
  

ISPRS Int. J. Geo-Inf. 2020, 9, 7; doi:10.3390/ijgi9010007 www.mdpi.com/journal/ijgi 

Article 

Automatic Identification of the Social Functions  

of Areas of Interest (AOIs) Using the Standard  

Hour-Day-Spectrum Approach  

Tong Zhou 1,2,3, Xintao Liu 2, Zhen Qian1, Haoxuan Chen1 and Fei Tao1,3,* 

1 School of Geographical Sciences, Nantong University, Nantong 226007, China 
2 Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University,  

Hong Kong, China 
3 Key Laboratory of Virtual Geographical Environment, MOE, Nanjing Normal University,  

Nanjing 210046, China 

* Correspondence:  taofei@ntu.edu.cn; Tel.: +86-13776923762  

Received: 8 November 2019; Accepted: 18 December 2019; Published: 19 December 2019 

Abstract: The social function of areas of interest (AOIs) is crucial to the identification of urban 

functional zoning and land use classification, which has been a hot topic in various fields such as 

urban planning and smart city fields. Most existing studies on urban functional zoning and land use 

classification either largely rely on low-frequency remote sensing images, which are constrained to 

the block level due to their spatial scale limitation, or suffer from low accuracy and high uncertainty 

when using dynamic data, such as social media and traffic data. This paper proposes an hour-day-

spectrum (HDS) approach for generating six types of distribution waveforms of taxi pick-up and 

drop-off points which serve as interpretation indicators of the social functions of AOIs. To achieve 

this goal, we first performed fine-grained cleaning of the drop-off points to eliminate the spatial 

errors caused by taxi drivers. Next, buffer and spatial clustering were integrated to explore the 

associations between travel behavior and AOIs. Third, the identification of AOI types was made by 

using the standard HDS method combined with the k-nearest neighbor (KNN) algorithm. Finally, 

some matching tests were carried out by similarity indexes of a standard HDS and sample HDS, i.e., 

the Gaussian kernel function and Pearson coefficient, to ensure matching accuracy. The experiment 

was conducted in the Chongchuan and Gangzha Districts, Nantong, Jiangsu Province, China. By 

training 50 AOI samples, six types of standard HDS of residential districts, schools, hospitals, and 

shopping malls were obtained. Then, 108 AOI samples were tested, and the overall accuracy was 

found to be 90.74%. This approach generates value-added services of the taxi trajectory and provides 

a continuous update and fine-grained supplementary method for the identification of land use 

types. In addition, the approach is object-oriented and based on AOIs, and can be combined with 

image interpretation and other methods to improve the identification effect. 
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1. Introduction 

Urban functional zoning refers to the division of regions according to the dominant functions of 

a city, which is an organic whole with relatively independent functions and mutual connections. 

Land use type refers to a land resource unit with the same land use mode, and it is the basic regional 

unit reflecting use, property, and distribution law. Urban areas of interest (AOIs) refer to units with 

a social function that attract the attention of humans. As a basic unit in urban functional zoning and 

land use types, the identification of the social function types of AOIs plays an important role in land 

use classification and urban functional partition [1,2]. The identification and renewal of urban 

functional zones and land use types are also hot research topics with broad applications ranging from 

transportation, urban planning, and smart cities [3]. However, few studies have focused on the 
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identification of social functions of AOIs using dynamic travel data such as GPS trajectories. It is 

generally agreed that existing studies on the identification of land use types and urban functional 

zoning are mainly based on field surveys [4], remote sensing images [5–8], and social media data, 

such as Sina Weibo [9], Dazhong Dianping [10], Twitter [11] and points of interest (POIs) data. 

Methods based on field surveys currently have the highest spatial accuracy, but these methods 

are time-consuming and unproductive. For example, the Third National Land Survey Project in 

China will be completed in two years, while the previous two works can be traced back to 2009 and 

1996 [4]. There are many remote sensing images for land use recognition, including nighttime light 

images [12], Landsat images [13], and hyperspectral images [14]. Due to their low spatial resolution, 

nighttime light images are more suitable for estimating built-up areas and building density on large 

scales [15]. Even the new satellite, Luojia1-01, only has a spatial resolution of 130 meters [12]. Landsat 

is widely used as a free global data source. However, since it is limited by a spatial resolution of 30 

meters and a re-sampling period of 16 days, the space-time application of its data can only be at the 

block level, of which the recognition efficiency of hyperspectral images is much better than that of 

Landsat [16]. However, the slow processing speed and the Hughes phenomenon, which are caused 

by the multi-dimension of images, restricts the wide application of hyperspectral technology [17]. In 

general, the classification of remote sensing images is based on pixels. Even object-oriented methods 

can only be used to identify homogeneous objects [18]. However, when the object is composed of 

multiple spectral features, there are difficulties in the recognition process. 

