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Abstract: Constructing a knowledge graph of geological hazards literature can facilitate the reuse of
geological hazards literature and provide a reference for geological hazard governance. Named entity
recognition (NER), as a core technology for constructing a geological hazard knowledge graph,
has to face the challenges that named entities in geological hazard literature are diverse in form,
ambiguous in semantics, and uncertain in context. This can introduce difficulties in designing
practical features during the NER classification. To address the above problem, this paper proposes a
deep learning-based NER model; namely, the deep, multi-branch BiGRU-CRF model, which combines
a multi-branch bidirectional gated recurrent unit (BiGRU) layer and a conditional random field (CRF)
model. In an end-to-end and supervised process, the proposed model automatically learns and
transforms features by a multi-branch bidirectional GRU layer and enhances the output with a CRF
layer. Besides the deep, multi-branch BiGRU-CRF model, we also proposed a pattern-based corpus
construction method to construct the corpus needed for the deep, multi-branch BiGRU-CRF model.
Experimental results indicated the proposed deep, multi-branch BiGRU-CRF model outperformed
state-of-the-art models. The proposed deep, multi-branch BiGRU-CRF model constructed a large-scale
geological hazard literature knowledge graph containing 34,457 entities nodes and 84,561 relations.

Keywords: named entity recognition; knowledge graph; deep learning; geological hazards

1. Introduction

Knowledge graphs of geological hazards literature can facilitate the reuse of geological hazards
literature and provide a reference for geological hazard mitigation. There is significant literature
related to geological hazard research on the Wanfang academic platform (Wanfang database), and it is
difficult for researchers to read all of these articles to find the information they need. Using machine
learning methods to recognize the named entities from the geological hazard related literature and
constructing a knowledge graph can greatly enhance the reuse of literature, and increase efficiency
and convenience in the research and governance of geological hazards.

Named entity recognition (NER) is a technology to classify mentions of entities in unstructured
text into pre-defined categories. Named entities in geological hazard literature are diverse in form,
ambiguous in semantics, and uncertain in context. Named entities in geological hazard literature have
diverse forms. For example, Los Angeles, the City of Los Angeles, and L.A., are different expressions
of the same location name. Named entities in geological hazard literature have ambiguous semantics.
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For example, Jordan is an Arab country named the Hashemite Kingdom of Jordan in Western Asia, but
also refers to a famous basketball player named Michael Jordan, depending on the context. Besides,
named entities in geological hazard literature have an uncertain context. The context of the same
entity is not the same. For example, the phrase prior to “Los Angeles” can be the phrase “located at”
or “near”. Therefore, it is challenging to design features with complete accuracy, which makes the
recognition of named entities difficult and potentially ineffective.

Focusing on the above problems, in this paper, we propose a deep learning-based method; namely,
the deep, multi-branch BiGRU-CRF model, for NER of geological hazard literature named entities.
The proposed deep, multi-branch BiGRU-CRF model combines a multi-branch BiGRU layer and a
CRF model. Considering that named entities in geological hazard literature are diverse in form, we
used the context information of the named entities in the whole sentence to help to predict on the
named entities. Considering named entities in geological hazard literature are ambiguous in semantics,
we propose a multi-branch structure to extract different levels of semantic information, and use the
attention mechanism [1] and residual structure [2] to enhance the feature from each branch of different
depths. Considering named entities in geological hazard literature are uncertain in context, we use
BiGRU layers to extract the contextual features of the named entities in both the forward and reverse
directions. However, because the tag sequences themselves are also constrained, the multi-branch
BiGRU layer does not learn these dependencies very well. Therefore, we added a CRF layer on
top of the multi-bidirectional GRU layer. The CRF model is used to further constrain the tags with
context information in different time steps and ultimately to output the optimized tags of the currently
observed Chinese characters.

Besides the deep, multi-branch BiGRU-CRF model, we proposed a pattern-based corpus
construction method to construct the corpus needed for the deep, multi-branch BiGRU-CRF model.
In the pattern-based corpus construction method, we first obtained a large number of seeds
automatically by some manually designed patterns, and then backed up the seeds in a large amount of
geological hazard research literature to construct a large-scale geological hazard NER corpus using a
maximum forward matching (MFM) method.

The proposed NER model achieved an average precision of 0.9413, an average recall rate of 0.9425,
and an average F1 score of 94.19. The proposed deep, multi-branch BiGRU-CRF model constructed
a large-scale geological hazard literature knowledge graph containing 34,457 entities nodes and
84,561 relations.

