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Abstract: The street network is considered the skeleton of the city structure; it determines the 

efficiency and productivity of the city in that it acts like blood vessels transporting people, goods, 

and information. The relationship between street networks and economic development is an 

important research topic in urban geography. In recent years, complex network theory has been 

successfully used for understanding the characteristics of street network structure. However, 

researchers lack an analytical framework and methods for studying the relationship between the 

morphological structure of urban streets and the economic development level of cities. Accordingly, 

this paper proposes a methodological framework for first, quantitatively characterizing the urban 

morphological structure based on open street network data, and second, exploring the relationship 

between the morphological structure of the urban street and the urban economic development level. 

The proposed methodology was applied to 31 provincial capital cities in China. The results indicate 

that urban morphological structure can be quantitatively described by betweenness and closeness 

centrality extracted from street networks. Cities with similar structures have similar levels of 

economic development. Moreover, the results suggest a significant positive correlation between 

street network betweenness centrality Gini coefficients and cities’ economic development levels, 

indicating that the street network may affect city productivity. This study makes two major 

contributions to the scholarly literature. Methodologically, the proposed framework provides 

technical and methodological support for a better understanding of the relationship between cities’ 

economic development and urban street structure. Empirically, the demonstrated case study may 

guide decision-making involving regional development and the optimization of urban space. 
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1. Introduction 

The street network is considered the skeleton of a city as it links geographical units in urban 

space. To some extent, the morphological structure of streets determines the breadth and intensity of 

interconnections between different functional areas in urban settings and accordingly affects the 

flows and operational efficiencies of various resource elements in the city and urban spatial structure 

[1–5]. Therefore, the relationship between street networks and economic development level is an 

important research area in urban geography and urban planning. A rich body of literature has 

examined whether economic development is correlated with the accessibility of the traffic network, 

the density of traffic infrastructure, or the density of street networks [6–11]. These studies have 
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suggested that there is a mutual promotion and mutual restriction relationship between the 

transportation network and economic development. On the one hand, the expansion of a 

transportation network improves the linkages among regional cities, accelerates the flow of factors, 

and promotes the development of a regional economy [12,13]; on the other hand, economic 

development further promotes the expansion and improvement of the transportation network 

[10,14]. However, due to the limitation of acquiring high spatial resolution street network data and 

computational power, traditional research has primarily focused on regional scales using economic 

annual and multi-year remote sensing image data [15]. Only recently, a few studies have emerged 

that examine how street network structures may influence economic activities such as the allocation 

and operational efficiency of various elements in the cities [16,17]. However, studies that fully 

consider the inter-relationships within the street networks from a micro-scale perspective (e.g., the 

complex interactions among street network elements) or that provide a quantitative methods 

framework for studying the morphology and structure of the street networks are still generally 

lacking. 

In recent years, technologies including information and communication technology (ICT) and 

volunteer geographic information (VGI) have developed rapidly and have made abundant high-

resolution city street network data publicly available and provided new opportunities for 

quantitative analysis of the morphology and structure of street networks at the city level [18–20]. 

Moreover, complex network methods, which are integrated into geography and regional science, 

have provided new insight into understanding the street network from a system and structure 

perspective [21,22]. Compared to traditional methods, complex network methods address the 

complex interactions within a street network and have the advantage of capturing inherent patterns 

and characteristics of connections among urban elements from a systematic and holistic perspective. 

Therefore, complex network methods may assist in providing new insight into the relationship 

between street network structures and urban economic activities.  

Along these lines, many studies have deployed complex network approaches for evaluating the 

integrity and accessibility of street networks by analyzing street networks’ topological characteristics 

and their spatial distributions [23–26]. While there are burgeoning studies that explore the 

relationship between street network characteristics and social-economic activities, most of the 

existing work focuses on analyzing the topological characteristics of nodes within a city street 

network and their association with a particular type of economic activity (e.g., retail). Few studies, to 

the best of the authors’ knowledge, have considered a city’s street network as a whole and examined 

whether or not the characteristics of its morphological structures may correlate to the economic 

development levels of the city.  

To bridge these research gaps, this paper proposes a general analytical framework for 

characterizing cities’ street network structures and for quantitatively examining the relationship 

between a city’s street network structure and its economic development level using open street 

network data. The framework includes a full life cycle of data collection, processing, modeling, and 

applications in urban planning and management. The rest of the paper is organized as follows: 

Section 2 reviews relevant studies that use complex network methods to examine the street network; 

Section 3 presents the proposed methodological framework and describes analytical methods in 

detail; Section 4 uses a case study to examine the proposed methods by first briefly introducing the 

study area and data source, and then discussing the results of the case study; and finally, Section 5 

concludes the paper with a discussion about the potential applications of the proposed method and 

how insights gained from the case study may shed light on regional planning and development as 

well as future research. 

