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Abstract: Negative binomial (NB) regression model has been used to analyze crime in previous 
studies. The disadvantage of the NB model is that it cannot deal with spatial effects. Therefore, 
spatial regression models, such as the geographically weighted Poisson regression (GWPR) model, 
were introduced to address spatial heterogeneity in crime analysis. However, GWPR could not 
account for overdispersion, which is commonly observed in crime data. The geographically 
weighted negative binomial model (GWNBR) was adopted to address spatial heterogeneity and 
overdispersion simultaneously in crime analysis, based on a 3-year data set collected from ZG city, 
China, in this study. The count of residential burglaries was used as the dependent variable to 
calibrate the above models, and the results revealed that the GWPR and GWNBR models performed 
better than NB for reducing spatial dependency in the model residuals. GWNBR outperformed 
GWPR for incorporating overdispersion. Therefore, GWNBR was proven to be a promising tool for 
crime modeling. 

Keywords: residential burglary; spatial heterogeneity; overdispersion; geographically weighted 
Poisson regression; geographically weighted negative binomial regression 

 

1. Introduction 

Due to the disparities of built environments and socio-demographic factors, the uneven 
distribution of crime across different neighborhoods has long been confirmed by many studies [1–4]. 
Previous researchers have found that the vast majority of crimes are committed in a few specific 
locations [5]. Among the many theories of crime geography, routine activity theory, and crime pattern 
theory are usually employed to explain the spatial agglomeration of criminal activity. 

Routine activity theory proposed by Cohen and Felson is a theoretical framework commonly 
used in crime analysis [6], which states that the convergence of a motivated offender, a vulnerable 
victim, and a crime-prone place will lead to criminal offenses. Routine activity theory suggests that 
certain places are more likely to be criminal victimizations, such as bars, schools, and gas stations. 
Proposed by Brantingham and Brantingham [7], crime pattern theory argues that crime is not 
randomly distributed over space and time, but presents a specific pattern of places where the 
intersection of offenders and victims are more vulnerable to crime. The above two theories effectively 
explain why crime is spatially concentrated and form ‘hot spots’ of criminal offenses. 

Social disorganization theory has been widely used to explore the relationship between crime 
and related neighborhood characteristics [8]. One of the premises of social disorganization theory is 
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that the crime rate of disadvantageous communities is higher than others, which has been supported 
by many empirical studies [9]. Statistical techniques have been used to quantitatively investigate the 
relationship between crime and influencing factors, such as ordinary least squares (OLS) [10,11]. 
Crime research usually takes the number of crimes as a dependent variable, which is discrete, 
whereas the OLS model assumes that the dependent variable should be continuous. Therefore, the 
Poisson and negative binomial regression models have been adopted for crime modeling [12–15]. 

The above-mentioned techniques are all global regression methods, which assume that the 
connections between crime and related factors are constant across the space, whereas this is not 
always true [16]. Due to the inherently stochastic nature of crimes and the complex environments in 
which they occur, it is unrealistic to describe the influence of the risk factors on crime with a constant 
relationship. Many methodologies have been proposed to analyze the spatially varying relationships 
between crime and its related risk factors, such as geographically weighted regression models [17,18], 
the eigenvector spatial filtering model [19–21], and the Bayesian spatially varying coefficients model, 
etc. [22,23].  

Among these models, the geographically weighted regression (GWR) has been widely applied 
due to its simple conceptual framework and convenience of interpretation when it comes to spatial 
heterogeneity modeling for crime [17]. According to the type of response variable, GWR has evolved 
into different versions, such as geographic weight Gaussian regression, geographic weight Poisson 
regression (GWPR), and geographic weight logistic regression (GWLR). Crime data are usually 
reported in the form of the number of criminal cases, which can be used as the response variable 
without any transformation in the GWPR model [24,25]. 

Crime rate and the number of crimes is usually used as a dependent variable in crime analysis 
due to the complexity of crime patterns. Overdispersion is another issue to be resolved in crime 
modeling when the dependent variable is a count [26,27]. Statistically speaking, overdispersion 
means that there are more variations in the data than predicted. Count data are very popular in crime 
research, while overdispersion is a difficulty in analyzing such data. Failure to address the 
overdispersion properly will lead to the underestimation of standard errors and misleading inference 
for the coefficients [28]. Although the negative binomial model (NB) has been adopted to address 
overdispersion as an alternative to the Poisson regression model in crime analysis [29–31], it fails to 
deal with spatial heterogeneity. 

Although there are some studies that have indicated that it is necessary to model spatial 
heterogeneity and overdispersion simultaneously [32,33], empirical research integrating 
overdispersion into spatial heterogeneity has not been fully explored in crime analysis. This study is 
intended to fill this gap by modeling spatial heterogeneity in crimes incorporating overdispersion. 
As in the rest of the world, residential burglary is the most frequent crime in China, which is perhaps 
the most analyzed crime spatially across the globe. Therefore, residential burglary was selected as an 
example in this study. 