Studies of functional zone identification based on POI data have also begun to appear recently, 

mainly focusing on the classification of POIs [19], analysis of the density and spatial distribution of 

specific types of POIs, and functional partitions combined with remote sensing images [20]. The major 

limitation is that some POIs are acquired based on volunteered geographic information, and the 

quality of the data is hard to guarantee [21]. Studies have shown that traffic patterns are closely 

related to urban functional zoning [22,23]. Population mobility and travel behavior are essential 

themes in sociology, geography, and transportation [24,25]. It is generally agreed that human 

activities have strong regularities, and most of these are predictable [26,27]. For example, the 

spatiotemporal attenuation of large-scale travel follows a power-law distribution or an exponential 

truncated power-law distribution [28,29], while a single trip mostly follows an exponential 

distribution [30]. At the same time, the first law of geography by Tobler is equally applicable to the 

law of human travel [31], which also shows certain regularities, such as distance decay in space [32]. 

Apart from the abovementioned data sets, travel data such as currency data [28], mobile phone 

data [29,33], subway bus card data [34] and floating car data [35,36] are widely used in the analysis 

of travel behaviors. Among these, the trajectory data of taxicabs record the spatial location more 

closely to the destination, which is more suitable for fine-grained research. The most frequently used 

methods of trajectory data sets include hot spot discovery methods, such as Getis-Ord(Gi* statistic) 

[37] and (kernel density estimation (KDE) [38], and various spatial clustering algorithms and their 

optimization [39], such as k-means [40] and k-medoids [41] based on division, or density-based 

spatial clustering of applications with noise (DBSCAN) [38] or clustering by fast search and find of 

density peaks (CFSFDP) [42] based on density. Existing studies provide theoretical and 

methodological knowledge for the description of travel behavior laws [43,44], which is an important 

component in urban functional zoning studies. Combining these advanced analysis methods with 

taxi trajectories and applying them to social function type identification of the AOIs can provide a 

more precise and accurate analysis [45–47]. 

Extraction of the pick-up and drop-off points from the raw trajectory is a refined process from 

the perspective of travel behavior. Clusters of the pick-up and drop-off points are usually the origin 

or destination of human mobility, and the locations of these clusters are often close to some AOIs. 

From a time perspective, if we count the traffic flow per hour in days, we will draw an hour-day-

spectrum (HDS). Each cluster has six types of HDS, including total drop-offs, holiday drop-offs, 

weekday drop-offs, total pick-ups, holiday pick-ups, and weekday pick-ups, which reflect the time 

change regularity of travel behavior. By matching all of the waveforms of each cluster with the 

standard HDS of each AOI type, we can automatically identify the social function types of the AOIs. 
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The main innovations of this article include: 

 (1) Data preprocessing of double cleaning. After cleaning twice, the spatial accuracy of the pick-

up and drop-off points is ensured; this is better for micro-level travel behavior analysis. This 

operation leapfrogs travel research from macro to micro, from city level to block-level, and from 

community level to building level. The buffer analysis combined with DBSCAN automatically 

classifies the pick-up and drop-off points. Each cluster can be automatically associated with a 

neighboring AOI to determine the affiliation of the points with the AOI. 

(2) A top-down method of automatic identification of AOI is designed. This method relies on 

the six types of HDS of AOIs. The standard HDS of the AOI is obtained by temporal analysis on the 

pick-up and drop-off points, and then the social function of the AOI is identified by the spectrum 

matching technique. 

(3) Waveform recognition is obtained using the HDS pattern matching method of the Gaussian 

kernel function. Compared with the method based on the cosine similarity and the Pearson 

correlation coefficient, the recognition accuracy is obviously improved, and the rate is increased to 

90.74%. 

This method requires only the trajectory data of the taxicabs, and automatic identification of the 

functional type can be performed without adding new sensors and data sources. Because the 

trajectory in each city is continuously being updated in intelligent transportation systems (ITS), the 

implementation of this scheme can achieve long-term and dynamic monitoring of the social functions 

of AOIs. The results can be used alone or in combination with other schemes to complement the 

urban functional area identification. 

The rest of the article is arranged as follows. Section 2 presents the methodology. The study area 

and data preprocessing, as well as results and analysis, are introduced in Section 3. Then, discussion 

occurs in Section 4. Lastly, conclusions and future work are covered in Section 5. 

2. Methodology  

AOI can be regarded as an important part of land use types, and the identification of its social 

function type is a hot topic. This article attempts to identify the social function types of AOIs through 

the spatiotemporal data mining of taxi GPS trajectories. This section will introduce the principle and 

implementation of the supervised classification method in detail. 

