in all these tasks and modified only its
combination with other approaches. Both the best solvers (P01 and P03) and the worst solver (P37)
were among them. Nevertheless, only the worst solvers (P28 and P29) were among the 11 participants
who used different solving approaches in every analyzed task (Figure 7).

Partially for that reason, the problem-solving approaches identified resulting in many incorrect
answers differ between tasks. Specifically, for the first two testing tasks—i.e., T1.1 and T1.2—it turned
out to be ineffective to omit working with given possible solutions directly in the first solving cycle
(see group 2 for T1.1 and group 3 for T1.2 in Figure 7). Moreover, for the tasks T1.1 and T2.1, another
common ineffective strategy was identified (group 3 in both tasks, Figure 7). Specifically, the majority
of participants who did not directly compare information depicted on the map with the thematic
legend did not solve these tasks correctly. In contrast, the combination of these two solving approaches
(TMA and TxAx) was relatively successful for solving T1.2 and T2.2, i.e., the tasks where the use of the
scale bar was more fundamental than the thematic legend.

Furthermore, for the task T1.2 other ineffective strategies were identified (see group 5 and outliers
in Figure 7), partially due to the fact that they generally differ from the strategies identified for the
rest of the tasks. The participants in group 5 are especially characteristic, both in using more than
two main solving approaches and in the high number of solving cycles necessary to solve the task
(M = 4.3). At the same time, some participants from this group as well as outliers used atypical solving
approaches (not colored in Figure 7).

For the last task analyzed, T2.2, none of the solving approaches used was identified as resulting
mainly in incorrect answers (see Figure 7). The higher similarity of participants’ strategies is therefore
consistent with the results of analysis based on string edit distance.

Similar to the results of the previous data analyses, the outliers cannot be generally described
as successful or unsuccessful participants. Nevertheless, some common features of their strategies
can be identified, partially thanks to participants who were identified as outliers for more than one
task (e.g., P08, P25, P27, P35, and P39). Outliers often used atypical solving approaches or combined
two approaches that almost no other participant chose to use together (see Figure 7). Specifically, they
often used the second solving approach during their task solving (TAM).
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4. Discussion

4.1. What Less Successful and More Successful Map Users Do Differently, and Do Strategies Applied by Less
Successful Users Feature Some Similarities?

Based on the outcomes of the data analyses conducted, we wanted to answer if less successful
and more successful map users behaved differently when solving map analysis tasks (RQ1) and if
the strategies applied by less successful users showed any similarities (RQ2). We found that map
users solving a task incorrectly differed in some aspects of their strategies from participants providing
a correct answer and most of these differences were consistent across the majority of unsuccessful
participants for a given task. Therefore, unlike what has been suggested in the previous study [16],
we cannot conclude that all good map users are the same, but every low-skilled user is different.

One of the fundamental characteristics that distinguished the participants solving tasks incorrectly
from the participants finding the correct solution was the lack of attention paid to relevant elements.
Contrary to that, they devoted too much attention to irrelevant elements. Specifically, this inappropriate
distribution of attention was caused by a lack of attention paid to the thematic legend in most of the
tasks. However, it was sometimes also caused by not focusing on relevant parts of the map itself.
In addition, even participants who did not work with the scale bar during tasks related to distance
estimation can be identified. This outcome is consistent with the results of previous empirical studies
(e.g., [16,38,75,76]). Moreover, it is grounded in the novice–expert paradigm as this difference is an
implication of the theory of information reduction [33].

Related to this, it was identified that the attention of unsuccessful participants was more scattered
that the attention of successful participants (see Figure 4), as the unsuccessful participants did not
concentrate specifically on one or two areas only where the correct solution could be found. This can be
caused, apart from the theory of information reduction, by their inability to quickly find a location they
are searching for as previous studies suggest [13,16,38,75]. This inability can be a result of inefficient or
no searching strategy [30,38], the limited amount of information they can process at once [30,34], and
inability to extract information from widely distanced areas [5,32].

Nevertheless, it does not mean that all unsuccessful participants always used less efficient
strategies than successful participants. In particular, during the first task, several participants, both
successful and unsuccessful, worked with the layout elements (topographic legend and map title) that
were not necessary for finding the correct solution. However, in the case of the successful participants,
it could be the result of their need to verify the meaning of all cartographic signs used when they
encounter unfamiliar maps and their habit of integrating all map layout elements to gain a wider
meaning of the map [6]. On the other hand, in the case of the unsuccessful participants, it can be
caused by the previously mentioned inability to distinguish relevant from irrelevant information or,
simply, difficulties in understanding the map.