2. Data and Methods  

2.1. Study Area 

With the development of the economy, the crime situation in China is becoming increasingly 
serious. Residential burglary is the largest crime type in China, and there are more than 1 million 
burglaries each year [34]. This research was carried out in, Z.G.; which is the largest city in the 
southeast of China. It is one of the most crowded cities in China and the population of ZG is about 
14.9 million in 2018, which is a 3rd of the whole country. Since the reform and open policy changes 
in the 1980s, the economy of ZG city has made rapid developments due to the advantages of 
geographical location. In 2018, the per capita GDP (Gross Domestic Product) of ZG was 22,167 US 
dollars, and it has become one of the 5 richest cities in China. 
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2.2. Data 

The data used in this research were collected from, Z.G.; China. The crime data were provided 
by the ZG Municipal Public Security Bureau. There were more than 150,000 residential burglary 
records during the period of 2013–2015. The demographic and socioeconomic data were obtained 
from the ZG Statistical Yearbook published by the ZG Statistics Bureau. The number of bus stops was 
collected from the geographical information system of ZG city. 

Different zone systems have been used in crime analysis, such as states, counties, cities, block 
groups, and census tracts. A police station is the most grass-roots law enforcement agency in China. 
The whole city was divided into many areas that were called police station management areas 
(PSMA) according to the location of each police station. All policing policies are carried out through 
the police stations in China. Compared with other units, PSMA can be easily integrated with the 
safety planning process. Therefore, PSMA was selected as the spatial unit in this study, and all data 
were aggregated at the PSMA-level. There were 215 PSMAs in ZG city. The number of residential 
burglaries in each PSMA varied from 9 to 3547, as shown in Figure 1. 

 
Figure 1. Spatial distribution of residential burglary in 2013–2015. 

Following previous studies [24,25,35–37], the variables selected for this research are shown in 
Table 1, as well as their descriptive statistics. The number of burglaries was adopted as the dependent 
variable in this study. The number of household units was selected as the exposure variable. The 
explanatory variables, which were commonly used in previous crime research, were selected 
according to the literature [38–41]. In order to prevent multi-collinearity between variables, to ensure 
a significant impact on the results of the model, a bivariate correlation test should be conducted before 
further analyses. The results are shown in Table 2. All the correlation coefficients were less than 0.7, 
which indicated that there was no strong correlation between explanatory variables. 
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Table 1. Summary of variable and descriptive statistics. 

Variables Definition Mean Min Max STD 
Dependent variable      

Residential burglaries Total number of residential burglaries per police station management areas (PSMA) 698.2 9 3547 668.17 
Explanatory variable      

House area Percent of household with house area equal to or greater than 120 m2 (%) 21.865 0 72.3 16.502 
Renter Percent of people who pay rent for the use of a room (%) 29.02 0.2 87.7 21.655 
Over60 Percent of people over 60 years of age (%) 9.483 0.3 19.3 4.282 

Bus stop density Number of bus stop/area  4.343 0 18.71 4.128 
Floating population  Percent of floating population from another province (%) 21.695 0.462 73.617 15.795 

Table 2. The results of the bivariate correlation test. 

 House Area Renter Over 60 Bus Stop Density Floating Population  

House area 1     

Renter −0.54 ** 1    

Over60 −0.142 −0.447 ** 1   

Bus stop density −0.483 ** 0.17 * 0.393 ** 1  

Floating population  −0.113 0.667 ** −0.623 ** −0.204 ** 1 
Note:   ** for significant at 0.01 confidence level and * for significant at 0.05 confidence level
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2.3. Methodology 

Although there are different methodologies to deal with spatial heterogeneity, GWR has been 
widely used for its convenience. The methodology adopted in this research was based on GWR. In 
order to compare the model performance, 4 models were developed in this study and are described 
briefly in this section. 

2.3.1. Negative Binomial Model (NB) 

The normal distribution of dependent variables is one of the basic assumptions of traditional 
linear regression models; however, this hypothesis is usually not met in practice. For example, when 
the number of crimes was adopted as the dependent variable, the distribution no longer presented 
as a normal distribution but as a Poisson or negative binomial distribution [42,43]. Then the 
generalized linear models, such as the Poisson regression model, were employed alternatively. The 
Poisson regression model is usually employed when the dependent variable is count data. However, 
the assumption of the Poisson model is that the mean is equal to the variance, which is often violated 
in crime data. Therefore, the negative binomial model is often used instead, to account for the 
overdispersion. 𝑦 ~𝑁𝐵 𝑡 𝑒𝑥𝑝 𝛽 𝑥 ,𝛼  (1) 

where 𝑁𝐵 stands for negative binominal, 𝑦  is the number of residential burglaries in the 𝑖th (𝑖 =1, … ,𝑛) PSMA, 𝑥  is the kth explanatory variable for PSMA 𝑖, β (k = 0,1, … , p) are the coefficients, 𝑡  is the number of household units in PSMA 𝑖, which is the offset variable, and 𝛼 is the parameter 
of overdispersion. 