2. Related Literature 

2.1. Characterizing Street Networks Using Complex Network Approaches 

Complex network approaches have provided a powerful perspective and methods in studies of 

the traffic network. Most early research focuses on extracting the topological indicators of urban 
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transportation networks, analyzing the attribute characteristics of indicators, and exploring the 

network characteristics such as scale-free and small-world properties. A few studies further attempt 

to identify the cities' morphology and structure based on the spatial distributions of street network 

topological indicators. For example, Crucitti et al. used urban street networks that are characterized 

by different patterns and historical roots and used different network construction methods to analyze 

the topological characteristics of six street networks. The results showed that the streets have a broad 

distribution of typical scale-free networks and small-world properties [27]. Jiang derived a 

topological pattern of urban street networks using a large sample extracted from the TIGER database 

from the US Census Bureau. The study suggested that for both street length and connectivity degree 

of the street–street intersection, the topologies of urban street networks all demonstrate a small-world 

structure and scale-free property [28].  

However, the difficulty of acquiring detailed street network data has limited previous research 

in the study of quantifying and comparing urban street structures using samples with a larger size. 

In recent years, OpenStreetMap (OSM), an Internet-based mapping platform based on voluntary 

contributions from worldwide users, has rapidly developed and allowed urban researchers access to 

a valuable open source of worldwide geospatial data. A number of preliminary studies suggest that 

OSM road networks are useful in identifying urban structures [29,30]. For instance, Boeing used the 

OSMnx software to obtain 27,000 US street networks from OSM at the metropolitan, municipal, and 

neighborhood scales and then extracted average street segment length, node density, edge density, 

and more than 20 indicators to describe the street network characteristics [31]. Domingues et al. 

acquired several 1150 world cities’ street networks from OSM based on filtering conditions, and took 

the concentric node degree, concentric clustering coefficient, accessibility, and matching index as 

indicators of measurements for the topological properties of the street networks. Firstly, they 

analyzed the distribution of each indicator, then they examined pairwise relationships between such 

indicators as quantified by the Pearson correlation coefficient, and finally they applied Principal 

Components Analysis (PCA) to investigate the overall distribution of cities. The results showed that 

cities from specific continents tend to have many similar street network topological properties [32]. 

Yet the study focused only on the physical characteristics of the street networks and lacked an 

examination of the relationship between street network characteristics and urban economic 

development. 

2.2. Understanding the Relationship between Street Networks and Economic Development from a Network 

Perspective  

Street networks not only determine urban structures but also affect economic activities in the 

city. Studies have explored the relationship between street networks and social-economic activities 

at different spatial scales. At the city scale, several studies use the spatial distribution densities of 

commercial places as indicators of economic activities and analyze the relationships between the 

density of street centrality and economic activities. For example, Porta et al. examined the 

relationship between street centrality and economic activities (i.e., retail and services) in the city of 

Bologna, Italy. They first measured the betweenness, closeness, and straightness centrality of streets 

and then applied correlation analysis between centrality measures and the density of retail and 

service. The results showed that economic activities correlate with both measures of the street 

network at a global level [33]. Cardillo et al. similarly examined the correlation of the geographies of 

street centrality and various types of economic activities in Barcelona, Spain. Three types of centrality 

measurements, namely betweenness, closeness, and straightness were used in the study [34]. Along 

similar lines, several studies suggested that street centrality may impact the location of commercial 

places. For instance, Wang et al. through a case study of Changchun, China, found that street 

centrality is critical to the intensity of commercial land-use intensity and therefore would impact the 

locations of retail stores [17]. Based on multiple centrality assessment models, Lin et al. suggested 

that street centrality could reveal the location advantages of retail stores in traditional commercial 

metropolises [35]. Liu et al. further considered spatial heterogeneity in the relationship between street 

network centrality and land use intensity. By using the geographically weighted regression (GWR) 
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method, their study identified strong relationships between street centrality and land-use intensity 

[36]. 

At the urban agglomeration level, researchers have pointed out the lack of methods for 

characterizing the relationship between cities that use road network topological features [37]. As 

such, recent studies have explored whether cities that have similar street network topology properties 

share similar characteristics in their populations and economic development levels. For instance, 

Spadon, Gimenes, and Rodrigues classified 645 cities in the state of Sao Paulo, Brazil based on their 

street network features and found that the topological characteristics of urban streets could, at a large 

scale, indicate or even predict their demography [37]. Along similar lines, Lee and Jung analyzed the 

topological features of street networks using multi-centralities methods and classified a series of cities 

into several groups that share common meta-information based on centrality. Their results indicated 

that the topological factors of the street structures are closely related to analyzing the meta-

information of the city [38].  