2.1. Study Area 

The study area is presented in Figure 1. All experiments were conducted in the Chongchuan and 

Gangzha Districts, which cover about 234 square kilometers, and the permanent population was 

0.884 million in 2017. These districts are the traditional main urban areas of Nantong, and Nantong 

is the prefecture-level city in Jiangsu Province, China. It is located on the northern bank of the Yangtze 

River. In 2018, Nantong had a gross domestic product growth of 8.95%, with a total of about 842.7 

billion yuan, ranking 20th across the whole country. Because the subway in Nantong has yet to be 

constructed, buses and taxis are the main travel ways of urban human mobility in public 

transportation. Taxis play an important role in citizens’ lives. The total number of taxis in Nantong is 

about 1200 and the number of buses is about 3000.  
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Figure 1. Study Area. 

2.2. Research Framework 

Figure 2 illustrates the research framework and interrelated tasks of this proposed work, with 

the details given below. 

 

 

 

 

Figure 2. The framework of this article. Legend: AOI, area of interest. 

1. Extraction and cleaning of the pick-up and drop-off points of the taxi GPS trajectories. First, 

anomalous data with the wrong spatial position or an empty value are removed, and then 

the drop-off points are cleaned again to improve the spatial accuracy. 

2. Associating the AOIs with pick-up and drop-off points. First, the buffer analysis and 

DBSCAN are combined to extract the taxi pick-up and drop-off point clusters. DBSCAN and 

spatial buffer analysis are used for AOI entrances with closed management, while buffer 
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analysis is used for AOI entrances with open management. Finally, the pick-up and drop-

off points are associated with AOIs. 

3. Training of six standard hour-day-spectra (SHDSs) of each AOI type. 

4. Identification of social functional type of AOIs according to standard HDS with the KNN 

algorithm. 

5. Validation of the methodology using real data. 

2.3. Associating AOIs with Pick-Up and Drop-Off Points 

Compared to other public travel modes, the taxi is the most maneuverable and flexible, and its 

drop-off points are relatively close to the destination. Based on different methods, the collections of 

drop-off points near AOI entrances were collected as sample data. We used DBSCAN combined with 

spatial buffer in closed entrances analysis, as well as spatial buffer singly in open entrances. 

The road boundaries constrain the distribution of the drop-off points, so the setting of the buffer 

size should vary according to the width of each road. Because the spatial error of the GNSS device 

was five to ten meters, in order to include more drop-off points into the buffer zone, the buffer width 

perpendicular to the road was determined by adding ten meters to the road width. 

2.3.1. Closed Entrances 

Closed entrances have doorplates, gateposts, fences, and other iconic objects, so we carried out 

DBSCAN clustering for pick-up and drop-off points in the buffer, removed noise points in the results, 

and then associated the pick-up and drop-off point clusters with AOIs. Combined with buffer 

analysis, we determined buffer widths parallel to the road by using the drop-off point density 

associated with AOIs, as shown in Figure 3.  

 

 

 

 

Figure 3. Buffers of closed entrances. 

2.3.2. Open Entrances  

Some AOIs, such as shopping malls, have no clear accessible entries, which means people can 

enter or leave the area from any position along the road. To eliminate GPS data error, buffer widths 

parallel to the road were obtained by adding ten meters to the AOI boundary length, as shown in 

Figure 4.  
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Figure 4. Buffers of open entrances. 

2.4. Training of SHDS for Each Type of AOI 

2.4.1. Conception of SHDS  

There are several types of AOIs, but for a specific type, the composition of the population is 

relatively similar, and, therefore, people tend to travel short distances. This means that the temporal 

distribution law of the same type of AOI is similar. Daily, there are differences between weekdays 

and holidays. For example, primary and secondary schools are only open on weekdays, but the scenic 

spots attract more tourists on Sundays. Hospitals have no rest all year round, having a relatively 

balanced distribution of people flow. In the HDS, some AOIs have several peaks in a day. For 

instance, students have a fixed school time, which results in corresponding morning and evening 

peaks in residential districts. The differences between functional zones, like a person’s unique 

fingerprints, can be used to identify the different types. 

The flow of passengers can be expressed by the number of pick-up and drop-off points near the 

AOI entrance. Hence, the spectrum constructed by these points in each time period is a sign of the 

AOI’s own characteristics. From a time point of view, HDS includes differences between holidays 

and weekdays. At the same time, HDS includes differences between pick-up and drop-off points. 

Thus, HDS can be divided into six types, including total drop-offs, holiday drop-offs, weekday drop-

offs, total pick-ups, holiday pick-ups, and weekday pick-ups. The above characteristics can be 

described as curves in a two-dimensional coordinate system, that is, the horizontal axis represents 0–

23 o’clock, and the vertical axis represents the flow of people, which is called HDS in this paper. 