2.3.2. Geographically Weighted Poisson Model (GWPR) 

The Poisson regression model was extended to geographically weighted Poisson regression 
(GWPR) when the geographical coordinates of observations were incorporated into the modeling 
process. The geographically weighted Poisson model was an extension of GWR under the context of 
generalized linear models, while the dependent variable was count data. The framework of GWPR is 
described as follows: 𝑦 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑡 𝑒𝑥𝑝 𝛽 𝑢 , 𝑣 𝑥  (2) 

where (𝑢 , 𝑣 )  are the geographical coordinates of the centroid of PSMA 𝑖 , and β (𝑢 , 𝑣 ) is the 
function of the centroid of PSMA 𝑖, which could be calculated by:  β(𝑢 , 𝑣 )  = (X W(𝑢 , 𝑣 )X) X W(𝑢 , 𝑣 )Y (3) 

where β(𝑢 , 𝑣 ) is the vector of the local parameters in PSMA 𝑖, and W(𝑢 , 𝑣 ) is the spatial weight 
matrix, which can be presented as: 

W(𝑢 , 𝑣 ) = w 0 …0 w …… … … 00…0 … … w  (4) 

where w  is the weight given to PSMA 𝑗 during the calibrating procedure for PSMA 𝑖. 
2.3.3. Geographically Weighted Negative Binomial Model (GWNBR) 

GWPR has been employed to explore the relationship between crime and related risk factors 
when the response variable was the number of crimes [24]. As Xu and Huang indicated, using GWPR 
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to model count data was only a temporary solution, which was mainly restricted by the available 
software GWR4 [44]. GWR4 was developed by Nakaya et al. [45] to model spatial heterogeneity, 
which did not provide the calibration of GWR with a negative binomial structure. In order to 
overcome this disadvantage, the geographically weighted negative binomial regression model 
(GWNBR) should be used, which can model spatial heterogeneity and overdispersion 
simultaneously [33]. The GWNBR model can be described as follows: 

𝑦 ~𝑁𝐵 𝑡 𝑒𝑥𝑝 𝛽 (𝑢 , 𝑣 )𝑥 ,𝛼(𝑢 , 𝑣 )  (5) 

where 𝑡  is an offset variable, which is the number of house units, 𝛽  is the coefficient for the 
explanatory variable 𝑥 , for 𝑘 = 1, …𝑛, 𝑦  is the number of residential burglaries in the 𝑖𝑡ℎ PSMA, 
and 𝛼 is the parameter of overdispersion. 

A modified iteratively reweighted least squares (IRLS) method and a Newton–Raphson (NR) 
algorithm were used alternately to estimate 𝛽 (𝑢 , 𝑣 )  and 𝛼(𝑢 , 𝑣 ),  according to Silva and 
Rodrigues [33]. 

The basic idea of GWR was derived from the first law of geography [46], which indicates that 
observations near location 𝑖 have more influence on the estimation of 𝛽 (𝑢 , 𝑣 ) than observations 
located further away. A kernel function can effectively represent the magnitude of the influence, and 
bi-square is one of the most frequently used kernel functions and is used in this study: 

Bi-square: 

 w = 1 − db ( )   if d <  b ( )             0          otherwise  (6) 

where d  is the distance between PSMA 𝑖 and PSMA 𝑗, and b ( ) is the adaptive bandwidth. 
Bandwidth has an important influence on parameter estimation. Corrected Akaike information 

criterion (AICc) and cross-validation (CV) are two commonly used methods to determine the optimal 
bandwidth, which are described as follows: 𝐴𝐼𝐶𝑐 = −2𝐿(β,α) + 2𝑘 + 2𝑘(𝑘 + 1)𝑛 − 𝑘 − 1  (7) 

where 𝐿(β,α) is the log-likelihood of GWNBR and 𝑘 is the effective number of parameters. The 𝑘 
of GWNBR should be recorded as 𝑘 = 𝑘 + 𝑘 , where 𝑘  and 𝑘  are the effective number of 
parameters of β and α. Depending on whether the overdispersion parameter 𝛼 varies over space, 
the GWNBR model can evolve into 2 models. The one with spatially various α is called local GWNBR, 
and the other, with the same α across the whole research area, is called global GWNBR. The 𝑘  for 
the global GWNBR is 1 and 𝑘  for the local GWNBR has been difficult to estimate until today. 
Therefore, the optimal bandwidth of local GWNBR should be estimated by CV: 

CV = [𝑦 − 𝑦 (𝑏)]  (8) 

where 𝑏 is the bandwidth and 𝑦 (𝑏) is the estimation for point 𝑗. 
The root mean squared error (RMSE) is another criterion to evaluate the performance of models, 

which can be presented as: RMSE = 1𝑛 (𝑦 − 𝑦 )  (9) 

where 𝑦  is the observed number of residential burglaries, 𝑦  is the predicted number of residential 
burglaries, and 𝑛 is the number of PSMAs. 
  



ISPRS Int. J. Geo-Inf. 2020, 9, 60 7 of 15 

 

3. Results and Discussion 

The count data models were selected in this study since the dependent variable was the number 
of crimes, which usually presents a skew distribution. Furthermore, this study tries to incorporate 
overdispersion into a geographically weighted regression model in order to analyze the effect of 
overdispersion on the non-stationary modeling of crime. Four models were developed to investigate 
the effect of overdispersion on crime analyses based on the above-mentioned methodology, including 
the negative binomial model (NB), geographically weighted Poisson regression model (GWPR), 
geographically weighted negative binomial regression model with local alpha (local GWNBR), and 
geographically weighted negative binomial regression model with global alpha (global GWNBR).  

The above-mentioned models were calibrated using SAS® software macros developed by Silva 
and Rodrigues [33]. The optimum bandwidth for GWPR and global GWNBR were obtained by 
minimizing the AICc. Since it was impossible to estimate the AICc for local GWNBR, the CV was 
chosen to determine the optimum bandwidth. 