Moreover, contrary to some of the previous studies (e.g., [5,38]) it was found that on average
successful participants needed more time to solve some of the analyzed tasks. Notwithstanding,
this slow task solving is not a feature of inexperienced behavior or inefficient strategy, as it is
attributable to their endeavor to solve the task correctly. It is characteristic to go back to the task
formulation and the phase of solving the problem after already comparing the solution found with the
possible solutions given, i.e., by verifying that the solution obtained is correct, even when a different
problem-solving strategy was used. Therefore, this result is consistent with the characterization of
experts’ problem-solving strategies described in [31,77].

The short answer times of unsuccessful participants can be thus described as hasty. Besides
the lack of attention given to the crucial map layout elements, they did not sufficiently reflect upon
the solution reached. Which definitely does not have to be a feature of the wrong strategy when
the map user easily remembers complex tasks and is able to create a sequence of relevant sub-goals
which need to be achieved to solve them. Nevertheless, to create this sequence and maintain it in the
working memory is difficult for less experienced solvers [30]. The fast, less cautious, strategy can be
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also explained by lower motivation [16,78]. Nevertheless, there are no statements in the follow-up
questionnaires that would indicate that.

Furthermore, according to the theories related to the novice–expert paradigm [30,31], less
experienced problem-solvers use a limited number of strategies or only a single strategy to solve even
considerably different tasks. Moreover, novices do not aptly adjust their strategies based on the tasks
previously solved in contrast with experts. Nevertheless, the results of this study do not conclusively
support these theses. Both more and less successful participants adjusted or changed their strategy
during the test. Moreover, the majority of participants used more than one solving approach during
the single task solving in the first three tasks analyzed. Above that, for one of the analyzed tasks most
of the participants who used more than two main solving approaches were unsuccessful in finding the
correct solution. Furthermore, the worst solvers were both among the participants who kept at least
one problem-solving approach throughout the analyzed tasks and among the participants who used
different solving approaches and their combinations in each of the tasks.

Therefore, the question arises as to whether these adjustments/changes of the strategies used were
efficient and can be considered as a feature of expert problem-solving behavior. A positive answer is not
supported by the data presented and by the theory of [30], given that solvers are able to appropriately
adjust their strategies only when they are aware of the success of their previously used strategy. Given
that the participants did not know if their answers were correct prior to finishing the whole test, the
adjustments of strategies were caused by their inability to recognize the identical structure of the given
task types [30,79]. Moreover, based on the follow-up questionnaires the identified changes in strategies
in several less successful participants were unintentional and were partially influenced by the map
type. Therefore, their task-solving behavior was more data-driven than theory-driven (consistent
with [7,13,38,80]).

Of interest to us was also whether outliers in task-solving strategies are distinguished among less
successful users only (RQ3). It turned out that both successful and unsuccessful participants were
among participants with atypical visual behavior and unique task-solving strategies. This result was
supported across all the appropriate methods of data analysis applied (see Section 3.2.2, Section 3.3.1,
and Section 3.3.2).

4.2. What Enables/Hinders Identifying Features of Strategies that Characterise Unsuccessful Participants?

Based on the differences discussed above, it is apparent that our results partially contrast with
the results of previous related studies indicating that experienced (i.e., successful) solvers apply
more unified strategies than less successful ones. While the spatio-temporal strategy of novices/less
successful solvers cannot be characterized as it differentiates a solver from a solver substantially [13,16].

It is true that novices/unsuccessful solvers are not one homogenous group; however, it is possible
to categorize them into subgroups. For this purpose, it can be beneficial to use additional methods of
eye-tracking data analysis and to supplement eye-tracking technology with some of the qualitative
methods of data collection (as successfully proven by [36,37,57,81]).

Besides that, in cases where the features of strategies characteristic for unsuccessful participants
(or generally for a specific group of participants) were not identified for some tasks, it certainly does
not mean they do not exist. However, it is necessary to explore participants’ strategies from all their
possible perspectives and preferably by using various methods as well (see the results for the task T1.2).

Moreover, in some cases, the chosen method of strategy comparison itself predetermines that
less similarity will be found in a group of less experienced/successful participants, in particular, if
these participants are characterized by a substantially slower task-solving process and the similarity
of their strategies is analyzed by using some of the string-comparison methods. Given that there
is a lower probability that these longer strings will match, respectively tthe behavior will stay the
same throughout the whole task solving phase. In addition, the difference in string length of slower
participants is larger than that of fast participants. Despite the current efforts to modify the algorithms
used so that they are less dependent on string length (see e.g., [63]), the results of this study show that
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the influence is still evident. Therefore, it is necessary to take this limit into account and use these
methods and interpret their outcomes cautiously when the length of strings differ considerably.