Because same types of AOIs have similar social systems and working characteristics, their own 

characteristics are almost identical. Under this circumstance, it is possible to use a standard spectrum 

to identify the characteristics of such AOIs. Corresponding to the aforementioned six types of HDSs, 

six types of standard spectrum can be generated which are collectively called SHDSs. 

2.4.2. Implementation 

The SHDS should express the fundamental law of all AOIs in this type. Hence, information of 

only one example is taken, as the SHDS has greater subjectivity and deviation. In order to acquire a 

SHDS with strong universality and distinction, this paper uses a method based on sampling and 

interpolation. The implementation process is as follows: 

(1) We extract the pick-up and drop-off points in each buffer of the AOI entrance. In addition, 

according to the ‘Time’ field, the number of hourly points within 24 hours is separately counted to 

calculate the time-interval spectrum, as shown in Figure 5. 
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Figure 5. Construction of the hour-day-spectrum (HDS). 

Distribution of the pick-up and drop-off points is usually uneven; the region close to the AOI 

entrance may have a high density. The DBSCAN algorithm is sensitive to the distribution density of 

points, which can extract the clusters of the points and remove noise points. Because the parking 

position of the vehicle is dispersed around the closed entrance, the DBSCAN algorithm is used to 

cluster the pick-up and drop-off points in the buffer, as shown in Figure 6. 

 

  

 

 

Figure 6. Clustering the drop-off points around the closed entrances. 

Then, after extracting the quantity sequence of pick-up and drop-off points, the data set can be 

divided into the following: PP={𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑛} represents pick-up points, HPP={ℎ𝑝𝑝1, ℎ𝑝𝑝2, … , ℎ𝑝𝑝𝑛} 

represents pick-up points on holidays, WPP={𝑤𝑝𝑝1, 𝑤𝑝𝑝2, … , 𝑤𝑝𝑝𝑛 } represents pick-up points on 

weekdays, DP={𝑑𝑝1, 𝑑𝑝2, … , 𝑑𝑝𝑛} represents drop-off points, HDP={ℎ𝑑𝑝1, ℎ𝑑𝑝2, … , ℎ𝑑𝑝𝑛} represents 
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drop-off points on holidays, and WDP={ 𝑤𝑑𝑝1, 𝑤𝑑𝑝2, … , 𝑤𝑑𝑝𝑛 } represents drop-off points on 

weekdays. 

(2) By calculating the spectrum of AOI with sequence data, the spectral sequence 𝐻𝐷𝑆𝑗
(𝑘,ℎ)

 is {s1, 

… , si, … , s24}, where i is the sequence number of the spectrum (1≤i≤24), j is the number of examples, 

k is the number of classes, h is the number of spectral types, si is the quantity of pick-up and drop-off 

points at time i, and 𝐻𝐷𝑆𝑗
(𝑘,ℎ)

 represents the spectral information of the jth example of the kth class of 

AOI and the hth class of the spectrum. 

(3) The average hour-day-spectrum 𝐴𝐻𝐷𝑆(𝑘,ℎ) is calculated for each type of AOI, as shown in 

 

𝐴𝐻𝐷𝑆(𝑘,ℎ) =
1

𝑁
∑ 𝐻𝐷𝑆𝑗

(𝑘,ℎ)
 

𝑁

𝑗=1

 (1) 

where N is the total number of examples of the kth class. 

(4) The same type of HDS may sometimes have abnormal values, that is, the spectral shape 

shows sharp fluctuations. It is therefore necessary to take interval sampling for 𝐴𝐻𝐷𝑆(𝑘,ℎ) with m to 

reduce the influence of abnormal values. The result 𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑒 (𝑘,ℎ) is {s1..., si + m,,..., s24}. In order to 

ensure the universality of SHDSs and retain the distinction of the original HDS, m is less than 3. 

(5) The dimension of the spectrum after sampling is less than 24, but the HDS of the AOI to be 

identified is 24 dimensions. Thus, it is necessary to interpolate the 𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑒 (𝑘,ℎ) sequence to restore 

it with 24 dimensions, and the interpolation result is the final standard spectrum 𝑆𝐻𝐷𝑆(𝑘,ℎ). 

2.5. Automatic Identification of Social Function of AOIs with KNN and SHDSs 

KNN is a common method used in data mining classification technology. Compared with other 

machine learning algorithms, it is especially suitable for multi-classification processing. However, it 

has a large time complexity when calculating the similarity between the sample and all training 

samples. Hence, the SHDS is used to replace the whole sample set; this means only the overall 

similarity (distance) of the HDS and the corresponding SHDS needs to be calculated, which can 

greatly reduce the algorithm complexity. 

