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Abstract: Soil health plays a major role in the ability of any nation to meet the Sustainable Development
Goals. Understanding the spatial variability of soil health indicators (SHIs) may help decision makers
develop effective policy strategies and make appropriate management decisions. SHIs are often
spatially correlated, and if this is the case, a geostatistical model is required to capture the spatial
interactions and uncertainty. Geostatistical simulation provides equally probable realizations that
can account for uncertainty in the variables. This study used the following SHIs extracted from the
Africa Soil Information Service “Legacy Database” for Nigeria: bulk density, organic matter, and total
nitrogen. Maximum and minimum autocorrelation factors (MAF) and independent component
analysis (ICA) are two techniques that can be used to transform correlated SHIs into uncorrelated
factors/components that can be simulated independently. To confirm spatial orthogonality, the relative
deviation from orthogonality, τ(h), and spatial diagonalization efficiency, k(h), approach 0 and 1 for
both techniques. To validate the performance of each technique, 100 equally probable realizations
were simulated by using MAF and ICA. Direct and cross-variograms showed adequate reproduction,
using E-type, where E was defined as the “conditional expectation” of realizations (i.e., average
estimate of realizations). It should be noted that only direct variograms of MAF and ICA were
independently simulated. The average of 100 back-transformed simulated realizations and randomly
selected realizations compared well with the original variables, in terms of spatial distribution,
correlation, and pattern. Overall, both techniques were able to reproduce important geostatistical
features of the original variables, making them important in joint simulations of spatially correlated
variables in soil management.

Keywords: spatial correlation; soil health indicators; minimum/maximum autocorrelation factors
(MAF); independent component analysis (ICA); spatial uncertainty; best management practices

1. Introduction

Soil health indicators (SHIs) play an important role in sustainable agriculture. Information about
soil health will be relevant to any country aiming to achieve the Sustainable Development Goals,
(SDGs) especially “Zero Hunger” and “Zero Poverty”. Information on soil properties can be used in
water and nutrient management, to support biomass production [1], and contribute to the functioning
of the ecosystem [2]. In other words, the delivery of ecosystem goods and services through sustainable
agriculture practices and management depends on soil resources [3]. Furthermore, soil is directly
linked to the atmosphere, and if agricultural practices are not controlled, the release of trace gases,
such as methane (CH4), carbon dioxide (CO2), and dinitrous oxide (N2O), may be amplified [3].

The United States Department of Agriculture has characterized SHIs into three types: chemical,
physical and biological. Examples of physical, chemical and biological SHIs, respectively, are bulk
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density (BD), organic carbon (OC), and total nitrogen (TN). Due to human factors such as land
management (tillage) and the usage of fertilizer and manure, these SHIs may be correlated. In other
words, locations with high TN may also have high OC (positive correlation), and areas with high soil
compaction may have low OC and TN (negative correlation).

Generally, soil variables are heterogeneous [4] and vary in space and time [5]. As such, it is in the
best interest of decision-makers, scientists and other stakeholders to understand the spatial pattern of
soil characteristics. When developing policies, soil maps are often created and used; however, little
attention has been given to the accuracy of these maps [6]. As reported by Heuvelink and Brown [7],
uncertainty can stem from sources such as measurement error, model ambiguity and vagueness.
In addition, the Food and Agriculture Organization of the United Nations (FAO) [8] has identified four
sources of uncertainty in soil mapping: soil measurement, covariates, models and spatial data. Using
data with high uncertainty for important decision making is ill-advised [9]. Previous research has
characterized the uncertainty of soil mapping by using various techniques at the local, regional and
national scales [10–13]. Therefore, the objective of the current study is not to review these techniques,
as the mathematical and technical aspects of each technique can be found in the cited literature; rather,
the objective of this paper is to apply two robust linear decorrelation transformation methods to
spatally correlated SHIs for geostatistcal simualtion.

To analyze the spatial structure or variability of soil properties, previous studies have used a
variogram [14,15]. A variogram or semi-variogram quantifies the spatial continuity or autocorrelation
of the dataset. This involves calculating half the difference squared among two locations. When this is
plotted (known as an “experimental variogram”), a covariance function (e.g., exponential, spherical,
nugget, circular, etc.) may be fitted to the data to estimate three important parameters: sill (the variance
where the variogram reaches a “plateau”); range (the maximum distance where there is no correlation
in the datasets); and nugget (small variability in the data due to measurement error). A cross-variogram
is required when two variables are correlated.