Nevertheless, it is similarly important to be cautious when the subgroups of novices/unsuccessful
solvers are identified. Namely, when the cluster analysis is applied to explore similarities among
participants’ spatial strategies it is fundamental to choose appropriate method of clustering and method
of distance measures. Given that, different approaches to clustering might result in different clusters of
participants identified. Moreover, it is key to be aware that the cluster analysis always enable to split
the data into clusters even though there are no meaningful differences among them [66].

5. Conclusions

In the study presented here, we explored how map users solve tasks requiring the analysis of
thematic maps. The research attention devoted to this more complex map skill and strategies chosen
during its use is insufficient. Given that the increasing popularity of thematic maps led also to a
considerable share of maps that contain serious (cartographic) insufficiencies or that intentionally
distort the displayed data [2,3]. For that reason, the study specifically aimed to identify the differences
between less and more successful map users during an analysis of thematic maps. Unlike the many
closely related studies [5–7], attention was mostly given to less successful users, since our goal was to
find the similarities in their visual behavior. Having found the unsuccessful strategies, we wanted
to provide general recommendations which would lead to improvement of the map skills of less
experienced users.

To fulfil the above-mentioned aim, various methods of eye-tracking data visualization and
analysis were applied, providing some improvements and adding new modifications to the approaches
also, e.g., hierarchical cluster analysis for categorization of relative spatial distribution of attention,
theoretically-driven analysis and categorization of participants’ spatio-temporal strategies. These
methods and their combination can be of use for researchers not only in the cartography field but
generally to those aiming to understand the visual behavior and strategies during task solving of any
kind (e.g., tasks requiring web search, tasks focusing on information remembering and recall).

Our study showed that less successful map users differ in some aspects of their strategies from
more successful users. Most of these differences are consistent across the majority of participants
who provide an incorrect answer for a given task. Nevertheless, outliers from the perspective of their
task-solving behavior can also be identified among unsuccessful participants. However, equally, they
can be identified among the successful participants.

Many studies focusing on the strategy differences caused by different levels of expertise highlight
the differences identified that are difficult to change directly, e.g., a difference in fixation/saccade count,
in fixation count per second, in saccade amplitude between less and more successful participants (see,
e.g., [7,16,36,38]). Our aim was thus to provide practical tips based mainly on the results of the study
presented here that could help unsuccessful participants to avoid ending up with an incorrect answer
(see Table 2). These tips can be divided into tips specific to the analysis of thematic maps or to working
with maps in general and even more generally helpful tips that can be useful during the solving of any
task, as some of the identified incorrect solutions were not caused by insufficiently developed map
skills. Furthermore, it can be noted that the clues refer to map use process, but may be of value for
map makers as well as they indirectly point to map design improvements that can help map users to
solve map task (more) efficiently.

We are aware that the suggested clues are developed on data collected from one particular
empirical study. However, we believe it is of value to draw conclusions that are both possible to be
implement by practitioners (in this case in cartographic education) and tested by other researchers in
different conditions. The clues thus may be treated as a starting point for further discussion on the
important, in our opinion, topic.

Notwithstanding, several considerable differences in the strategies used by the participants were
identified that could not be explained by various levels of ‘top-down’ expertise of the participants
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and by the correctness of their task solving. Therefore, future studies could focus on identifying other
independent variables that substantially influence the map user’s choice of strategy, thus enabling
these unexplained differences to be clarified or even enabling all the differences identified to be
better understood. The potentially appropriate variables can be derived from the results of studies
similarly focusing on the characterization of solvers’ strategies, and not only in the field of cartography
(e.g., [82–85]). From their perspective, the influence of gender, IQ, and cognitive (thinking) style should
be explored in future studies.

Table 2. Recommendations leading to more successful (map) task solving based on the study results.

Specific Tips for (thematic) Map Analysis General Tips for Task Solving

Get familiar with the map as a whole upon first
seeing it and, particularly, if more complex map skills
are required (i.e., map analysis or map interpretation).
Specifically, become acquainted with the meaning of
all the cartographic signs used by referring to both
thematic and topographic legends.