2.5.1. Concept of KNN 

KNN means that the nearest k neighbors can represent each sample. If a sample has a majority 

of the k nearest neighbors belonging to a certain type in the feature space, the sample is also classified 

into this type. In the KNN algorithm, the selected neighbors are considered to have been correctly 

classified. The classification decision only depends on the type of the nearest one or several samples. 

The following steps are performed for each point in the dataset of an unknown type: 

1. The distance is computed between the point in the known type and the current point; 

2. The distances are sorted in ascending order; 

3. k points with the smallest distance from the current point are chosen; 

4. The occurrence frequency of the type of the first k points is obtained; 

5. The type with the highest frequency as the classification of the current point is returned. 

2.5.2. Combination of KNN and SHDS 

There are differences between different types of HDSs of the same AOI, and the same type of 

HDS of different AOI types may also be different. However, for a specific type of AOI, the shape of 

the six HDSs is relatively stable, meaning the spectral curves can be assembled and regarded as the 

identification of the AOI type. The number of pick-up and drop-off points near the entrance is 

recorded in the spectrum sequence. However, due to the differences in acquisition time and spatial 

regions, the error is high when calculating the similarity of the spectral sequence based on the 

absolute number, and the spectral sequence elements need to be normalized in advance. The steps of 

the identification method are as follows: 

1. The training process of the SHDS 
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The spectrum sequence is converted into a 24-dimensional vector and normalized, and then six 

SHDSs of various types of AOIs are calculated. The normalization formula is 

 

v′ =
𝑣−𝑣𝑚𝑖𝑛

𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛
                                          (2) 

   

                 

where 𝑣 denotes the vector form of this type of SHDS, 𝑣𝑚𝑖𝑛  denotes the minimum value of the 

vector, and 𝑣𝑚𝑎𝑥 denotes the maximum value of the vector. 

2. Identify the type of AOI 

Cosine similarity, Pearson coefficient, and Gaussian kernel function were selected as the 

similarity (distance) functions of KNN, respectively, and the best one was decided according to the 

sensitivity of self-correlation of the AOIs’ SHDSs. 

The next step involves converting the AOI spectrum sequence to be identified into a normalized 

vector form, calculating the similarity with the SHDS vector of each type, integrating the six spectral 

similarities, and calculating the total similarity as the distance factor in the KNN algorithm. The 

calculation formula is 

𝑐𝑜𝑟𝑟𝑡𝑦𝑝𝑒_𝑖
𝑘 = 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑆𝐻𝐷𝑆𝑡𝑦𝑝𝑒_𝑖

𝑘 , 𝐻𝐷𝑆𝑡𝑦𝑝𝑒_𝑖) (3) 

 

𝑠𝑘  =  𝑐𝑜𝑟𝑟𝑡𝑦𝑝𝑒_1
𝑘 + 𝑐𝑜𝑟𝑟𝑡𝑦𝑝𝑒_2

𝑘 + 𝑐𝑜𝑟𝑟𝑡𝑦𝑝𝑒_3
𝑘 + 𝑐𝑜𝑟𝑟𝑡𝑦𝑝𝑒_4

𝑘 + 𝑐𝑜𝑟𝑟𝑡𝑦𝑝𝑒_5
𝑘 + 𝑐𝑜𝑟𝑟𝑡𝑦𝑝𝑒_6

𝑘  (4) 

 

where 𝑘 denotes the index of the AOI types, 𝑡𝑦𝑝𝑒_𝑖 denotes the type of spectrum (for example, the 

spectrum of weekdays), 𝐶𝑜𝑟𝑟𝑡𝑦𝑝𝑒_𝑖
𝑘  denotes the similarity between the SHDS of type_i and the HDS to 

be identified; and 𝑠𝑘 denotes the total similarity between the 𝐻𝐷𝑆k and 𝑆𝐻𝐷𝑆. 

3. Result and Analysis 

In order to validate the feasibility of the approach, 108 AOI samples were selected as test sets, 

and different similarity calculation methods were used to verify the results. 

3.1. Study Area and Data Preprocessing 

3.1.1. Trajectory Data of the Taxi 

The original taxi GPS trajectories data involved about 1,400 taxis from September to October 

2018 in Nantong, China, of which the attributes included the license plate number, the driver’s call 

sign, and latitude and longitude, etc., as shown in Table 1. Specifically, ‘Time’ indicates the time at 

which the trajectory point is recorded, ‘Latitude and longitude’ represent the current geographic 

location of the vehicle, ‘Speed’ records the current vehicle speed, and ‘Direction’ signifies the current 

direction. If 'State' is left empty, this indicates that there are no passengers in the car. 

Table 1. Origin trajectory sample data of taxis. 