The main contributions of the proposed method are as follows:

• To the best of our knowledge, this is the first work to apply the NER technique to extract named
entities and build a knowledge graph for geological hazards literature.

• This paper proposed a deep learning-based NER model that combines a multi-branch BiGRU layer
and a CRF model for geological hazard NER. The model uses a multi-branch structure; each branch
contains a BiGRU layer of different depths to extract different levels of features, and then further
enhances the preliminary features using the attention mechanism and the residual structure.

• This paper proposed a pattern-based method to build a large-scale geological hazard literature
NER corpus with little manual costs.

The rest of this paper is structured as follows. Section 2 shows related work. Section 3 shows
preliminaries. Section 4 introduces our approach, and Section 5 presents the implementation. Section 6
summarizes experimental results. Section 7 discusses the paper and Section 8 concludes the paper.

2. Related Work

With the development of statistical machine learning methods and natural language processing
technology, in recent years, many scholars and institutions have begun to study how to use natural
language processing (NLP) [3] technology to extract knowledge and construct knowledge graph from
geoscience-related literature.
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Zhu et al. [4] conducted knowledge extraction on a large number of geological hazard literature
and linked open data (LOD) [5], and constructed a knowledge graph. Specifically, the TextRank [6]
algorithm was first used to extract the literature keywords, and the geological domain entities were
obtained by combining the entries of the open link data (such as Baidu Encyclopedia, Interactive
Encyclopedia, and Wikipedia) and the extracted keywords. On this basis, the key rule algorithm was
used to obtain the relationship and build the geological knowledge map. This method of using a
LOD (Baidu Encyclopedia, Interactive Encyclopedia, and Wikipedia) entry catalog to acquire relevant
geological domain entities was groundbreaking. However, this method can only get entities that
are already included in the encyclopedic knowledge base and LOD. The coverage of geological
knowledge contained in current general encyclopedias (Baidu Encyclopedia, Interactive Encyclopedia,
and Wikipedia) is small. Therefore, the scale and depth of the knowledge graph constructed using this
method are relatively small.

In order to better extract knowledge from the unstructured geoscience literature, Wang et al. [7]
designed a workflow for knowledge extraction and construction of knowledge graph for geoscience
literature. First, a corpus containing domain corpus and general domain corpus were constructed for
word segmentation. Secondly, based on this corpus, a word segmentation model was trained using
the conditional random field (CRF) [8]. Then, they used this model to segment the literature. Finally,
the TF-IDF [9,10] method was used to extract the keywords of the literature, and the keywords with
relatively large co-occurrence relations were connected to form a knowledge graph. Shi et al. [11]
also used TF-IDF to extract keywords to construct a knowledge graph. However, unlike Wang et al. [7],
Shi et al. [11] trained a CNN-based classifier that automatically divides the geoscience literature into
four categories (geophysics, geology, remote sensing, and geochemistry) and then constructs the
corresponding knowledge graph.

These methods have brought great inspiration to the extraction of knowledge and knowledge
graph construction in the geoscience literature, but there are also some shortcomings worth improving.
These methods use statistical analysis methods to extract keywords, high-frequency words, etc., rather
than entities, as nodes in their knowledge graph. Nevertheless, more often, in order to better analyze
and understand the geological disaster literature, we need to extract the entities in the literature that
represent specific categories and meanings, such as methods, data, etc.

NER is the task of identifying a named entity in text and classifying it into a specified category [12].
NER was first proposed in the MUC [12] mission of the 1980s and has been a hot topic in natural
language processing research.

Some studies start with text mining methods and build specific rules for NER. These methods
adopt the strategy of bootstrapping to extract entities of the specified categories from the Web.
Representative work includes the TextRunner system [13], the Snowball system [14], and the CasSys
system [15]. The disadvantage of these methods is that the bootstrapping iteration introduces noise
instances and noise templates, resulting in poor results.

Since the 1990s, statistical models have been the mainstream method for NER. There are a
number of statistical methods [16,17] used to extract entities from text, such as as the maximum
entropy model (ME) [18–20], support vector machines (SVM) [21–24], the hidden Markov model
(HMM) [25–27], the CRF model [28–30], and so on. Statistical model-based methods typically formalize
entity recognition tasks from the input text to predict specific target structures, use statistical models
to model the association between input and output, and use machine learning methods to learn
parameters of the model.