Use all task elements that may be helpful in solving
the task efficiently and effectively. Therefore, get
familiar with possible solutions if they are provided
in the first phase of solving the task, as it can be
helpful to narrow the number of task elements that
need to be used.

Efficiently take in individual map elements.
Specifically, take in the information depicted on the
map by comparing the cartographic signs with their
meanings stated in the (thematic) legend.

If not working to a time constraint, do not prioritize
the time it takes to answer. Double-check if the
solution found corresponds to the task and, possibly,
the solutions given. Moreover, verify that it is the
only solution that fits the task as it was
comprehended when only one solution can be correct.

Having understood the given task, try to distinguish
relevant map layout elements from irrelevant ones in
order to decrease the number of map elements you
have to thoroughly analyze and repeatedly refer to.
The same is true with the map content presented. Try
to reduce the analyzed area presented on a map
and/or thematic layers, to the ones that are relevant to
the given task. Having completed this, try to focus
only on this content when executing the given task.

Try to decode the given task prior to actually solving
it to find its structure and to use an appropriate
strategy for the task type identified, based on the set
sequence of sub-goals that will lead to its solution.
Moreover, try to use the same strategy to an identical
type of task (e.g., independent of map type) if it
proves to be effective. If not, get familiar with the
correct answer and find the reason behind the
incorrect solution to be able to aptly modify
the strategy.
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Appendix A

Table A1. Correctness of answers given by the participants for individual tasks. Tasks chosen for
further analyses are in bold.

Participant
ID Expertise T1.1 T1.2 T1.3 T2.1 T2.2 T2.3 T3.1 T3.2 T3.3 T4.1 T4.2 T4.3 Success

Rate (%)

P01 e 91.7
P02 i 83.3
P03 i 91.7
P04 e 83.3
P06 e 100.0
P07 i 83.3
P08 i 75.0
P09 i 83.3
P10 i 83.3
P12 i 83.3
P13 e 83.3
P14 i 66.7
P15 i 83.3
P16 e 83.3
P17 i 75.0
P18 e 100.0
P20 e 83.3
P21 e 83.3
P22 i 75.0
P23 i 83.3
P24 i 83.3
P25 i 66.7
P26 i 75.0
P27 i 75.0
P28 i 58.3
P29 i 58.3
P30 i 83.3
P31 e 91.7
P32 e 75.0
P33 e 66.7
P34 i 75.0
P35 e 83.3
P37 e 66.7
P39 e 83.3
Share of correct

answers (%) 47 41 94 50 71 94 100 85 91 100 91 94

e = expert, i = intermediate, green colored cell = correct answer, red colored cell = incorrect answer, green bold
letters = the best solvers, red bold letters = the worst solvers.
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14. Opach, T.; Gołębiowska, I.; Fabrikant, S.I. How Do People View Multi-Component Animated Maps? Cartogr.
J. 2014, 51, 330–342. [CrossRef]

15. Baker, K.M.; Petcovic, H.; Wisniewska, M.; Libarkin, J.C. Spatial signatures of mapping expertise among
field geologists. Cartogr. Geogr. Inf. Sci. 2012, 39, 119–132. [CrossRef]

16. Krstić, K.; Šoškić, A.; Ković, V.; Holmqvist, K. All good readers are the same, but every low-skilled reader is
different: An eye-tracking study using PISA data. Eur. J. Psychol. Educ. 2018, 33, 521–541. [CrossRef]

17. Roth, R.E. Cartographic Interaction Primitives: Framework and Synthesis. Cartogr. J. 2012, 49, 376–395.
[CrossRef]

18. Dong, W.; Wang, S.; Chen, Y.; Meng, L. Using Eye Tracking to Evaluate the Usability of Flow Maps. ISPRS
Int. J. Geo-Inf. 2018, 7, 281. [CrossRef]

19. Burian, J.; Popelka, S.; Beitlova, M. Evaluation of the Cartographical Quality of Urban Plans by Eye-Tracking.
ISPRS Int. J. Geo-Inf. 2018, 7, 192. [CrossRef]

20. Wehrend, S.; Lewis, C. A Problem-oriented Classification of Visualization Techniques. In Proceedings of the
1st Conference on Visualization ’90, San Francisco, CA, USA, 23–26 October 1990.

21. Amar, R.; Eagan, J.; Stasko, J. Low-Level Components of Analytic Activity in Information Visualization.
In Proceedings of the 2005 IEEE Symposium on Information Visualization, Minneapolis, MN, USA, 23–25
October 2005; p. 15.