Joint simulation of spatially correlated SHIs may be applicable in environmental science or
agricultural planning and management, as it can help assess the spatial variability and cross-correlation
of the variables. When performing geostatistical simulations, the correlated variables must be
transformed into a format that renders them uncorrelated [16]. From a field and laboratory measurement
standpoint, chemical and biological soil properties may be expensive and laborious to sample and
analyze and can lead to high levels of uncertainty (due to under-sampling) [17]. This is especially true
when compared with physical properties such as BD, which are generally less expensive to measure
and lead to less uncertainty. The spatial relationships among variables may help reduce the variance of
the estimation error, especially when using interpolation methods such as co-kriging [18,19]. According
to Goovaerts [20], fitting an appropriate linear model of co-regionalization (LMC) would allow the
estimation of the variables. However, this would involve the processing of large nodes, which can
render computation difficult, cumbersome and expensive, especially when there are more than three
variables [21,22]. One plausible solution is to transform the variables into uncorrelated factors that can
be simulated independently [16,23–25].

The linear transformation methods used to generate spatially uncorrelated factors include principal
component analysis (PCA), minimum and maximum autocorrelation factors (MAF), minimum spatial
cross-correlation, uniformly weighted exhaustive diagonalization, and independent component analysis
(ICA). Reviewing these methods is beyond the scope of the current study; however, a description
of several of these important applications can be found in [21,22,24–30]. Two of the aforementioned
techniques—MAF and ICA—were used in the current study. These methods were selected due to their
flexibility in handling geospatial datasets, robust computation, and prior success in using them to
examine spatial structures in environmental datasets [21,22,31,32].

The primary objective of the present study is to compare the ability of the two methods to simulate
three spatially correlated SHIs (i.e., BD, OC, and TN), using an international scale dataset extracted
from the Africa Soil Information Service (AfSIS). The primary objective of AfSIS is to provide digital
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soil maps for Sub-Saharan Africa [33]. Recently, Boluwade [34] used interpolated SHIs from AfSIS for
Nigeria as a basis for the partition of Nigeria’s smallest administrative units into regions that could
be used for planning and sustainable agriculture. However, these maps were developed by using
ordinary kriging (OK), which has a smoothening effect. This study aims to update that work. As per
Boluwade [34], Nigeria was selected as the study area.

The remainder of this paper is arranged as follows. Section 2 describes the SHI dataset used,
as well as the joint simulation methods, including MAF, ICA, and SGS. In Section 3, the results of using
each technique are discussed in relation to various validation methods. Section 4 summarizes the
findings and draws conclusions.

2. Materials and Methods

2.1. Description of the Dataset and Study Area

Nigeria was selected for this study for several reasons. As of 2017, Nigeria had the largest
population in Africa, with more than 190 million people [35]. With an estimated annual population
growth of 2.5%, the country’s population is projected to exceed 400 million in 2050 [36,37].
Smallholder-based agriculture is primarily used in Nigeria, with approximately 50% of the population
employing this method [35]. According to the FAO [38], more than half of the population lives
below the poverty line. With the 2030 SDGs still far out of reach, the country faces an enormous
challenge, and information on soil health management will be paramount to their success in achieving
the goals. The SHIs used in this study (OC, TN, and BD) were extracted from the AfSIS website
(https://www.isric.org/projects/africa-soil-profiles-database-afsp). The AfSIS database is compiled
by the International Soil Reference and Information Centre (ISRIC). ISRIC aims to serve the global
community and raise awareness regarding the importance of soil management [39]. AfSIS compiles
data from two databases: the AfSIS Sentinel Site Database and the African Soil Profile Database (also
known as the “Legacy Database”) [39]. Legacy Database version 1.2 was used in the current study.
According to Leenaars et al. [39], the database has more than 18,532 soil profiles, of which 17,160 are
geo-referenced records covering 40 countries in Sub-Saharan Africa. The dataset covers almost all of
Nigeria in terms of spatial distribution (Figure 1).