Despite the growing body of literature that studies the physical structural characteristics of 

urban street networks using complex network theory and methods, the quantitative and comparative 

analysis of city street network structure characteristics from a network perspective is only emerging. 

Only a few recent studies have paid attention to the relationships between street network structures 

and socioeconomic statuses of cities. Yet those studies have not provided evidence to show whether 

city street networks can indicate economic development levels. Moreover, current studies use 

empirical research, which has not provided a common methodological framework for analyzing the 

relationship between street networks and economic development. To this end, this study attempts to 

build a common analytical framework that can quantify street structure characteristics based on 

complex network theory and methods, differentiate cities from the perspectives of street network 

features, and examine the correlation between cities’ street network structures and their economic 

development level. 

3. Methodology  

3.1. The Proposed Analytical Framework  

We are proposing an analytical framework adapted from Spadon et al. [37], as shown in Figure 

1, which includes three steps: data acquisition, characterizing urban street networks, and 

investigating the relationship between urban street networks and economic development. First, we 

acquired cities’ street network data from OpenStreetMap using OSMnx [31], a software for 

downloading spatial entities and for modeling, projecting, visualizing, and analyzing complex street 

networks from OpenStreetMap’s Application Programming Interfaces (APIs). Street networks 

(graphs) were then constructed using the obtained OSM street data. In this paper, we consider street 

intersections as nodes and the street segment between each pair of street intersections as edges in the 

network. The lengths of the edges are considered weights in the network.  

Second, we characterized a city’s street network based on two commonly used topological 

features, namely betweenness (see Appendix A Figure A1) and closeness centrality. The choice of the 

two indicators was based on the considerations that: (1) previous studies have suggested that 

betweenness and closeness centrality are two indicators that are significantly related to economic 

activities [17,33]; and (2) albeit the diversity of indicators that can describe street network 

characteristics, some of the indicators are quite similar. For instance, studies have suggested that 

information centrality is highly correlated with betweenness centrality in representing a street 

network [27]. As such, representative and distinct network indicators (e.g., betweenness and 

closeness centrality) should be used. For each city’s street network, the two indicators were calculated 

using Networkx, a python package for the creation, manipulation, and study of the structure, 

dynamics, and functions of complex networks. We then quantified the characteristics of a city’s street 

network as a whole by applying the linear fitting method to extract the slope of the statistical 

distribution of the two features.  



ISPRS Int. J. Geo-Inf. 2020, 9, 3 5 of 18 

 

Third, based on the identified characteristics, we investigated whether cities that have similar 

street structures have similar levels of economic development or not. Specifically, we classified the 

cities into different clusters using hierarchical clustering analysis and compared the clustering results 

with indicators of economic development, including traditional economic zoning that is determined 

by economic development levels, gross domestic product (GDP), and population. The comparison is 

based on the assumption that cities that belong to the same cluster will be in the same economic 

zoning and will be close in the dimension space of GDP and population. If a correlation between 

urban street network characteristics and economic development is observed, the correlation 

coefficients of the two will be extracted to examine the statistical significance of the observed 

relationship. 

 

Figure 1. The analytical framework for street network and economic development level. 

3.2. Characterizing Street Network Structures 

Centrality analysis is commonly used to characterize street network structure by quantifying the 

nodes and/or links within the network [22,37]. Among various centrality measurements, we 

employed two widely used indicators: betweenness centrality and closeness centrality [39-41]. 

Betweenness centrality evaluates the number of shortest paths that pass through each node or 

edge in a network [17,42,43]. In a street network, it indicates potential traffic volume that a node or a 

link may attract. In other words, it presents how much control a node or an edge has for a network. 

Betweenness centrality is defined as 

 𝐵𝐶𝑖 =
1

(𝑁 − 1)(𝑁 − 2)
∑

𝑛𝑗𝑘(𝑖)

𝑛𝑗𝑘

𝑁

𝑗=1;𝑘=1;𝑗≠𝑖≠1

 (1) 

where 𝑛𝑗𝑘 is the number of shortest paths between j and k, and 𝑛𝑗𝑘(𝑖) is the number of shortest paths 

between j and k that contain node i. Betweenness centrality of a node scales with the number of pairs 

of nodes as implied by the summation indices. Therefore, the betweenness centrality values are 

rescaled by dividing the values using the number of nodes, not including itself. So, the term 
1

(N−1)(N−2)
 is used to normalize the value of betweenness centrality to the range from 0 to 1 for directed 

networks [44], where N is the number of nodes in the street network. 