3.1. Model Performance Comparison 

Three criteria were adopted to compare the performance of the aforementioned four models, 
including root mean squared error (RMSE), log-likelihood (LL), and correct Akaike information 
criterion (AICc). The lower the RMSE and AICc of the model, the better the performance of the model. 
Models with higher LL values are advantageous over others. The results are shown in Table 3. The 
NB model had the highest RMSE, followed by the global GWNBR, local GWNBR, and GWPR models. 
It is obvious that the three spatial models outperform the non-spatial model. For the three spatial 
models, one possible reason to explain why the GWPR outperforms the two GWNBR models, with 
lower RMSE and higher, L.L.; is that the former had the smallest bandwidth. With regard to the AICc, 
The GWPR had the worst adjustment, followed by NB and the global GWNBR model. The possible 
reason is that the two later models incorporate overdispersion. 

Table 3. Adjustment measurements for models. 

 Bandwidth RMSE 2LL AICc 
NB --- 423.53 −1489.195 2992.389 

GWPR 6.334 326.49 −1396.358 3217.286 
global GWNBR 20.603 378.8 −1458.856 2954.412 
local GWNBR 12.469 351.43 −1434.415 --- 

Table 4 presents the Moran’s I statistics and the corresponding p-value for the four models’ 
residuals. First of all, the Moran’s I value decreased considerably after incorporating spatial effects 
and overdispersion in the data. Second, it should be noted that the spatial dependency becomes 
insignificant in the two GWNBR models, which indicates that the spatial autocorrelation between the 
models’ residuals can be effectively explained by the overdispersion and spatial heterogeneity. 

Table 4. Moran’s I statistics for model residuals. 

Model Moran’s I p-Value 
NB 0.054 0.000 

GWPR −0.028 0.000 
global GWNBR 0.012 0.070 
local GWNBR 0.004 0.829 

With the combination of Tables 3 and 4, we can assess the relationship between model fit and 
spatial autocorrelation in the model residuals. The two GWNBR models yielded insignificant 
Moran’s I statistics with a moderate RMSE, which was lower than for NB. While the GWPR had the 
lowest RMSE, it could not solve the spatial dependency efficiently. This indicated that the spatial 
effect, especially spatial dependency, may not be directly related to the predictive ability of a model. 
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A model with strong predictive power does not guarantee that it is unbiased spatially. A spatial 
model that produces a spatial non-biased estimate may be at the expense of its predictive power. 

3.2. Parameters Estimation 

The results of the coefficient estimate are presented in Table 5. The means of the coefficients in 
the global model (NB) are provided, as well as the descriptive statistics of coefficients estimated by 
local models (GWPR, global GWNBR, and local GWNBR) including the minimum and maximum of 
values, the lower quartile, the upper quartile, and the median values. 

The coefficients of GWPR, local GWNBR, and global GWNBR models vary spatially, while the 
parameters of the NB model are unique in the study area. With regard to the sign of the coefficients’ 
mean value, there is only one variable, Over60 (percent of people over 60 years of age (%)), that has 
a negative impact on residential burglary in the NB model, as well as the local GWNBR and global 
GWNBR models, whereas there are three variables that have a negative impact in GWPR. 

With regard to the magnitude of coefficients, the parameters estimated by local GWNBR and 
global GWNBR models were closer to NB than GWPR. The range of coefficient variation was 
considerably wider for the GWPR model than for the local GWNBR and global GWNBR models, 
which may be partly explained by the fact that the GWPR model did not take into account the 
overdispersion of the data. 

There are several local parameters varying from negative to positive in the local models, which 
is not in conformity with our common sense. For example, the floating population has been reported 
to have a significantly positive impact on residential burglaries in previous studies [25,47,48], which 
means that PSMAs with fewer floating populations were safer. Nevertheless, the coefficients of the 
floating population in some PSMAs are negative in this research. The counterintuitive sign problem 
was very popular in modeling with local models, such as GWR and GWPR [24,44,49]. One possible 
reason for this problem was the multi-collinearity among the explanatory variables. In order to 
quantify the extent of multicollinearity, a bivariate correlation test was conducted, and the results are 
presented in Table 2. The maximum value of the correlation coefficient was 0.667 between the floating 
populations and renters, which implied that there were no highly correlated explanatory variables in 
the models. 

On the other hand, overdispersion in the data may be an important explanation for the unexpected 
parameter signs, as previous researchers reported [32,44]. For instance, the bus stop density was proven 
to have a positive impact on residential burglaries [50–52], as well in our local GWNBR and global 
GWNBR models, while the same coefficient estimated by GWPR varied from negative to positive. Not 
considering overdispersion in GWPR may be the reason for this phenomenon. 

3.3. Spatial Analyses of the Coefficients 

The spatial distribution of all coefficients estimated by the above local models is presented in 
Figures 2–4, respectively, and the spatial patterns corresponding to them were investigated 
subsequently. 
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Table 5. The estimated results of the different models. 