In previous work on SHIs in Nigeria, Boluwade [34] extracted SHIs from AfSIS with substantial
levels of missing data. Using the gridded Normalized Difference Vegetation Index (NDVI) and
topography as auxiliary variables, the random forest-based imputation technique (missForest) was
used to impute missing values. In the same study, the author reported an acceptable normalized root
mean square error (NRMSE) of 1.27%. The correlation between the three SHIs was preserved after
imputation (Boluwade, 2019). Figure 2 shows the correlation matrix of the three SHIs. OC and TN are
positively correlated (r = 0.79), whereas BD is negatively correlated with both TN (r = −0.75) and OC
(r = −0.62). To confirm the spatial correlation and dependency, the direct and cross-variograms of
the three variables can be estimated by using the function fit.lmc in the gstat package in R statistical
software [40]. Figure 3 shows that OC and TN have a positive spatial correlation, whereas BD has
a negative spatial correlation with OC and TN. This reflects areas in Nigeria with high BD and a
possible deficit of nutrients and organic matter. In practical applications, soils that are compacted (high
BD) may have limited micro-organic activity, which is essential to nutrient availability and organic
activities. This established relationship depicted in Figure 3 is used as a benchmark to validate the two
techniques used in the current study. In other words, the back-transformed simulated factors (minimum
and maximum autocorrelation factors; MAF) and components (independent component analysis; ICA) in
data space need to retain this relationship to be considered valid [22]. Table 1, which is a reproduction of
the work by Boluwade [34], shows the descriptive statistics of the SHIs. In Nigeria, BD, OC and TN have
an average value of 1.31 g/cm3, 10.52 g/kg, and 0.92 g/kg, respectively. Moreover, BD ranges from 0.73 to
1.84 g/cm3, and OC ranges from 0.20 to 91 g/kg. TN ranges from 0.01 to 8.90 g/kg. Table 1 also shows that
OC and TN have high coefficients of variation (CV) of 89.4% and 95.65%, respectively. These high values
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may be a result of land management practices such as fertilizer and manure applied at farms scattered
across the country. Correspondingly, BD has the lowest CV at 9%. This suggests that of the three SHIs,
land management practices such as tillage have the lowest impact on BD. Furthermore, Nigeria has three
main ecological zones: the northern Sudan Savannah, the Guinea Savannah and rainforest zone with
sandy, sandy-loam, and clay-loam dominant soil types, respectively [34].
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Table 1. Descriptive statistics of the examined soil health indicators in Nigeria *.

Bulk Density (g/cm3) Organic Carbon (g/kg) Total Nitrogen (g/kg)

Average 1.31 10.52 0.92
Standard deviation 0.12 9.45 0.88

Sample variance 0.01 89.32 0.77
Coefficient of variation (%) 9.10 89.44 95.65

Minimum 0.73 0.20 0.01
Maximum 1.84 91.00 8.90

* (Source: [34]).

2.2. ICA

ICA is a linear decomposition of correlated variables into independent components (hereafter
IC) that are uncorrelated. According to Hyvärinen et al. [41], the original correlated variables are
assumed to be linear mixtures or combinations of some unknown latent variables. The original dataset
must be centered, which can be achieved by subtracting the mean of each column of the data matrix,
X(s) from each variable [41]. This is done to simplify the ICA algorithm [41]. Pre-whitening is then
required to project the data into their principal components, Z(s) = X(s) ∗ K, with K representing
the pre-whitening matrix. Finally, according to Boluwade and Madramootoo [22], the “mean vector
of Z(s) to be zero and also its variance covariance is the identity matrix, which has a variance of 1
and is uncorrelated”. For a random and whitened vector, Z(s) can be expressed as a mixture of the
independent components of the following:

Z(s) = A•S(s) (1)
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where S(s) is the source matrix, which also includes the required IC, and A is a mixture matrix.
According to Tercan and Sohrabian [32], both A and S(s) are unknown and are only estimated by using
the knowledge of Z(s). The IC are obtained through the unmixing matrix:

W = A−1
•Z(s) (2)

Therefore, W is the demixing matrix and also represents the rows of the inverse matrix, A−1; thus,
the linear combination is calculated as follows:

S(s) = W•Z(s) (3)

and would be equal to the ICs [41].
The derived components can now be used in the sequential Gaussian simulation (SGS).