Closeness centrality evaluates the degree of proximity of one node to all the other nodes in a 

network [17,42,45]. It is the reciprocal of the sum of the distance from one node to all others in the 

network. Since the sum of distances depends on the number of nodes in the graph, closeness is 

normalized by the sum of the minimum possible distances N − 1. A node will be considered more 

central if it is closer to other nodes on average. Closeness centrality is defined as 

𝐶𝐶𝑖 =
（𝑁 − 1）

∑ 𝑑𝑖𝑗
𝑁
𝑗=1;𝑗≠𝑖

  (2) 

where N is the total number of nodes in the network, and 𝑑𝑖𝑗 is the shortest distance between node 

i and j. 
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3.3. Hierarchical Clustering Analysis 

To classify the cities by street network structure characteristics, we adopted the Gini coefficient 

to indicate the feature of the network structure. The Gini coefficient is widely used in economics to 

measure the inequality of economic quantities such as income [38,46]. It is defined as 

𝑔 =
∑ ∑ |𝑥𝑖 − 𝑥𝑗 |

𝑛
𝑗=1

𝑛
𝑖=1

2𝑛 ∑ 𝑥𝑖
𝑛
𝑖=1

 (3) 

where 𝑥𝑖  is the centrality value of node i and n is the number of nodes in the street network. 

Hierarchical clustering (also called hierarchical cluster analysis or HCA) is a cluster analysis 

method that seeks to build a hierarchy of clusters [47]. There are generally several types of 

hierarchical clustering approaches. The first is a "bottom-up" approach: each observation starts with 

its own cluster, and clusters are paired up and merged as one moves up the hierarchy. The second is 

a “top-down" approach: all of the observations start in one cluster, and the cluster is split recursively 

as one moves down the hierarchy. In this study, we employed the complete linkage method, a 

"bottom-up" approach, to measure the distance between pairs of observations. The steps of the 

process are as follows. 

• Step 1: Have each city start in its own cluster; calculate the Euclidean distance between each 

pair of cities in the feature space. 

• Step 2: Merge the pairs of clusters into a new cluster based on the minimum distance between 

pairs. 

• Step 3: Calculate the distance between the new cluster and others again. 

• Step 4: Repeat Steps 2 and 3 until all cities merge into one cluster. 

4. Case Study 

4.1. Study Area and Data Source 

We selected 31 provincial capital cities in mainland China as the study area (see Appendix A 

Figure A2). These provincial capital cities have the fastest urbanization speed and play major roles in 

the political, economic, and cultural development of the region. Moreover, they are often the hub 

cities that connect other cities in the region and are therefore critical for implementing major regional 

development strategies such as the “Belt and Road,” “Yangtze River Economic Belt,” and “National 

Center City” strategies enacted in China. As such, the empirical studies of these cities will not only 

prove the validity of the proposed framework but also shed light on regional developments in China. 

Two datasets of the provincial cities were used in this study, including (1) economic and 

demographic statistical data, which were downloaded from the CEInet statistics database[48] and, 

(2) city street network data extracted from OSM. The acquisition of OSM data consisted of the 

following steps. Firstly, we obtained a name list of the administrative districts for all cities from 

BaiduBaike[49] a web community similar to Wikipedia. Secondly, we used GaoDe map API [50] to 

collect the data of every city's administrative geo-boundaries in a shapefile format. Finally, we used 

OSMnx, a python package created by Geoff Boeing [31], to retrieve the street network’s dataset.  

Despite early concerns regarding the incompleteness of OSM data in China, recent studies have 

suggested that the quality of OSM street data in China has improved and is valuable for studying 

Chinese cities [51]. The continuous improvement of the quality of OSM data can also be examined 

using OSM analytics [52], a tool for tracking the history of OSM. Particularly, provincial capital cities, 

developed eastern cities, and cities with higher population movement and higher education are more 

likely to have more complete OSM street data [51]. To further examine the validity of the derived 

dataset for our study, we measured the correlation between the OSM data and official data [53] (i.e., 

the annual report on road network statistics in major Chinese cities published by the China Academy 

of Urban Planning and Design) based on the total lengths of city streets. The results suggest that the 

two datasets are significantly correlated with an R-square of 0.66 (Appendix A, Figure A3).  
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4.2. The Characteristics of Street Networks 

We first applied descriptive statistical analysis to provide an overview of the street networks of 

the 31 cities. Four parameters were used, including the number of nodes in a city’s street network, 

the number of edges in a street network, the average street segment length in a city, and the density 

of street intersections. Appendix A Table A1 presents analysis results: the average number of street 

nodes in cities is 14,252.48, and the average number of edges is 32,858.15. Among all the studied cities, 

Beijing has the largest number of nodes and edges, and Yinchuan has the smallest number of each.  