22. Kimerling, A.J.; Buckley, A.R.; Muehrcke, P.C.; Muehrcke, J.O. Map Use: Reading and Analysis; ESRI Press
Academic: Redlands, CA, USA, 2009.

23. Michaelidou, E.; Nakos, B.; Filippakopoulou, V. The Ability of Elementary School Children to Analyse
General Reference and Thematic Maps. Cartographica 2004, 39, 65–88. [CrossRef]

24. Carmichael, A.; Larson, A.; Gire, E.; Loschky, L.; Rebello, N.S. How Does Visual Attention Differ Between
Experts and Novices on Physics Problems? In 2010 Physics Education Research Conference; Singh, C., Sabella, M.,
Rebello, S., Eds.; Amer Inst Physics: Melville, NY, USA, 2010; p. 93.

25. Bednarik, R. Expertise-dependent visual attention strategies develop over time during debugging with
multiple code representations. Int. J. Hum. Comput. Stud. 2012, 70, 143–155. [CrossRef]

26. Li, W.-C.; Chiu, F.-C.; Kuo, Y.; Wu, K.-J. The Investigation of Visual Attention and Workload by Experts and
Novices in the Cockpit. In Proceedings of the Engineering Psychology and Cognitive Ergonomics. Applications and
Services; Harris, D., Ed.; Springer: Berlin, Germany, 2013; pp. 167–176.

27. Warren, A.L.; Donnon, T.L.; Wagg, C.R.; Priest, H.; Fernandez, N.J. Quantifying Novice and Expert Differences
in Visual Diagnostic Reasoning in Veterinary Pathology Using Eye-Tracking Technology. J. Vet. Med. Educ.
2018, 45, 295–306. [CrossRef]

28. Moser-Mercer, B. The expert-novice paradigm in interpreting research. In Translationsdidaktik; Gunter Narr
Verlag: Tübingen, Germany, 1997; pp. 255–261.

29. Ooms, K.; De Maeyer, P.; Fack, V. Listen to the Map User: Cognition, Memory, and Expertise. Cartogr. J. 2015,
52, 3–19. [CrossRef]

30. Anderson, J.R. The Architecture of Cognition; Harvard University Press: Cambridge, UK, 1983.

http://dx.doi.org/10.1080/0144341980180105
http://dx.doi.org/10.3390/su11010076
http://dx.doi.org/10.1080/09500690701191433
http://dx.doi.org/10.1007/s10649-014-9546-2
http://dx.doi.org/10.1080/17538947.2016.1234007
http://dx.doi.org/10.1080/13658816.2010.511718
http://dx.doi.org/10.1179/1743277413Y.0000000049
http://dx.doi.org/10.1559/15230406393119
http://dx.doi.org/10.1007/s10212-018-0382-0
http://dx.doi.org/10.1179/1743277412Y.0000000019
http://dx.doi.org/10.3390/ijgi7070281
http://dx.doi.org/10.3390/ijgi7050192
http://dx.doi.org/10.3138/K63J-1260-8416-863W
http://dx.doi.org/10.1016/j.ijhcs.2011.09.003
http://dx.doi.org/10.3138/jvme.1115-187r
http://dx.doi.org/10.1179/1743277413Y.0000000068


ISPRS Int. J. Geo-Inf. 2020, 9, 9 25 of 27

31. Gerace, W.J. Problem Solving and Conceptual Understanding. In Proceedings of the 2001 Physics Education
Research Conference; Franklin, S., Marx, J., Cummings, K., Eds.; PERC Publishing: New York, NY, USA, 2001;
pp. 33–45.

32. Gegenfurtner, A.; Lehtinen, E.; Säljö, R. Expertise Differences in the Comprehension of Visualizations: A
Meta- Analysis of Eye-Tracking Research in Professional Domains. Educ. Psychol. Rev. 2011, 23, 523–552.
[CrossRef]

33. Haider, H.; Frensch, P.A. The Role of Information Reduction in Skill Acquisition. Cogn. Psychol. 1996, 30,
304–337. [CrossRef]

34. Paas, F.; Renkl, A.; Sweller, J. Cognitive Load Theory and Instructional Design: Recent Developments. Educ.
Psychol. 2003, 38, 1–4. [CrossRef]

35. Crampton, J. A Cognitive Analysis of Wayfinding Expertise. Cartographica 1992, 29, 46–65. [CrossRef]
36. Stofer, K.; Che, X. Comparing Experts and Novices on Scaffolded Data Visualizations using Eye-tracking.

J. Eye Mov. Res. 2014, 7, 1–15.
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