More technical details and the implementation of ICA for spatially correlated variables have
been described by Sohrabian and Ozcelik [31], Tercan and Sohrabian [32], and Boluwade and
Madramootoo [22]. The step-by-step procedure for using ICA for spatially correlated SHIs is shown in
Figure 4. The ica package in R statistical software [42], which was developed based on the FastICA
algorithm [43], was used to perform ICA in the current study.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 7 of 24 
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2.3. MAF

The concept of MAF was first introduced by Switzer and Green [44] and implemented in
geostatistics by Desbarats and Dimitrakpoulos [21]. The MAF method can be used to transform
correlated variables into uncorrelated factors, which can then be simulated separately. The MAF
mathematical formulation has been well-documented in Desbarats and Dimitrakpoulos [21],
Rondon [45], Boucher et al. [46], and Bandarian et al. [47]. Generally, MAFs can be obtained by
doing PCA twice [48–50]. In other words, in the PCA first transformation, the spectral decomposition
of the covariance matrix of the original variables is performed to obtain the principal components
(PC), while in the second PCA step, the transformation would maximize or minimize the variance
increments of the PCs obtained in the first step. In other words, MAF involves deriving its factors from
a normal score transformed random variable, Z(s), with s denoting geographical coordinates, by first
doing a PCA at lag, h = 0, and it also involves computing the covariance matrix [48–50]:∑̂

o
=

1
N

[
ZZT
]

(4)

Equation (4) is then spectrally decomposed to obtain the matrix of eigenvalues, D1 and the Q1,
orthonormal of the eigenvectors: ∑̂

o
= Q1D1QT (5)

The standardized (i.e., in this case, normal–scored transformed) PCA components, PCA1,
PCA2, . . . , PCAp are therefore obtained as follows:

PCA(s) = D1
−1/2
·Q1·Z(s) (6)

The second step involves doing another PCA at any lag distance greater than zero that can be
chosen arbitrarily, using the cross-variance matrix of the PCA factors obtained from the 1st step. In other
words, an experimental omni-directional symmetric cross-variance matrix

..
ΓPCA(h) is necessary, using the

PCA matrix [21,49]. Therefore, the spectral decomposition of the cross-variance matrix will yield D2 (2nd
matrix of eigenvalues) and Q2 (2nd matrix of the orthonormal of the eigenvectors) through:

Γ̂(h) = Q2·D2·Q2
T (7)

Therefore, the MAF, M, can be computed as follows:

M(s) = Q2·PCA(s) (8)

The MAF coefficients or loadings, also called the “A matrix”, can be obtained as follows:

A = Q2·D1
−1/2
·Q1 (9)

In other words, MAF factors can be finally defined as follows:

M(s) = A·Z(s) (10)

Figure 5 shows the steps required to implement MAF. To back-transform simulated realization
MAF, each realization is multiplied by A−1, Z(s) = A−1

∗M(s), where A−1 is the transformation inverse
matrix. A function was written in R statistical software and used to compute MAF following the
example in Haugen et al. [50].



ISPRS Int. J. Geo-Inf. 2020, 9, 30 8 of 22

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 9 of 24 

 

 
Figure 5. Workflow of minimum and maximum factors (MAF) and simulations. 

2.4. SGS 

The SGS method has been used extensively in the mining industry to characterize uncertainty 
in heterogeneous ore bodies [21,29]. SGS provides equally probable outcomes (realizations) 
compared to the mean value of the object (i.e., using the traditional interpolation method). SGS can 
be used to characterize both local and spatial variability. This makes it a better representation of the 
true variability of each SHI and provides a platform to evaluate the local and spatial uncertainty of 
each SHI. According to Goovaerts [51], stochastic simulation is a key tool in modeling uncertainty. 
The steps involved in SGS are shown in Figure 6. 

Figure 5. Workflow of minimum and maximum factors (MAF) and simulations.

2.4. SGS

The SGS method has been used extensively in the mining industry to characterize uncertainty in
heterogeneous ore bodies [21,29]. SGS provides equally probable outcomes (realizations) compared
to the mean value of the object (i.e., using the traditional interpolation method). SGS can be used
to characterize both local and spatial variability. This makes it a better representation of the true
variability of each SHI and provides a platform to evaluate the local and spatial uncertainty of each
SHI. According to Goovaerts [51], stochastic simulation is a key tool in modeling uncertainty. The steps
involved in SGS are shown in Figure 6.
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2.5. Verification and Validation of MAF and ICA Algorithms in the Joint Simulation of Soil Health Indicators

Verification measures are needed to confirm that MAF and ICA correctly decorrelate and
reproduce the original SHIs. Back-transformed realizations should have the same geostatistical
properties, structures, direct-variograms, and cross-variograms as the original variables.