Variable NB 
GWPR Global GWNBR Local GWNBR 

Mean Min Lwr Median Upr Max Mean Min Lwr Med Upr Max Mean Min Lwr Med Upr Max 
Intercept −4.421 3.684 −4.467 3.236 4.012 4.688 11.429 −4.266 −5.547 −4.359 −4.165 −4.086 −3.281 −4.176 −6.52 −4.341 −4.183 −4.034 0.505 

House area 0.024 −0.003 −0.022 −0.018 −0.006 0.009 0.074 0.022 0.005 0.017 0.021 0.027 0.039 0.018 −0.045 0.01 0.016 0.024 0.045 
Renter 0.006 −0.015 −1.017 −0.009 −0.006 0.005 0.122 0.006 −0.008 0.004 0.006 0.009 0.015 0.003 −0.141 0.002 0.004 0.009 0.019 
Over60 −0.03 −0.037 −0.572 −0.08 −0.043 −0.009 0.354 −0.027 −0.112 −0.034 −0.024 −0.02 0.033 −0.029 −0.306 −0.05 −0.015 −0.009 0.111 

Bus stop density 0.059 0.055 −0.039 0.021 0.033 0.071 0.654 0.041 0.019 0.023 0.032 0.051 0.148 0.043 0.007 0.011 0.027 0.063 0.373 
Floating Pop 0.015 0.02 −0.446 0.017 0.033 0.045 0.196 0.013 −0.024 0.01 0.014 0.016 0.024 0.013 −0.107 0.008 0.019 0.023 0.027 

 
Figure 2. The spatial distribution of geographically weighted Poisson (GWPR) coefficients. 
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Figure 3. The spatial distribution of global geographically weighted negative binomial regression model (GWNBR) coefficients. 

 
Figure 4. The spatial distribution of local GWNBR coefficients. 
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There are several spatial patterns that should be noted here. First, given the fact that GWPR was 
the model with the smallest bandwidth, the coefficients of local GWNBR and global GWNBR were 
more smooth than GWPR. Second, it seems that the magnitudes of the local coefficients estimated in 
local GWNBR and global GWNBR shrank towards the range of coefficients of the same variable in 
the GWPR.  

The spatial distribution of the overdispersion parameter for the local GWNBR model is 
presented in Figure 5. It can be found that the lower values of α are located in the downtown areas, 
and these values increased from the urban areas to the suburbs. The overdispersion parameters are 
significant at a 90% level in more than eighty percent of PSMAs, which indicates the necessity of 
using the local GWNBR model. 

 
Figure 5. The spatial distribution of overdispersion parameter alpha. 

Given the fact that the two GWNBR models are similar, and outperform the NB and GWPR 
model, we selected the global GWNBR model to interpret our results. The developed model can also 
be effectively justified by a good interpretation of the parameter estimation.  

The house area was adopted as attractiveness for offenders in this research. A higher frequency 
of large houses resulted in more targets for criminals to choose from. The house area was identified 
as a significant positive factor in residential burglaries in previous studies [24]. The coefficient signs 
of the house area in most PSMAs were positive, which indicated that the increase of big houses 
increased the residential burglary frequency. There were only 9 PSMAs with negative signs in GWPR 
followed by 4 in the local GWNBR, and 0 in the global GWNBR. The west of the city is an economic 
and technological development zone, where the house area has the greatest impact on crime. 
However, we know that this is a trade-off as larger houses may have better security and be harder to 
burgle. Burglars may give up stealing from big houses at the risk of being arrested according to 
rational choice theory. Additional variables should be added in future research to capture the 
variations. 

The number of renters was positively related to the number of residential burglaries in the NB 
model, which suggested that more renters in a PSMA could result in more residential burglaries. The 
coefficients of the three local models were positive except for a few PSMAs. Renters have been 
reported as an important risk factor related to crime in previous studies due to high mobility [25]. 
According to the social disorganization theory, the increase of resident mobility will lead to more 
crimes [8]. This may be explained by the fact that house owners were more concerned about the 
security of the community than renters. When there was a potential security risk, house owners were 
more likely to try to solve the problem, while renters often moved away instead. 

Elderly people are well-known as an important informal guardianship in crime literature [53], 
which meant that an area with more people over the age of 60 was expected to have fewer residential 
burglaries. In this research, Over60 was found to be associated with residential burglaries negatively 
in most of the PSMAs, except for 12. After checking the local t-statistics, we found that none of the 12 
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were significant at the 95% confidence level. As shown in Figures 2–4, from a spatial perspective, the 
impact of Over60 on residential burglaries was greater in the suburbs compared to the urban areas. 
This may be due to the difference between the physical features of urban and rural areas. In the city 
center, people live in high buildings that are excluded from monitoring activities, which reduce 
natural surveillance. 

Bus stop density is positively related to the residential burglary frequency in global GWNBR, as 
in the NB model, suggesting that more bus stops in a PSMA could lead to more residential burglaries. 
There was no consensus on the impact of accessibility on burglary. Some studies indicated that 
accessibility was negatively associated with burglary [54,55], while some others found that areas with 
better accessibility could result in more burglaries [56,57], which was similar to this study. As shown 
in Figures 2–4, the bus stop density had a greater impact in the suburbs. Public transit is the major 
travel method in China and also for the offenders. There are many options for public transportation 
in urban areas, such as subway, bus, taxi, tramcar, shared bicycle, etc., while buses are almost the 
only means of public transport in the suburbs. Routine activity theory claimed that “illegal activities 
feed upon the legal activities of everyday life”. Public transport is an important way to travel in 
China, thus bus stops are an important node of daily activities. Therefore, it is not surprising that bus 
stops have a positive impact on residential burglary. 