The average street segment length (i.e., the edge length of a street network) of 31 cities is 446.57 

meters. Among the cities we studied, Lanzhou has the longest average street segment length of 

1017.41 meters, while Guangzhou has the shortest average length of 279.71 meters. The 31 cities have 

20.59 intersections per km2 on average, with Shijiazhuang having the highest density of street 

intersections and Lanzhou the lowest.  

We then applied centrality measurements, as presented in Section 3.2, to the street networks for 

the purpose of distinguishing different street network structures of cities. For each of the centrality 

measurements (i.e., betweenness centrality and closeness centrality), its cumulative distribution was 

plotted. Secondly, we selected linear fitting methods to fit the distribution curve of each city and 

computed the slope of the fitting line to measure the difference. 

4.2.1. Betweenness Centrality of Street Networks 

The distribution of the betweenness centrality of cities is shown in Figure 2. Obviously, there are 

significant differences in city structures. The curviness of a centrality cumulative distribution line 

indicates the extent to which the betweenness centrality of street network nodes is different in a city. 

The more curved a line is, the larger the difference in the street nodes’ betweenness centrality of a 

city. At the city scale, this difference could imply different morphological structures of cities. To 

measure the degree of difference in a city’s street nodes’ betweenness centrality, we applied the 

simple linear fitting method and calculated the slope of each distribution curve. We then employed 

the Natural Breaks (Jenks) classification method to the slope set and classified the cities into different 

types based on the morphological structures of their street network (Appendix A Table A2). Four 

main morphological structure types were identified. Typical city street structure types, as follows, 

are shown in Appendix A Figure A4.  

1. Rectangular grid: Eight cities including Beijing and Chengdu fall into this type. The typical 

characteristics of these cities are that the distribution curve is gentle and the slope value is more 

than 0.95, the street network is a rectangular grid, the density of road nodes is high, and the 

average street length is relatively long.  

2. Multiple group rectangular grid: Seven cities including Nanjing, Chongqing, and Wuhan are in 

this group. The common characteristics of these cities are that the range of slope value is equal 

to or less than 0.95 while more than 0.9, the spatial distribution of the street networks presents 

multiple rectangular grid groups, and the density of street intersections is high. 

3. Circle shape grid: Shenyang and six other cities are classified into this group. The typical 

characteristics of these cities are that the range of slope value is equal to or less than 0.9 while 

more than 0.85, the morphological structure of the city presents a circle shape grid, and the 

average street length is short. 

4. Strips grid: Cities including Xining, Yinchuan, and Lanzhou are classified into this type. The 

common characteristics of cities of this type are that the range of slope values is equal to or less 

than 0.85, the form of street network presents a strip shape, and the average street length is 

relatively long compared with cities classified in the other types.  
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Figure 2. The cumulative probability distribution of street network betweenness centrality. 

4.2.2. Closeness Centrality of Street Networks  

In a street network, the areas where nodes are more concentrated will have higher values of 

closeness centrality. The spatial distribution of street nodes’ closeness centrality values can, therefore, 

shed light on the patterns of city centers. We use the cumulative probability distribution of closeness 

centrality to examine whether a city has city centers or not. That is, if closeness centrality values are 

uniformly distributed, the number of nodes in any range of closeness values will be equal. As such, 

the cumulative probability distribution should be a straight line where x-axis values are always equal 

to y-axis values. As shown in Figure 3, all of the studied cities are polycentric. However, how multiple 

city centers are distributed within the cities differs. We also use the slope value of 1 to divide studied 

cities into two types (Appendix A Table A3). The first type includes 11 cities with slope values that 

are more than 1. The spatial distributions of these cities’ street network centers are continuously 

homogeneous and typical city streets are shown in Appendix A Figure A5. Xi'an is a typical 

representative of this city type. The second type includes 20 cities, such as Nanjing and Wuhan, which 

have slope values less than 1. The spatial distributions of these cities’ street network centers are 

discrete heterogeneous. 

 

Figure 3. Cumulative probability distribution of street network closeness centrality. 

4.3. Relationship between a Street Network and Economic Development 

We then investigated the relationship between the morphology and structure of a city’s street 

networks and the city’s economic development by comparing the HCA clustering results with GDP 

and population of the cities in the study with the division of Chinese major economic regions. Studied 

cities were clustered based on the characteristics of their street network’s morphology and structure 
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using Gini coefficient analysis and HCA. The Gini coefficient is a commonly used measurement in 

the fields of economics and ecology for describing inequalities in the distributions of the given 

resource among the individuals of a population [54]. In this study, we calculated the Gini coefficient 

of a street network’s betweenness and closeness centrality to present the heterogeneity of the 

distribution of centrality among street nodes in a city. We then employed HCA based on the Gini 

coefficient of a street network’s centrality. The complete linkage method, based on the largest distance 

between cities in the different clusters, was applied in the HCA. By choosing a maximum distance 

equal to 0.6 for two cities to belong to the same cluster, we identified five clusters of cities (Figure 4).  