The following measures were tested:

(a) The test for spatial orthogonality assesses how well the methods (i.e., MAF and ICA) orthogonalize
the variogram matrices at various lag distances [29,52]:

i. According to Muller [52] and Tercan [29], τ(h) is the relative deviation from orthogonality
that compares the “sum of off-diagonal elements with the sum of the absolute values of
the diagonal elements of the factor or component experimental variogram matrix ΓMAF (h)
for each lag h”;

ii. The relative deviation from orthogonality can therefore be defined as:

τ(h) =

M∑
k=1

M∑
j,1
|γMAF(h; k, j)|

M∑
k=1

γMAF(h; k, k)
, |h| > 0 (11)
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where γMAF (h: k, j) is the cross-variogram of the MAF or ICA, and γMAF (h: k, k) is the
direct variogram of the MAF or IC. M is the variogram matrices length. For perfect spatial
orthogonally, τ(h) = 0.

iii. The spatial diagonalization efficiency k(h) is a measure that compares the sum of squares
of off-diagonal elements in ΓMAF (h) with those of the attribute of the semi-variogram
matrix ΓY (h):

k(h) = 1−

M∑
k=1

M∑
j,1

[γMAF(h; k, j)]
2

M∑
k=1

M∑
j,k

[
γY(h; zk, z j)

]2 , |h| > 0 (12)

where γY (h: zk, zj) represents the cross-variograms of the original variables. For perfect
orthogonality, k(h) = 1.

(b) Reproduction of direct and cross-variograms, using the average of realizations and randomly
selected realizations:

For both algorithms to be valid, the direct and cross-variograms of the original variables should
be reproduced by the back-transformed simulated realizations. A total of 100 realizations would
be averaged (in data space). This is defined as E-type, where E is the “conditional expectation” of
realizations (i.e., average estimate of realizations) [51,53], and their direct and cross-variograms
would be compared with those of the original variables for both MAF and ICA. In addition,
randomly selected back-transformed simulated realizations would be compared. The goal is to
ensure these realizations reproduce the spatial structure and characteristics of the original variable;

(c) Reproduction of the original distribution, cross-correlation, and spatial pattern:

Cross-correlation between E-type of the back-transformed realizations and original variables
would be compared. The reproduction of the histogram of the original variables would also be
explored. In addition to the quantitative comparison above, visual inspections in the form of
the reproduction of the spatial pattern of the original variable and back-transformed simulated
realizations would be considered. This is to ensure consistency and to validate spatial dependency
within the variables and also to guarantee the spatial relationship among the variables.

3. Results and Discussion

3.1. MAF and ICA Results

Using the “ica” package in R statistics for ICA decomposition, the W, estimated unmixing matrix,
was obtained as follows:

W =


4.05 0.109 0.155
−8.519 −0.008 0.001
0.764 0.143 −1.857

 (13)

The pre-whitening matrix, K, was obtained as follows:

K =


0.0006 −0.1050 −0.0074
0.0182 −0.1317 1.8622
9.4665 0.0662 −0.0879

 (14)

Figure 7 shows the cross-correlations between the three obtained ICs. Examining the figure,
it is evident that the variables were uncorrelated. As shown in Figure 7, the ICs are assumed to be
non-Gaussian (but one of the ICs can be Gaussian) and mutually independent [22]. However, it was still
necessary to test the spatial orthogonality of the components before simulation. This is to ensure that
correlation is removed at all distances. Each component (i.e., IC1, IC2, and IC3) was simulated separately,
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using the SGS technique to generate 100 realizations and then back-transformed from NST to ICA space.
The mixing matrix, A, was used to multiply the back-transformed simulated realizations with the addition
of the mean values removed during centering, bringing the simulated values into the data space.
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For the MAF technique, the spectral decomposition of the experimental omni-directional symmetric
cross-variance matrix (h = 30 m) for the PCA factors was obtained with eigenvectors as follows:

Q2 =


−0.8212 0.1206 −0.5577
0.5074 0.60128 −0.6171
−0.2609 0.7898 0.5549

 (15)

The shift lag h = 30 m, was chosen arbitrarily since the original AfSIS datasets came from different
sources, which makes the determination of sampling spacing (for h) difficult. The PCA matrix was
multiplied with Q2 to obtain the MAF factors. As shown in Figure 8, the plot reveals a lack of correlation
amongst the factors. The MAF factors were simulated separately. To back-transform the MAF to NST
space, matrix A−1, shown below, was used to multiply the simulated realizations:

A−1 =


0.4334 −0.7275 −0.9934
−0.2942 −0.3977 0.0265
−0.8516 0.5587 0.1099

 (16)
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autocorrelation factors.

To illustrate the performance of both MAF and ICA, using the AfSIS datasets, the following
verification results were considered:

(a) Performance evaluation if MAF factors and ICA components are orthogonal for all lag distances,
using the measure of spatial orthogonality;

(b) Reproduction of both direct and cross-variograms of original SHIs, using an average of 100
back-transformed simulated realizations for both MAF and ICA;

(c) Reproduction of direct and cross-variograms of original SHIs, using randomly selected
back-transformed simulated realizations for both MAF and ICA; and

(d) Exploration of the distribution (histogram), cross-correlation, and spatial pattern of original SHIs
and back-transformed simulated realizations.

3.2. Performance Evaluation of MAF and ICA Decorrelation, Using the Spatial Orthogonality Measures

The results in Figure 9 show the measures of orthogonality for MAF and ICA. It is clear that the
overall decorrelation performances of both techniques were comparable. Furthermore, between lag
distances of 500 to 1500 m, it shows that ICA has better decorrelation results than MAF from both a
τ(h) and k(h) standpoint. From Figure 9, the average τ(h) for all distances is 0.1 and 0.15 for ICA and
MAF, respectively. Although the ideal value should be zero, the average τ(h) could be approximate to
zero. In addition, the average k(h) for all distances is 0.98 for both ICA and MAF. In addition, the ideal
value should be 1. This can also be approximate to 1. Based on these satisfactory metrics, it can be
concluded that decorrelation was achieved by using both techniques. Therefore, both MAF and ICA
can be considered independent. In other words, cross-correlations have been removed. According to
Tercan [29], both MAF factors and ICA can be considered approximately spatially orthogonal.

3.3. Reproduction of Original Direct Variograms

Figure 10 shows the plots of the direct-variograms of each SHI, using MAF (first row) and ICA
(second row) for the original datasets and the conditional realizations. The red dots and solid blue line
indicate experimental variogram and corresponding fitted exponential covariance function respectively.
It is clear that both techniques adequately reproduced the direct-variograms of the original variables.
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The same exponential covariance function was fitted (blue solid line) to both the original experimental
variogram (red dots) and the back-transformed simulated realizations (black solid lines).
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Figure 10. Direct variograms of 100 realizations (black solid lines) for soil health indicators (SHIs),
using MAF (first row) and ICA (second row) together with that of (a,d) original bulk density (g/cm3)
(red dots); original organic matter (g/kg) (b,e) (red dots); original total nitrogen (g/kg) (c,f) (red dots).
Solid blue line denotes the fitted exponential covariance function of original data. Semivariance is
expressed in units of each SHI.
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3.4. Reproduction of Direct and Cross-Variograms, Using E-Type of Simulations

To test whether both methods accurately reproduced the cross-variograms of the original variables,
the average of the back-transformed realizations (E-type) was examined. The goal was to assess the level
of similarity between the co-regionalization model and that of the original variables. Figure 11a shows
the direct and cross-variogram of the E-type for MAF. It is clear that the direct and cross-variograms
were adequately reproduced. All other spatial features of the original SHIs were correctly reproduced,
despite the fact that the cross-variograms were not used in modeling. Figure 11b shows the direct and
cross-variograms of the E-type, using ICA. It is evident that all spatial features of the original SHIs were
captured and reproduced. Figure 11a,b agrees well with Figure 3: both show a positive correlation
between Etype.OC and Etype.TN and a negative correlation between Etype.TN, Etype.OC, and Etype.BD.
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Figure 11. Direct and cross-experimental variograms for average realizations (E-type) for (a) MAF and
(b) ICA (Etype.BD = Average of 100 realizations for bulk density (g/cm3); Etype.OC = average of 100
realizations for organic carbon (g/kg); Etype.TN = average of 100 realizations for total nitrogen (g/kg).
Semivariance is expressed in units of each variable.