Floating populations were special groups in the process of social development in China. 
Previous studies found that floating populations were positively related to crime [47,48]. The 
coefficient of the floating population was negative in 7 out of 215 PSMAs. The investigation of the 
local t-statistics indicated that these 7 PSMAs with negative parameters were not significant. 
According to the social disorganization theory, informal social control helped to prevent crime, while 
excessive residential mobility was not conducive to informal social regulation. A high proportion of 
floating populations would lead to more crimes, which has been confirmed in this study. 

3.4. Limitations 

Although the results of the current study support that GWNBR is a promising tool for crime 
analysis, we cannot forget that this methodology is only applicable to modeling spatial count data 
with significant overdispersion. One limitation of this study is that only residential burglary was 
examined. However, overdispersion has been found in different types of crime, thus this method 
should be applicable to other crime types. Additionally, only a single Chinese city was investigated. 
There were great disparities in geographical context between cities or countries. Therefore, further 
studies should be conducted in different cities and countries and with multiple types of crime to 
justify the benefit of the proposed models. Nonetheless, previous studies have confirmed that models 
based the crime pattern theories and routine activity theories were generally applicable in Chinese 
cities. Furthermore, any research based on spatial units could not avoid the modifiable area unit 
problem (MAUP), which has also attracted the attention of criminologists [58,59]. Multi-scale analysis 
is considered to be an effective method to solve the MAUP [60,61]. However, limited by the data, this 
study cannot carry out sensitivity analysis for the scale effect and zoning effect, which should be 
implemented in the future. 

4. Conclusions 

Models for crime analysis have been widely applied. Geographically weighted regression has 
been proven to be a powerful methodology for crime modeling, which could capture spatial 
heterogeneity in crime data. However, there are many issues that have remained unresolved to date, 
one of which is overdispersion. Therefore, this study mainly focused on the possibility of the 
integration of spatial heterogeneity and overdispersion in crime modeling. For this purpose, the 
geographically weighted negative binomial model (GWNBR) was introduced to accommodate 
spatial heterogeneity and overdispersion simultaneously. A comparison was conducted between 
four models including the negative binomial model (NB), geographically weighted Poisson model 
(GWPR), local geographically weighted negative binomial model (local GWNBR), and global 
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geographically weighted negative binomial model (global GWNBR), based on a case study in, Z.G.; 
China. 

In conclusion, the results of this study proved that incorporating overdispersion into spatial 
heterogeneity could improve the performance of crime modeling. Compared with local GWNBR and 
global GWNBR, the coefficients of GWPR are more heterogeneous, which may be due to the fact that 
it does not incorporate the overdispersion of crime data. Another consequence is that the bandwidth 
of GWPR is the smallest of the three local models, which makes its coefficient surface appear to be 
sharp. Although GWPR has achieved the best performance for RMSE, it could not eliminate spatial 
autocorrelation in the model residuals. In addition, the two GWNBR models can resolve spatial 
heterogeneity and spatial dependence at the same time by incorporating overdispersion.  

The coefficients were estimated by the GWNBR model for each PSMA. Then, the crime 
prediction model could be developed for each PSMA. These crime prediction models can be used to 
evaluate the daily safety situation and forecast the number of crimes in the future. These models can 
also be used to assess the effectiveness of current policing policies or countermeasures applied in 
particular PSMAs. 

Author Contributions: Conceptualization, J.C. and L.L.; methodology, J.C.; software, L.X., C.X.; formal analysis, 
J.C., L.X. and L.L.; writing—original draft preparation, J.C., L.X., C.X., and D.L.; writing—review and editing, 
D.L.; supervision, L.L.; project administration, L.L.; funding acquisition, L.L. All authors have read and agreed 
to the published version of the manuscript. 

Funding: This research was funded by the National Key RandD Program of China (Grant No. 2018YFB0505500, 
2018YFB0505505), National Natural Science Foundation of China (Grant No. 41531178, 41901172, 41601138). 

Acknowledgments: The authors would like to thank three anonymous reviewers for their valuable suggestions 
and comments. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Uittenbogaard, A.; Ceccato, V. Space-time Clusters of Crime in Stockholm, Sweden. Rev. Eur. Stud. 2012, 4, 
148–156. 

2. Zhang, C.; Peterson, M. A spatial analysis of neighborhood crime in Omaha, Nebraska using alternative 
measures of crime rates. Int. J. Criminol. 2007, 31, 1–28.  

3. Breetzke, G.D. Modeling violent crime rates: A test of social disorganization in the city of Tshwane, South 
Africa. J Crim. Justice 2010, 38, 446–452. 

4. Melo, S.N.D.; Andresen, M.A.; Matias, L.F. Geography of crime in a Brazilian context: An application of 
social disorganization theory. Urban Geogr. 2017, 38, 1550–1572. 

5. Shi, S.; Dong, Y.; Song, L. A spatio-temporal analysis of urban crime in Beijing: Based on data for property 
crime. Urban Stud. 2015, 53, 3223–3245.  

6. Cohen, L.E.; Felson, M. Social change and crime rate trends: A routine activity approach. Am. Sociol. Rev. 
1979, 44, 588–608. 

7. Brantingham, P.; Brantingham, P. Crime pattern theory. Environ. Criminol. Crime Anal. 2013, 78–93, 
doi:10.4324/9780203118214. 