With the excellent performance of deep learning in different fields, more and more deep learning
models have been proposed to solve the problem of NER. Currently, there are two typical deep learning
architectures for NER. The first is the NN-CRF architecture [31–34], in which CNNs/RNNs are used to
learn the vector representation at each word position. Based on the vector representation, the CRF layer
decodes the best label at that location. The second adopts the idea of sliding window classification,
uses neural networks to learn the representation of each n-gram in the sentence, and then predicts
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whether the n-gram is a target entity [35–37]. Compared with the traditional statistical model, the main
advantage of the deep learning method is that its training is an end-to-end process, without the need
to manually design related features. Besides, deep learning facilitates learning a specific representation
of the task. By learning the correlation of information between different modalities, different types,
and language environments, better entity recognition performance can be achieved.

These NER methods provide a useful reference for NER tasks in geoscience. Sobhana et al. [38]
first used the CRF model combined with some manually designed features (such as prefixes and
suffixes for words) to extract 17 types of geoscience-related entities from geoscience texts. Considering
named entities in geological hazard literature are diverse in form and complicated in context, it is
challenging to design practical features, resulting in a poor performance by CRF models that rely on
manually designed features.

Inspired by the above NN-CRF architecture [31–34], in this paper, we propose a deep learning-based
method; namely, the deep, multi-branch BiGRU-CRF model, for NER of geological hazard literature
named entities. The proposed deep, multi-branch BiGRU-CRF model combines a multi-branch BiGRU
layer and a CRF model. The multi-branch structure combines the attention mechanism and the residual
structure, which can learn different depths and levels of features. The BiGRU network can obtain the
context information of named entities from both forward and reverse directions. The CRF model can
further optimize the prediction results based on the dependencies between the tags.

3. Preliminaries

In the deep, multi-branch BiGRU-CRF model for geological hazard NER, we use two widely used
models, GRU and CRF. They are introduced in the preliminary section.

3.1. GRU

Since a recurrent neural network (RNN) [39,40] does not handle long-range dependencies well,
a long short-term memory network (LSTM) [41–43] is proposed. GRU [44], which can be seen
in Figure 1, is a variant of LSTM. GRU maintains the effects of LSTM while making the structure
simpler, and it has a wide range of applications in many tasks of natural language processing, sequence
analysis, image processing, etc., [45–47].

Figure 1. Gated recurrent unit.
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The GRU model has only two gates, the update gate and the reset gate; namely, zt and rt in
Figure 1. The update gate is used to control the degree to which the status information of the previous
moment is brought into the current state. The larger the value of the update gate, the more the status
information of the previous moment is brought in. The reset gate is used to control the degree to
which status information from the previous moment is neglected or forgotten. The smaller the value of
the reset gate, the more the information from the previous moment is neglected. The reset gate helps
capture short-term dependencies in the time series data, while the update gate helps capture long-term
dependencies in the time series data [42,45,48–50].

The reset gate rt and update gate zt are defined as follows:

rt = σ (Wxrxt + Whrht−1 + br) (1)

zt = σ (Wxzxt + Whzht−1 + bz) , (2)

where σ is the sigmoid activation function [51]. ht represents the implied state and is defined as follows:

ht = zt � ht−1 + (1− zt)� h̃t (3)

where � is the element product operator of two vectors, and h̃t represents the candidate implied state
and is defined as follows:

h̃t = tanh (Wxhxt + Whh (rt � ht−1) + bh) . (4)

The candidate implied state h̃t uses a reset gate rt to control the inflow of the last implied state
h̃t−1 containing past time information. If the value of the reset gate rt converges to a value closed to
0, the last implicit state h̃t−1 will be discarded. Therefore, the reset gate rt provides a mechanism to
discard past implied states that are unrelated to the future; that is, the reset gate rt determines how
much information is left in the past. The implicit state ht uses the update gate zt to update the last
implicit state ht−1 and the candidate implied state. Updating the gate can control the importance
of the past implied state at the current moment. If the value of the update gate always converged
to a value closed to 1, the past implied state will be saved over time and passed to the current time.
This design can cope with the vanishing gradient problem [52,53] in the recurrent neural network and
better capture the large interval dependencies in the time series data.

3.2. CRF

The CRF model is a discriminant probability, undirected graph learning model proposed by
Lafferty [8] based on the maximum entropy model [54] and hidden Markov model [55]. CRF was
first proposed for sequence data analysis and has been successfully applied in the fields of natural
language processing (NLP), bioinformatics, machine vision, and network intelligence [56–59].