3.5. Reproductions of Original Variograms and Cross-Variograms, Using Randomly Selected Realizations

The direct and cross-variograms of randomly selected back-transformed simulated realizations
#36 (a and b) and #86 (c and d) are shown in Figure 12 with MAF and ICA in the first column and second
column, respectively. As evident in both plots, both direct and cross-variograms were accurately
reproduced by using the same exponential covariance function as the original dataset. In each
realization, the spatial features of the original variables excluded from the modeling process were
accurately reproduced. Note that only the direct variogram of the MAF factors and IC were modeled.
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b) and #86 (c and d) (a) MAF (first column) (b) ICA (second column) (BD.sim = bulk density (g/cm3);
OC.sim = organic carbon (g/kg); TN.sim = total nitrogen (g/kg)). Semi-variance is expressed in units of
each variable.

3.6. Reproduction of Distributions, Cross-Correlation, and Spatial Patterns of Original Variables by E-Type

The final test consists of analyzing the reproduction of the distribution, correlation and spatial
pattern of the original variable. Figure 13a shows the cross-correlation and histogram of original
variables and the E-type of the back-transformed realizations of MAF. Figure 13b also shows the
cross-correlation and histogram of the original variables and the E-type of the back-transformed
realizations of ICA. The cross-correlations between the E-type of the back-transformed realizations
were correctly reproduced by using both MAF and ICA. There were improvements in the positive
correlations between the variables. The positive correlation between E-type of OC and TN improved
from 0.76 to 0.81 and 0.90 for MAF and ICA, respectively. Furthermore, the distributions of the
back-transformed realizations were correctly reproduced for both MAF and ICA techniques.

Figure 14 shows the spatial pattern of the E-type of MAF (second column) and E-type of ICA
(third column). For BD (first row), it is clear that there are similarities across the maps, with low values in
the southern part of the country and high values in the north. This suggests that the algorithms accurately
predicted and reproduced the original BD. The second row shows the original OC and E-types of MAF
and ICA. There are spatial similarities between these maps as well. These similarities can be confirmed
by examining the third row, which shows the maps of the original TN and E-types of MAF and ICA.
The smoothening effect shown in the original maps (first column) is a characteristic of the OK method
(estimation), whereas the other columns were generated from the realization of an SGS technique.

Furthermore, randomly selected realizations #36 and #86 were used to generate surfaces and
compared with the original variable. In Figure 15, the first row shows the comparison of original BD
and randomly selected realizations #36 and #86, respectively, using the MAF technique. As shown in
the figure, there is more variability in the realization plots compared to the original variable. When
compared with the E-type plots (Figure 14), Figure 15 shows greater variability. This indicates that the
E-types (average of realizations) will tend to approach the mean of the original variables compared
with the individual realization. This high variability effect is also observed in other variables (second
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and third rows) in Figure 15. Figure 16 shows a similar level of variability, using realizations #36
and #86 for the ICA technique. Comparing Figures 15 and 16, it is evident that there are no marked
differences, implying that using either of the two methods would produce very similar maps.
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Figure 13. Cross-correlation and histogram of the E-type of back-transformed realization and original
variables for (a) MAF and (b) ICA (EType.BD = average of 100 realizations for bulk density (g/cm3); Etype.OC
= average of 100 realizations for organic carbon (g/kg); Etype.TN = average of 100 realizations for total
nitrogen (g/kg)). Semivariance is expressed in units of each variable, significance levels (*** p < 0.001).
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Figure 16. Original soil health indicators and simulations of the back-transformed simulated randomly
selected realizations #36 (second column) and #86 (third column), using independent component
analysis (BD = bulk density (g/cm3); OC = organic carbon (g/kg); and TN = total nitrogen (g/kg)).