8. Shaw, C.R.; Mckay, H.D. Juvenile delinquency and urban areas. Soc. Serv. Rev. 1942, 35, 394. 
9. Liu, H.; Zhu, X. Exploring the Influence of Neighborhood Characteristics on Burglary Risks: A Bayesian 

Random Effects Modeling Approach. ISPRS Int. J. Geo Inf. 2016, 5, 102. 
10. Warner, B.D.; Pierce, G.L. Reexamining Social Disorganization Theory Using Calls to the Police as a 

measure of crime*. Criminology 1993, 31, 493–517. 
11. Grubesic, T.H.; Mack, E.A.; Kaylen, M.T. Comparative modeling approaches for understanding urban 

violence. Soc. Sci. Res. 2012, 41, 92–109. 
12. Paternoster, R.; Brame, R.; Bachman, R.; Sherman, L.W. Do fair procedures matter? The effect of procedural 

justice on spouse assault. Law Soc. Rev. 1997, 31, 163–204. 
13. Song, G.; Liu, L.; Bernasco, W.; Zhou, S.; Xiao, L.; Long, D. Theft from the person in urban China: Assessing 

the diurnal effects of opportunity and social ecology. Habitat Int. 2018, 78, 13–20. 
14. Zhou, H.; Liu, L.; Lan, M.; Yang, B.; Wang, Z. Assessing the Impact of Nightlight Gradients on Street 



ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 14 of 15 

 

Robbery and Burglary in Cincinnati of Ohio State, USA. Remote Sens. 2019, 11, 1958. 
15. Lan, M.; Liu, L.; Hernandez, A.; Liu, W.; Zhou, H.; Wang, Z. The Spillover Effect of Geotagged Tweets as a 

Measure of Ambient Population for Theft Crime. Sustainability 2019, 11, 6748. 
16. Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for 

Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28, 281–298. 
17. Murillo, F.H.S.; Chica-Olmo, J. The spatial heterogeneity of factors of feminicide: The case of Antioquia-

Colombia. Appl. Geogr. 2018, 92, 63–73. 
18. Zhang, H.; Mccord, E.S. A spatial analysis of the impact of housing foreclosures on residential burglary. 

Appl. Geogr. 2014, 54, 27–34. 
19. Mburu, L.W.; Helbich, M. Crime Risk Estimation with a Commuter-Harmonized Ambient Population. Ann. 

Assoc. Am. Geogr. 2016, 106, 804–818. 
20. Helbich, M.; Arsanjani, J.J. Spatial eigenvector filtering for spatiotemporal crime mapping and spatial crime 

analysis. Cartogr. Geogr. Inf. Sci. 2015, 42, 134–148. 
21. Chun, Y. Analyzing space–time crime incidents using eigenvector spatial filtering: An application to 

vehicle burglary. Geogr. Anal. 2014, 46, 165–184. 
22. Law, J.; Quick, M. Exploring links between juvenile offenders and social disorganization at a large map 

scale: A Bayesian spatial modeling approach. J. Geogr. Syst. 2013, 15, 89–113. 
23. Law, J. Bayesian Spatial Random Effect Modelling for Analysing Burglary Risks Controlling for Offender, 

Socioeconomic, and Unknown Risk Factors. Appl. Spat. Anal. Policy 2012, 5, 73–96. 
24. Chen, J.; Liu, L.; Zhou, S.; Xiao, L.; Jiang, C. Spatial variation relationship between floating population and 

residential burglary: A case study from, Z.G.; China. ISPRS Int. J. Geo Inf. 2017, 6, 246. 
25. Chen, J.; Liu, L.; Zhou, S.; Xiao, L.; Song, G.; Ren, F. Modeling spatial effect in residential burglary: A case 

study from ZG city, China. ISPRS Int. J. Geo Inf. 2017, 6, 138. 
26. Park, S.M.; Tark, J.; Cho, Y.I. Victimization immunity and lifestyle: A comparative study of over-dispersed 

burglary victimizations in South Korea and, U.S. Int. J. Law Crime Justice 2016, 45, 44–58. 
27. Hope, T.; Norris, P.A. Heterogeneity in the Frequency Distribution of Crime Victimization. J. Quant. 

Criminol. 2013, 29, 543–578. 
28. Yang, Z.; Hardin, J.W.; Addy, C.L. A score test for overdispersion in Poisson regression based on the 

generalized Poisson-2 model. J. Stat. Plan. Inference 2009, 139, 1514–1521. 
29. Song, G.; Lin, L.; Bernasco, W.; Xiao, L.; Zhou, S.; Liao, W. Testing Indicators of Risk Populations for Theft 

from the Person across Space and Time: The Significance of Mobility and Outdoor Activity. Ann. Am. Assoc. 
Geogr. 2018, 108, 1370–1388. 