Let G = (V, E) be an undirected graph, where V is the set of nodes and E is the set of edges, and
let Y = {Yv|v ∈ V} be a set of random variables Yv indexed by node v in V. Given a condition of X,
if each random variable Yv obeys the Markov property:

P(Yv|X, Yu, u 6= v) = P(Yv|X, Yu, u ∼ v), (5)

then (X, Y) constitutes a CRF, where X represents the observed sequence and u ∼ v represents all
neighbor nodes of u connected by the node v in graph G.
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Linear Chain-CRFs

Linear chain-CRFs [60], as shown in Figure 2 are a common form of CRF model.
Let x = {x1, x2, · · · , xn} denote the observation sequence and y = {y1, y2, · · · , yn} be the set of finite
states, according to the basic theory of the random field:

P(Y = y|x) = 1
Z(x)

exp

(
∑
k

λk

n−1

∑
i=1

tk(yi+1, yi, x, i)+ ∑
l

µl

n

∑
i=1

sl(yi, x, i)

)
(6)

Z(x) =∑
y

exp

(
∑
k

λk

n−1

∑
i=1

tk(yi+1, yi, x, i)+ ∑
l

µl

n

∑
i=1

sl(yi, x, i)

)
(7)

where the terms are defined as follows:
tk (yi+1, yi, x, i): transfer characteristic function between the marked positions i and i + 1 of the

observed sequence. It is used to characterize the correlation between adjacent finite states and the
influence of observation sequences on them.

λk: weights of the transfer characteristic function tk (yi+1, yi, x, i).
sl (yi, x, i): State feature function of the observed sequence at position i. It is used to characterize

the effect of observation sequences on finite states.
µl : weights of the state feature function sl (yi, x, i).
Z(x): a normalization factor used to ensure that formula (6) is a correctly defined probability.

Figure 2. Linear chain-CRFs [8].

4. The Proposed Methods

In this section, the proposed method is introduced in detail. The proposed method aims to extract
geological hazard named entities from the considerable body of geological hazard literature and build
a geological hazard knowledge graph.

In this paper, we propose a geological hazard NER model based on the deep learning method;
namely, the deep, multi-branch BiGRU-CRF model, to extract geological hazard named entities and
construct a knowledge graph. Since the proposed model is a supervised model that requires an
annotated corpus, we propose a pattern-based corpus construction method to provide a corpus for the
deep, multi-branch BiGRU-CRF model. The proposed method is presented in two parts: pattern-based
corpus construction and the deep, multi-branch BiGRU-CRF model for NER.

1. Pattern-based corpus construction. Given literature documents F = { f1, f2, ..., fN} where
fn (n ∈ [1, N]) is the n-th document and Patterns P = {pm, pl , pd} where pm, pl , pd are patterns
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for methods, location, and data, respectively. The pattern-based corpus construction method aims
to construct a named entity corpus C.

2. The deep, multi-branch BiGRU-CRF model for NER. Given literature documents F = { f1, f2, ..., fN}
where fn (n ∈ [1, N]) is the nth document and the named entity corpus C, the proposed deep,
multi-branch BiGRU-CRF model aims to extract methods location, and data entities from F and
constructs a knowledge graph G.

4.1. Pattern-Based Corpus Construction

Pattern-based corpus construction can be divided into three steps. Firstly, we define the three
named entities we want to extract. Then Patterns P = {pm, pl , and pd} are used to get the named
entity seeds from the geological hazard literature F = { f1, f2, ..., fN}. Finally, the maximum forward
matching method (MFM) is used to map the seeds, which are MethodsSeeds M = {m1, m2, ..., mI},
LocationSeeds L = {l1, l2, ..., lJ}, DataSeeds D = {d1, d2, ..., dK} to the literature for labeling. By then a
geological hazard named entity corpus C is constructed. We introduce the three parts in detail below.

4.1.1. Definition of Named Entities in Geological Hazard Literature

NER tasks are defined in MUC-7, in which named entities are defined as proper names and
quantities of interest [12,17]. Named entities include person names, place names, and organization
names, and times, dates, amounts, and percentages. Among them, the most commonly used named
entities are person names, place names, and organization names [17,61].

For geological hazards literature research, the three named entities proposed in the literature
are methods, data used, and descriptions of regions and locations. When reading geological hazards
literature, researchers usually care about the study area targeted, the methods proposed, and the
data used. Most articles generally have three Sections (methodology, data, and study area) that
correspond to the three named entities mentioned above. These entities have the most important role
in the understanding, research, and reuse of geological hazard literature. This article focuses on the
extraction of the above three types of named entities: methods, data, and location. Table 1 shows the
details of these entities.

Table 1. Three types of named entities defined.