3.7. Importance of Uncertainty in Simulating Spatially Correlated Variables and Implications for Best
Management Practices (BMP) in Sustainable Management

The results of this study are applicable in several domains. In the field of earth/environmental
science, measuring and estimating the spatial variability of variables is frequently of interest. In most
cases, these datasets are sparse and data can stem from several sources. Although the AfSIS dataset
has been quality controlled, the current sample size for Nigeria remains disproportionate to the
geographical area, posing a challenge. Indeed, there is inherent uncertainty in the spatial model
prediction and bias in unsampled locations, especially when traditional methods of interpolation such
as OK are applied. On the other hand, geostatistical simulation algorithms are efficient methods that can
help characterize this uncertainty by generating realizations. These realizations have equal probable
representations of reality. Decision making based on several probable outcomes of a phenomenon is
superior to that based on a single outcome (i.e., estimation). In fact, it has been found that the impacts
of soil-property uncertainty can either amplify or buffer the effects of climate change on crop yield [54].
From the perspective of best management practices (BMP) for land management, fertilizer, or organic
manure management, generated realizations provide decision makers, scientists, and stakeholder
greater assurance than single estimated outcomes using OK. Accurately predicted SHIs can also be
useful in regulatory activities, operational practices for soil remediation and pollution control, and the
preservation of terrestrial ecosystems [55].

As is the case in many developing countries, further work needs to be done in spatial data
collection in Africa. AfSIS datasets comprise continental-based data, implying that local variability
may still not be accounted for, meaning that current AfSIS data sample sizes for each country may not
be sufficient for full spatial representation. Therefore, on a national scale, such as in Nigeria, there is a
need to strengthen initiatives, programs, and policies related to soil sampling and data sharing and to



ISPRS Int. J. Geo-Inf. 2020, 9, 30 19 of 22

raise awareness of the importance of assessing soil health. Future work should examine the accuracy
of the two techniques used in this paper (MAF and ICA) by using larger sample sizes.

4. Conclusions and Recommendation

This paper presented two techniques (MAF and ICA) that have wide applications in geology
or the quantification uncertainties of open mines, but few applications related to agriculture. As is
the case in geological analysis, agricultural soil properties are correlated in both space and time.
This is particularly true if both natural and anthropogenic factors influence the dynamics of the
variables. The traditional method is to interpolate or estimate them; however, this approach has
inherent limitations. Interpolation methods such as OK suffer from smoothening effects, in that they
underestimate large values, while overestimating small values. In this study, both techniques provide
MAF factors and IC, which can be simulated separately. Both methods were applied to the SHIs
OC, BD, and TN, using Nigeria as a case study. SHIs were transformed into separate factors and
components that were simulated independently, obtaining 100 realizations. The following conclusions
can be drawn from this study:

(a) Comparative analysis between the two methods revealed no marked differences in their
performance. However, NST is necessary before MAF transformation. In the case of ICA,
it was unnecessary to perform NST before transformation. In other words, NST was only used
for IC while generating equally probable realizations via SGS. Therefore, IC can be used directly
in other applications that do not require SGS simulation;

(b) Both techniques satisfy the two criteria for spatial orthogonality suggested by Tercan (1999). These are
absolute deviation from diagonality (τ(h)) and relative deviation from diagonality (k(h)), with ideal
values of approximately 0 and 1, respectively. In other words, the MAF and ICA should be spatially
orthogonal with a correlation at zero for all distances before they are used in SGS;

(c) If MAF and ICA are simulated independently, both methods only require one direct variogram
for each factor/component. This is in contrast to the three direct and three cross-variograms that
would be needed if a traditional approach such as the model of co-regionalization was used.
In other words, both MAF and ICA correctly reproduced the direct and cross-variograms of the
original variables despite the variograms of MAF factors and ICA being simulated independently;

(d) The back-transformed simulated variogram realizations were comparable with the original
variables of each variable. Moreover, the E-type, which is the average of 100 realizations,
compared well with the original variables. The cross-correlation, histograms, and spatial pattern
of the back-transformed realizations, using the E-types, were correctly reproduced.

Overall, these two methods successfully de-correlated the spatially correlated variables, and only
the direct variograms of the ICA and MAF factors were necessary for the simulation. Both methods
reproduced the spatial structure and characteristics of the original variables, despite the fact that the
cross-variograms were not used in the simulation. Decision-making based on several equally probable
realizations will continue to play a key role in reducing uncertainty in soil mapping, leading to BMPs
in the face of other challenges, such as climate change.
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