License Plate 

Number 
Call Sign Time 

Latitude and 

Longitude 
Speed Direction State 

SU FB3451 13646244156 
1 September, 

2018 0:00:00 

120.840075, 

32.136626 
16.7 Northeast Empty 

SU FB3451 13646244156 
1 September, 

2018 0:00:30 

120.841270, 

32.137205 
12.5 Northeast Empty 

…
 

…
 

…
 

…
 

…
 

…
 

…
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SU FB3451 13646244156 
1 September, 

2018 23:59:00 

120.818281, 

32.071339 
22 Southeast Empty 

SU FB3451 13646244156 
1 September, 

2018 23:59:30 

120.820179, 

32.069533 
26.1 Southeast Heavy 

 

The designed sampling time interval was 30 s, but it was less than 30 s in practice because the 

signal data caused by the change in passenger status were also collected. We then extracted 

information on the pick-up and drop-off points according to the vehicle state. When the state of the 

vehicle changes from empty to heavy, this is the pick-up point, and vice versa, as shown in Figure 7. 

  

Figure 7. Schematic diagram of pick-up and drop-off passenger points. 

In practice, taxi drivers change the passenger status after passengers get on, leading to a 

relatively small error between the recorded pick-up point and the actual pick-up point. However, 

when approaching the destination, some drivers will change the status in advance, resulting in a 

significant error between the recorded drop-off point and the actual recorded drop-off point. Hence, 

this paper characterizes the empty point as the drop-off point when the vehicle state changes from 

heavy to empty and when the distance between the two is less than 50 meters. The cleaning process 

ensures that the position accuracy of the drop-off point can realize the identification of the building. 

The distance calculation formula is shown in Equation (5), i.e.,  

𝑑𝑖𝑠 = 𝑅 · 𝑎𝑟𝑐𝑐𝑜𝑠[𝑐𝑜𝑠𝛽1𝑐𝑜𝑠𝛽2 cos(𝛼1 − 𝛼2) + 𝑠𝑖𝑛𝛽1𝑠𝑖𝑛𝛽2]                  (5) 

where 𝛽1 and 𝛽2 are latitude angles, 𝛼1 and 𝛼2 are longitude angles, and 𝑅 is the radius of the 

Earth. 

3.1.2. AOI Data 

This paper used Nantong, China as the research area. AOI data were obtained using Amap API 

via web crawler technology. We selected several different types of AOIs for the experimental data, 

including shopping malls, schools, hospitals, and residential districts (Figure 8). The details of each 

type of AOI are shown in Table 2. In this experiment, 50 samples in the Chongchuan District were 

selected as the training set and 108 samples in the Gangzha District were collected as the validation 

set. 
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Figure 8. Distribution of AOI samples. 

Table 2. The samples of each type of AOI. 

Type AOI 

Shopping mall 20 shopping malls (e.g., Wuzhou Square) 

School 12 colleges and vocational schools (e.g., Nantong University) 

Hospital 10 hospitals (e.g., the affiliated hospital of Nantong University) 

Residential district 116 residential districts (e.g., Demin Garden community) 

3.2. Training Results of the SHDSs 

Fifty AOI samples were used to construct six types of HDSs. Taking the total drop-offs of the 

HDS of residential districts as an example, 78% of residential districts were found to have peaks at 10 

a.m. and 8 p.m., and there were some abnormal fluctuations in different HDSs, but the overall trend 

was the same, as shown in Figure 9. Other types of AOIs, such as shopping malls, schools, and 

hospitals, also have a similar regularity and abnormal fluctuations. 
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Figure 9. HDSs of AOI samples in some residential districts. 

The SHDS of the corresponding spectrum sequence of each type of AOI was calculated, and 

sampling at interval points was performed. In this experiment, we set m equal to 1, meaning sampling 

at every other point was performed, followed by interpolation . After standardizing the results of the 

SHDSs, the standard spectrum of each type was obtained, and these are shown in Figure 10. The 

Pearson correlation coefficient was used to calculate the correlation of the six SHDSs of each type of 

AOI. The average correlations of schools, communities, hospitals, and shopping malls were found to 

be 0.907, 0.743, 0.940, and 0.918. Each SHDS of each type of AOI shows the same trend. Taking the 

hospital as an example, there is a peak at 9 a.m. and 3 p.m. Taking the SHDS of the DP (Drop-off 

points) type as an example, as shown in Figure 11, the spectrum trends of different AOIs are different: 

there are two peaks in the hospital and three peaks in the school; the SHDS of the residential district 

shows an upward trend, while the other spectrum has a downward trend after rising. 