 

Figure 4. Hierarchical tree (dendrogram) based on the Gini coefficients of the distributions of two 

centrality measurements. 

We then used the 2016 GDP and population figures for each city to preliminarily analyze 

whether cities with similar street forms also have similar economic development levels. The cities 

were plotted by projecting GDP and population into the two-dimensional space, with x- and y-axes 

representing GDP and population, respectively (Figure 5). Each point in the figure represents a city, 

with its color representing the cluster the city belongs to, and its radius representing the area of the 

city. As shown in Figure 5, points with the same color are concentrated, indicating that these cities 

are similar in economic and population development. 

 

Figure 5. Plotting city clusters based on gross domestic product (GDP) and population of the cities. 
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We also compared the cluster results with China's four major economic regions, which are 

divided by the China State Council based on the socio-economic development of the different regions 

[55,56]. These four regions are the eastern, central, western, and northeastern economic regions, 

respectively. Table 1 represents the results of the comparisons. In the table, cities that belong to each 

of the clusters are listed, with the economic region a city belongs to labeled as a superscript. The 

comparison results were as follows. 

1. The first cluster includes three cities: Lhasa, Lanzhou, and Urumchi. All cities in this cluster are 

located in western China and belong to the western economic region. In general, cities in the 

western economic region have lower economic development levels than cities in the other three 

regions. However, the region is a major energy industry development area in China and has 

formed a good economic growth pole. In this cluster, the street networks of cities are either strip-

shaped or have multiple discrete heterogeneous centers. Moreover, the density of street nodes 

is generally low, and the length of the average street segment is relatively long in all three cities.  

2. The second cluster includes five cities from Hohhot to Yichuan. Cities in this cluster also belong 

to the western economic region. In this cluster, the street networks of Guiyang and Hohhot 

present the shape of a multiple group rectangular grid, while the street networks of the rest of 

the cities are strip-shaped. 

3. The third cluster includes five cities from Taiyuan to Shenyang. Three of the five cities, other 

than Shenyang and Harbin, belong to the central economic region. Among the four regions, cities 

in the central economic region have the fastest economic growth rate. In this cluster, the street 

networks of most cities either have a shape with multiple group rectangular grids or have 

multiple discrete heterogeneous centers. Additionally, the density of nodes is high, and the 

length of the average street segment is long in these cities. 

4. The fourth cluster consists of nine cities, including Beijing and Wuhan. Most of these cities are 

located in eastern China and belong to the eastern economic region, where economic 

development is more advanced than cities in other parts of China. The street networks of these 

cities either present the shape of a rectangular grid or have multiple discrete heterogeneous 

centers. 

5. The fifth cluster consists of seven cities, including Hefei and Ji'nan. Among them, three cities 

belong to the eastern economic region, two cities belong to the central economic region, and the 

other two belong to the western and northeastern economic regions, respectively. Although 

cities in this cluster belong to different economic regions, the street network of most cities in this 

cluster either present the shape of a multiple group rectangular grid or have a multi-centered 

network structure with a continuous homogeneous distribution. 

Table 1. The results of city groups classified by street network characteristics and China’s traditional 

geographical and economic regions. 

Type City List 

Ⅰ UrumchiW, LhasaW, LanzhouW 

Ⅱ 
YinchuanW, XiningW, NanningW, 

HohhotW, GuiyangW 

Ⅲ ZhengzhouC, TaiyuanC, ShenyangN, HarbinN, ChangshaC  

Ⅳ 
ChongqingW, WuhanC, Xi'anW, TianjinE, ShijiazhuangE, ShanghaiE, NanjingE, HangzhouE, 

GuangzhouE, ChengduW, BeijingE 

Ⅴ NanchangC, Kunmingw, Ji'nanE, HefeiC, HaikouE, FuzhouE, ChangchunN 

Notes：N: northeast zone; W: western zone; C: central zone; E: eastern zone. 

The above analysis suggests that cities' street network structure can, to some extent, indicate 

economic development levels. To further validate the statistical significance of the observed 

relationship, a correlation analysis is applied to the GDP per capita and the Gini coefficient of street 

network centrality (Figure 6). Here we use GDP per capita index to eliminate the impact of city size 

on economic development. The results further confirm the relationship between street network 
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structures and economic development level in that the Gini coefficient of street networks' 

betweenness centrality is statistically significant for city economic development levels. 

 

Figure 6. Correlation between GDP per capita and the Gini coefficients of street network betweenness 

centrality. 