30. Berk, R.; MacDonald, J.M. Overdispersion and Poisson regression. J. Quant. Criminol. 2008, 24, 269–284. 
31. Bottcher, J.; Ezell, M.E. Examining the effectiveness of boot camps: A randomized experiment with a long-

term follow up. J Res Crime Delinq 2005, 42, 309–332. 
32. Gomes, M.J.T.L.; Cunto, F.; Silva, A.R. Geographically weighted negative binomial regression applied to 

zonal level safety performance models. Accid. Anal. Prev. 2017, 106, 254. 
33. Da Silva, A.R.; Rodrigues, T.C.V. Geographically weighted negative binomial regression—Incorporating 

overdispersion. Stat. Comput. 2014, 24, 769–783. 
34. CSY. China Statistical Yearbook; China Statistical Publishing House: Beijing, China, 2016. 
35. Sohn, D.W. Residential crimes and neighbourhood built environment: Assessing the effectiveness of crime 

prevention through environmental design (CPTED). Cities 2016, 52, 86–93. 
36. Katz, C.M.; Wallace, D.; Hedberg, E.C. A Longitudinal Assessment of the Impact of Foreclosure on 

Neighborhood Crime. J. Res. Crime Delinq. 2011, 50, 359–389. 
37. Malczewski, J.; Poetz, A. Residential Burglaries and Neighborhood Socioeconomic Context in London, 

Ontario: Global and Local Regression Analysis*. Prof. Geogr. 2005, 57, 516–529. 
38. Ariel, B.; Partridge, H. Predictable Policing: Measuring the Crime Control Benefits of Hotspots Policing at 

Bus Stops. J. Quant. Criminol. 2016, 33, 809–833, doi:10.1007/s10940-016-9312-y. 
39. Hunter, J.; Tseloni, A. Equity, justice and the crime drop: The case of burglary in England and Wales. Crime 

Sci. 2016, 5, 1–13. 
40. Lee, J.; Park, S.; Jung, S. Effect of Crime Prevention through Environmental Design (CPTED) Measures on 

Active Living and Fear of Crime. Sustainability 2016, 8, 872. 
41. Nobles, M.R.; Ward, J.T.; Tillyer, R. The Impact of Neighborhood Context on Spatiotemporal Patterns of 

Burglary. J. Res. Crime Delinq. 2016, 53, 711–740. 



ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 15 of 15 

 

42. Osgood, D.W.; Chambers, J.M. Social Disorganization outside the Metropolis: An analysis of rural youth 
violence*. Criminology 2000, 38, 81–116. 

43. Nagin, D.S.; Land, K.C. Age, Criminal Careers, and Population Heterogeneity: Specification and Estimation 
of a Nonparametric, Mixed Poisson Model*. Criminology 1993, 31, 327–362. 

44. Xu, P.; Huang, H. Modeling crash spatial heterogeneity: Random parameter versus geographically 
weighting. Accid. Anal. Prev. 2015, 75, 16–25. 

45. Nakaya, T.; Charlton, M.; Lewis, P.; Fortheringham, S.; Brunsdon, C. Windows Application for Geographically 
Weighted Regression Modelling: Ritsumeikan University: Kyoto, Japan, 2012. 

46. Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 
234–240. 

47. Curran, D.J. Economic reform, the floating population, and crime: The transformation of social control in 
China. J. Contemp. Crim. Justice 1998, 14, 262–280. 

48. Situ, Y.; Liu, W. Transient population, crime, and solution: The Chinese experience. Int. J. Offender Ther. 
1996, 40, 293–299. 

49. Hadayeghi, A.; Shalaby, A.S.; Persaud, B.N. Development of planning level transportation safety tools 
using Geographically Weighted Poisson Regression. Accid. Anal. Prev. 2010, 42, 676–688. 

50. Kooi, B.R. Assessing the correlation between bus stop densities and residential crime typologies. Crime Prev. 
Commun. Saf. 2013, 15, 81–105. 

51. Beavon, D.J.; Brantingham, P.L.; Brantingham, P.J. The influence of street networks on the patterning of 
property offenses. Crime Prev. Stud. 1994, 2, 115–148. 

52. White, G.F. Neighborhood permeability and burglary rates. Justice Q. 1990, 7, 57–67. 
53. Lee, S. Spatial Analyses of Installation Patterns and Characteristics of Residential Burglar Alarms. J. Appl. 

Secur. Res. 2011, 6, 82–109. 
54. Hillier, B. Can streets be made safe? Urban Des. Int. 2004, 9, 31–45. 
55. Shu, C.F. Housing layout and crime vulnerability. Urban Des. Int. 2000, 5, 177–188. 
56. Lin, L.; Chao, J.; Zhou, S.; Kai, L.; Du, F. Impact of public bus system on spatial burglary patterns in a 

Chinese urban context. Appl. Geogr. 2017, 89, 142–149. 
57. Chang, D. Social crime or spatial crime? Exploring the effects of social, economical, and spatial factors on 

burglary rates. Environ. Behav. 2011, 43, 26–52. 
58. Ratcliffe, J.H.; McCullagh, M.J. Hotbeds of crime and the search for spatial accuracy. J. Geogr. Syst. 1999, 1, 

385–398. 
59. Ratcliffe, J.H. Detecting Spatial Movement of Intra-Region Crime Patterns Over Time. J. Quant. Criminol. 

2005, 21, 103–123. 
60. Hay, G.; Marceau, D.; Dube, P.; Bouchard, A. A multiscale framework for landscape analysis: Object-

specific analysis and upscaling. Landsc. Ecol. 2001, 16, 471–490. 
61. Lechner, A.M.; Langford, W.T.; Jones, S.D.; Bekessy, S.A.; Gordon, A. Investigating species–environment 

relationships at multiple scales: Differentiating between intrinsic scale and the modifiable areal unit 
problem. Ecol. Complex. 2012, 11, 91–102. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