 



ISPRS Int. J. Geo-Inf. 2020, 9, 7 13 of 21 

 

 

Figure 10. Six types of standard hour-day-spectra (SHDSs) of different types of AOI. Legend: DP, 

drop-off points; HDP, holiday drop-off points; WDP, weekday drop-off points; PP, pick-up points; 

HPP, holiday pick-up points; WPP, weekday pick-up points. 

 

 

Figure 11. HDS of different AOI types (total drop-off points). 

3.3. Social Functional Identification of AOIs 

Appropriate similarity indicators are the key to the matching method, which can improve the 

accuracy of identification. Thus, this article compares three different similarity indicators. 

3.3.1. Cosine Similarity 

The smaller the angle between the two vectors, the more similar the two vectors are. The cosine 

similarity abides by this theoretical idea. It measures the similarity between vectors by calculating 
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the cosine of the angle between the two vectors. The derivation formula of cosine similarity is shown 

as 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑋, 𝑌) =
𝑋 ∙ 𝑌

‖𝑋‖ × ‖𝑌‖
=

∑ (𝑥𝑖 × 𝑦𝑖)
𝑛
𝑖=1

√∑ (𝑥𝑖)
2𝑛

𝑖=1 × √∑ (𝑦𝑖)
2𝑛

𝑖=1

 (6) 

where 𝑋 and 𝑌 denote the vectors to be calculated. 𝑥𝑖 denotes the 𝑖th element in 𝑋, and 𝑦𝑖 denotes 

the 𝑖th element in 𝑌, as shown in Figure 12. 

  

Figure 12. Cosine similarity diagram. 

3.3.2. Pearson Correlation Coefficient 

Pearson correlation, also known as product difference correlation (or product–moment 

correlation), is a method of calculating correlations which was proposed by British statistician 

Pearson in the 20th century. The larger the absolute value of the correlation coefficient, the stronger 

the correlation. The closer the correlation coefficient is to −1 or 1, the stronger the correlation degree 

is, and the closer to 0, the weaker it is. In general, the correlation strength of variables can be 

determined using the following ranges: 0.8–1.0, extremely strong correlation; 0.6–0.8, strong 

correlation; 0.4–0.6, moderate correlation; 0.2–0.4, weak correlation; 0.0–0.2, extremely weak 

correlation or no correlation. 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑋, 𝑌) = ρ𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
=

𝐸((𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌))

𝜎𝑋𝜎𝑌
=

𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌)

√𝐸(𝑋2) − 𝐸2(𝑋)√𝐸(𝑌2) − 𝐸2(𝑌)
 (7) 

where 𝐸  denotes the mathematical expectation, 𝑐𝑜𝑣  denotes the covariance, and 𝑁  denotes the 

number of variables. 

3.3.3. Gaussian Kernel Function  

The Gaussian kernel function is defined as a monotone function of Euclidean distance between 

𝑋 and Y in space, and is an effective method used to calculate the similarity between vectors. The 

farther the distance, the higher the difference between individuals. Hence, this paper takes the 

Gaussian kernel function as the similarity indicator, such as in the following formula, i.e., 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑋, 𝑌) = 𝑒
(−

‖𝑋−𝑌‖2

2𝜎2 )
 (8) 

where 𝑒 denotes the natural logarithm and 𝜎 denotes the standard deviation. 

Three similarity indicators were used to validate the SHDSs of four types of AOIs, so the value 

range of the results are different. The self-correlation values were then normalized for comparison, 

as shown in Figures 13–15. The heat map was used to reflect the similarity of different AOIs’ SHDSs. 

The darker the color, the higher the similarity. The color of the main diagonal, whose values are 1, is 

the darkest, which shows that the correlation between the same type of HDS is 100%. ‘M’, ‘R’, ‘S’ and 

‘H’ in the maps represent shopping malls, residential districts, schools, and hospitals, respectively. 
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Figure 13. Cosine similarity self-correlation. ‘M’, ‘R’, ‘S’, and ‘H’ represent shopping malls, 

residential districts, schools, and hospitals, respectively 

 

 

Figure 14. Pearson correlation coefficient self-correlation. 



ISPRS Int. J. Geo-Inf. 2020, 9, 7 16 of 21 

 

 

Figure 15. Gaussian kernel function self-correlation. 

In the DP heat map of the Pearson correlation coefficients, as shown in Figure 12, the correlation 

coefficient between the SHDS of the residential district and the mall is 0.36, displaying a weak 

correlation, while the correlation coefficient between the SHDS of the mall and the hospital is 0.87, 

showing an extremely strong correlation. Obviously, the self-correlation of the Pearson correlation 

coefficient is the highest among the three, so the matching accuracy based on it is significantly lower 

than the others. Also affected by the strong self-correlation, the matching result based on cosine 

similarity is not ideal, being only 85.19%. By adjusting the value of 2𝜎2  of the Gaussian kernel 

function, an appropriate parameter can be found to enhance the constraint degree of HDS mutual 

matching during identification. The weight selection and accuracy comparison are shown in Figure 

16.  