5. Discussion and Conclusions 

This paper proposes a methodological framework that aims to quantitatively analyze city street 

network structure characteristics from a network perspective and to explore the relationship between 

cities’ economic development levels and the structural characteristics of their street networks. It 

makes two contributions to the existing body of literature. Methodologically, we have developed a 

framework for quantitatively analyzing the form and structure of the urban street network and for 

understanding its relationship to economic development based on complex network theory. The 

framework encompasses three steps of open data acquisition, modeling, and computation. The 

feasibility of the framework was validated by a case study of 31 provincial capital cities of China. The 

results show that the topological centrality index of street networks is effective for differentiating 

urban street morphological structures. In particular, the network shape and structure of a street 

network can be effectively depicted by the distribution of betweenness and closeness centrality 

values in the network and be quantified by the slope of the distribution curves of those values. 

Moreover, street morphological structures of a city can be used as indicators of the city’s economic 

development levels, as the case study suggests that cities with similar street network structures also 

have similar levels of economic development. The correlation analysis further confirms that the 

relationship between the characteristics of the urban street network and the economic development 

level is statistically significant. As such, this research provides a new perspective for understanding 

the association between street network structures and economic development and enriches the 

existing methods of studying urban street network and social-economic development in the big data 

era. 

Empirically, we analyzed the shape and characteristics of the street networks in 31 cities and 

then explored the relationship between the morphological characteristics of these cities and their 

economic development levels. Based on the results from 31 cities, we can draw the following three 

conclusions: (1) In terms of street network morphology, the differences among the 31 provincial 

capital cities are significant. The cities can be divided into four main types, namely rectangular grid, 

multi-group grid, circular grid, and linear strip. The typical cities for the four types are Beijing, 

Nanjing, Shenyang, and Xining, respectively. (2) All urban street network structures are polycentric. 

According to the slope values and spatial distributions of the street networks’ topological 

measurements, the cities are classified into two main groups: continuous and discrete. The typical 

cities of the two groups are Xi'an and Wuhan, respectively. (3) The clustering results of 31 cities based 

on the shape and structural characteristics of their streets are close to the existing urban economic 

divisions in China, indicating that the urban street network shape and structure are related to the 

economic development level of a city. 
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It is well known that the development of the urban economy is affected by many factors. 

Understanding the causal relationship between city street network morphological structure and 

economic development is an important topic but is beyond the scope of this study. In this paper, we 

focused on whether the morphological structure of a city’s street network could indicate the level of 

urban economic development of that city, and whether we could utilize open data such as OSM for 

the timely monitoring of a city’s economic development level. With rapid urbanization, particularly 

in developing countries such as China, urban streets have been fast-changing and have become 

increasingly complex. Taking advantage of open data, which are often timelier in representing the 

dynamic urban environment than the traditional, less frequently updated statistical yearbook, could 

potentially provide a new avenue for evaluating and comparing cities’ economic development levels 

and could, therefore, support the development of cities’ master plans and regional development 

plans. The differences in the classification results based on city street network structure and the 

partition of economic regions also have implications that street networks derived from OSM data 

may, to a certain extent, better represent the current economic development levels of studied 

provincial cities, as the clustering results align better with the more recent GDP and population 

statistics published in 2016. The traditional partition of the economic region is according to 

geographical proximity and the demarcated level of economic development. After nearly a decade of 

development, significant changes have taken place and the economic development levels of cities 

within the same region may vary widely. For instance, in recent years, the economic development 

levels of cities such as Xi'an and Chengdu have been higher than those of other cities belonging to 

the western economic region and have almost reached the level of cities in the eastern economic 

region. As such, we believe that understanding cities’ economic development levels based on their 

current street network morphologies could, to a certain extent, shed light on the adjustment and 

revision of the partitions of Chinese economic regions. 

Despite its contributions, this study has two limitations that could be addressed in future 

studies. First, the presented empirical study is limited by the study sample and by the economic data 

which are derived from the statistic yearbook. While the 31 provincial capital cities are represented 

in terms of their geographical diversity, they are limited in representing prefectural-level cities whose 

street structures may be different. In addition, the spatial units used for population and economic 

statistics in the statistical yearbook are relatively coarse, which may, to some extent, introduce 

uncertainties to the study results. Second, this study only accounts for the planar street network, 

while non-planar streets, such as overpasses, tunnels, and grade-separated expressways, are not 

considered. The lack of non-planar street attributes in OSM data does present limitations for this 

study. Incorporating non-planar attributes in building a street network has not been fully studied in 

the field of complex network science and is worthy of further exploration. Moreover, while this study 

focuses on street networks, they are only one type of basic transportation network. It is worthwhile 

to further explore if and how other urban infrastructure networks, such as public transportation 

networks and service infrastructure networks, and the combination of different networks may relate 

to economic development. A longitudinal analysis using the methods presented in this study may 

also provide further insight into the mechanisms underlying the association between transportation 

networks and economic development. Based on a better understanding of how urban infrastructure 

networks relate to economic development, we may further simulate and predict urban economic 

levels using machine-learning methods. Studies such as these would shed light on improving the 

efficiency of urban operations through rational decision-making for urban transportation and 

infrastructure planning. 
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Appendix A 

 

Figure A1. The spatial distribution of Beijing street networks’ node betweenness centrality. The 

brighter the color, the higher the value. From the comparison of the map, it can be seen that the high-

value points are mainly distributed at the intersections of major ring roads and intersections in Beijing. 

 

Figure A2. The spatial distribution of the studies cities. 
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Figure A3. The cities road length relationship between OSM data and official data. 

Table A1. Basic properties of the street spatial graphs of different China cities. 

City Nodes <N> Edge <L> Avg_length (m) Inter_Density (km2) 

Beijing 54,264 130,192 336.05  33.10  

Guangzhou 41,322 90,250 279.71  28.47  

Shanghai 39,392 96,957 346.47  33.95  

Tianjin 37,503 89,817 394.86  31.12  

Chengdu 27,106 67,326 310.44  28.18  

Chongqing 25,123 56,480 629.55  15.26  

Hangzhou 23,397 56,169 375.14  35.67  

Wuhan 23,251 53,693 378.54  33.33  

Xi'an 21,330 54,695 361.38  33.54  

Nanjing 18,683 46,329 420.62  20.99  

Shijiazhuang 13,774 37,988 308.69  41.42  

Changchun 12,105 29,327 387.33  20.22  

Ji'nan 9857 23,026 445.72  19.21  

Changsha 9488 21,079 330.81  25.24  

Shenyang 8985 22,102 504.09  13.66  

Kunming 8981 20,213 413.30  17.47  

Hefei 8839 19,371 296.09  17.69  

Nanchang 8217 18,182 365.87  23.05  

Zhengzhou 7916 18,349 347.38  16.52  

Harbin 7125 17,847 519.00  14.47  

Fuzhou 5579 12,120 375.03  16.85  

Taiyuan 5452 11,273 369.07  14.59  

Guiyang 5018 9942 541.35  14.45  

Hohhot 4676 10953 364.45  14.59  

Nanning 4407 9586 674.46  12.12  

Haikou 2842 5778 294.50  18.10  

Lhasa 2289 5288 440.47  18.87  

Xining 1639 3523 439.41  17.34  

Urumchi 1525 3875 1005.19  2.93  

Lanzhou 979 2280 1017.41  2.36  

Yinchuan 763 1926 571.26  3.72  
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Table A2. The results of city morphological types classified by the street network betweenness 

distribution. 

Type City Slope Characteristic 

A 

Beijing, Chengdu, Shijiazhuang, 

Guangzhou, Hangzhou, Shanghai, 

Tianjin, Xi'an 

>0.95 

Traffic network form presents a 

rectangular grid, high density of road 

node, and longer street average  

B 

Nanjing, Chongqing, Wuhan, 

Changsha, Changchun, Fuzhou, 

Haikou, Jinan, Kunming, Hefei 

(0.9, 0.95) 

Traffic network form presents multiple 

group rectangular grid, high density of 

road node, and longer street average  

C 
Shenyang, Guiyang, Harbin, 

Hohhot, Nanchang, Zhengzhou 
(0.85, 0.9) 

 

Traffic network form presents multiple 

group rectangular grid, high density of 

road node, and longer street average  

D 

Xining, Yinchuan, Urumqi, 

Lanzhou, Lhasa, Nanning, 

Taiyuan 

<=0.85 

Traffic network form presents strips, low 

density of road node, and longer street 

average 

Table A3. The result of city structure types classified by the street network closeness distribution. 

Type City Slope Characteristic 

A 

Xi'an, Shijiazhuang, Jinan, Tianjin, Guangzhou, 

Shanghai, Haikou, Fuzhou, Zhengzhou, Kunming, 

Xining 

>=1 

Multi-center network 

structure, continuous 

homogeneous distribution 

B 

Chongqing, Yinchuan, Chengdu, Nanjing, Hefei, 

Changsha, Hohhot, Nanchang, Nanning, Urumqi, 

Hangzhou, Lhasa, Guiyang, Shenyang, Changchun, 

Beijing, Harbin, Lanzhou, Taiyuan, Wuhan 

<1 

 

Multi-center network 

structure, discrete 

heterogeneous distribution 

 

Figure A4. Road network betweenness centrality map: (a) Beijing, (b) Nanjing, (c) Shenyang, and (d) 

Xining. 
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Figure A5. Road network closeness centrality distribution: (a) Xi’an and (b) Wuhan. 
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