 

 

Figure 16. Accuracy trend of the Gaussian kernel function. 
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When 2𝜎2 is less than 1.15, the accuracy shows an upward trend. When 2𝜎2 is greater than or 

equal to 1.15 and less than or equal to 1.52, the accuracy reaches the peak value, which is 90.74%. 

When 2𝜎2 is higher than 1.52, the accuracy gradually declines and eventually converges to 88.88%, 

as shown in Table 3. Hence, we selected the Gaussian kernel function in which 2𝜎2 is 1.5 as the 

similarity indicator. 

Table 3. Accuracy of different similarity indexes. 

Similarity Index Accuracy of Model 

Pearson correlation coefficient 83.33% 

Cosine similarity 85.19% 

Gaussian kernel function (2σ2=1.5) 90.74% 

4. Discussion 

Partial identification results of the AOIs obtained via the proposed method are shown in Table 

4, where the experimental accuracy is 90.74%.  

Table 4. Comparison of the identification results. 

Original AOI Real Type Prediction Result 

Huaqiang City Residential district Residential district Correct 

Hongming Moore Square Mall School Error 

Yiyuan Beicun South District Residential district Residential district Correct 

Yiyuan Beicun North District Residential district Residential district Correct 

Nantong Secondary 

Professional School 

School School Correct 

Vientiane City Mall Mall Correct 

Vanke Golden Mile Plaza Mall Mall Correct 

Vanke Golden Mile Blue Bay Residential district Residential district Correct 

Qinzao New Village Residential district Residential district Correct 

Yiju Beiyuan Residential district Residential district Correct 

Jinyue Bay Residential district Residential district Correct 

Shang Haicheng Residential district Residential district Correct 

Sixth People's Hospital Hospital School Error 

Starry Washington Residential district Residential district Correct 

 

The main reasons for the incorrect cases are as follows: 

1. Mutual interference between different types of AOIs 

AOIs are in fact on different levels. For example, hospitals can be divided into several levels. The 

higher the level, the greater the influence. If there is a significant level difference between two 

adjacent AOIs, it may result in the unclear attribution of the surrounding trajectory data. For example, 

Nantong First People's Hospital and Nantong First Middle School are adjacent, as shown in Figure 

17, but the influence of the First People's Hospital is much stronger than that of the First Middle 

School. Hence, most of the trajectory data near the school were allocated to the hospital, meaning that 

the spectral information was not typical. In this case, we can consider accumulating data for an 

extended period and extracting data with a small buffer area for big data analysis, which is one of 

the research plans for the future. 
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Figure 17. Mutual interference between adjacent AOIs. 

2. AOIs are newly built or have an abnormal status  

Exploring the correlation between AOIs and travel behavior requires a series of data points. 

Some buildings or residential districts are newly built or may not be open to the public, as shown in 

Figure 18. Due to the low occupancy rate, the number of drop-off points is insufficient to support the 

analysis of the spectrum. The entrance of the individual AOIs may need to rebuilt, which could also 

result in an abnormal status. 

 

 

 

Figure 18. The AOI with an abnormal status. 

3. Impact of the spatial location 

Theoretically, the closer to the center of the city, the more prosperous, and the stronger the 

regularity. On the contrary, when close to the edge of the city, the regularity is weakened. 
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5. Conclusions 

A top-down supervised classification method has been proposed in this article using dynamic 

taxi pick-up and drop-off points to identify the social functional types of AOIs, so as to support the 

identification of urban functional partitions. Firstly, taxi trajectory data were used to replace the 

evaluation index of human travel behavior, and the relationship between the social function of AOIs 

and travel behavior was established. There was a strong correlation between these two things, and 

SHDS was obtained through the AOI samples. Then, using multiple SHDS and KNN methods, 

automatic identification and monitoring of the social function of AOIs were implemented. Finally, 

the experimental accuracy, which was up to 90.74%, was verified by various methods. Due to the 

continuous collection of taxi GPS trajectory data in many cities, this solution will serve as an effective 

long-term solution. Meanwhile, if this method is combined with image interpretation and other 

identification methods, better results can be achieved. Compared with cities such as Shanghai or 

Guangzhou, Nantong has a smaller population in its main urban area, meaning Nantong is a small 

city and the types of AOIs are not rich enough. If the experiment is able to be carried out in a big city, 

it may achieve better results. Because most AOIs in China, such as buildings and residential districts, 

are enclosed by walls and are only accessible via one or more entrances, this method is more suitable 

for most cities in China rather than those in other countries with an open management mode. 
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