Entity Type Description Tags

Location descriptions of regions and location B-LDS, I-LDS

Methods methods, techniques and models B-MED, I-MED

Data data used B-DAT, I-DAT

Not an entity Not a entity O

4.1.2. Pattern-Based Seed Acquisition

Given the three defined named entities above (methods, location, and data), we extract these
entities in this section and build entity seed collections MethodsSeeds M = {m1, m2, ..., mI},
LocationSeeds L = {l1, l2, ..., lJ} and DataSeeds D = {d1, d2, ..., dK}.

Considering there are often certain rules among named entities of geological hazards, discovering
these rules and designing related patterns can help us extract these named entities. Therefore, we have
designed a pattern-based seed acquisition method to obtain these named entity seeds. The manually
defined Patterns P = {pm, pl , and pd}, where pm, pl , pd are patterns for methods, location, and data,
respectively, are shown in Table 2:



ISPRS Int. J. Geo-Inf. 2020, 9, 15 8 of 22

Table 2. Patterns (regular expressions) used.

Entity Type Patterns (Regular Expressions)

Location
‘.*(located in|located in|in|form|located in)(of){0, 1}

([\S]+)(of){0, 1}(area|region|mountain area|river basin|zone).*’

Methods

‘.*(provide|apply|improve|utilize|using|put forward|design|invente|set up
| construct|achieve |according to|take |base on|construct |produce|combine

|adopt |adopt|by|construct)(of|of|of|corresponding|of){0, 1}
(and){0, 1}([\S]+)(of) {0, 1}(method|model).*’

Data

‘.*(provide|apply|utilize|using|put forward|design|invente|set up
|construct|according to |take|base on|construct|produce|combine|adopt|adopt

|by|construct|collect) (of|of|of|corresponding|and){0, 1}
([\S]+)(of){0, 1}(data|material|data set).*’

Patterns of Table 2 in this work are in Chinese. Please refer to Appendix A for detailed translation.

We use these patterns (regular expressions) to match the sentences S = {s1, s2, ..., sH} in the
literature F from papers in the Wanfang database (http://www.wanfangdata.com.cn). The words that
match those patterns (regular expressions) P are the entity seeds we want to extract. After that, we
randomly select 2000 entity seeds each and manually check the entity seeds to evaluate the accuracy
can be calculated by the following equation:

Accuracy =
nc

n
, (8)

where nc denotes the number of correct entity seeds and n denotes the total number of entity seeds.
The results are shown in Table 3. After manually checking, all correct entities form the entity seed
collections M = {m1, m2, ..., mI}, L = {l1, l2, ..., lJ}, and D = {d1, d2, ..., dK}.

Table 3. Statistics of seeds extracted by patterns

Entity Type Correct All Accuracy

Location 1179 2000 0.5895

Methods 1467 2000 0.7335

Data 1305 2000 0.6525

4.1.3. MFM for Corpus Construction

Given the three types of entity seed collections above (M = {m1, m2, ..., mI}, L = {l1, l2, ..., lJ},
and D = {d1, d2, ..., dK}) and sentences S = {s1, s2, ..., sH} , the MFM method shown in Algorithm 1
is used to automatically construct a geological hazards named entity corpus C in a character-based
format named IOB format [31], where “B” indicates the starting character of an entity, “I” indicates the
intermediate characters and the ending character of an entity, and “O” indicates that the character is
not part of entity [62]. Table 4 shows a illustration of IOB format. We defined seven types of tags (“O”,
“B-MED”, “I-MED”, “B-DAT”, “I-DAT”, “B-LDS”, and “I-LDS”); see Table 1.

Table 4. Illustration of IOB format.

Tags O O B-MED I-MED I-MED

Translation Build a numerical analysis model

The MFM method shown in Algorithm 1 contains six steps:

http://www.wanfangdata.com.cn
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(1) Sort the elements in the entity seed collections M = {m1, m2, ..., mI}, L = {l1, l2, ..., lJ} and
D = {d1, d2, ..., dK} separately in decreasing order according to length.

(2) Initialize the corpus set C to an empty set.
(3) For each sentence Sh (h ∈ [1, H]) in S = {s1, s2, ..., sH} , look up seeds in the seed sets M, L, and

D. If there is a seed that is contained by Sh and is unlabeled, then label the words containing the
seed in Sh with the corresponding entity tags.

(4) After traversing all the seed sets M, L, and D, the remaining unlabeled words in Sh are labeled
as “O”.

(5) Add the label Sh to the corpus set C.
(6) When there is no unlabeled Sh in S, the program ends and returns the corpus set C.

Algorithm 1 MFM
Input: Sentences S = {s1, s2, ..., sH}, MethodsSeeds M = {m1, m2, ..., mI}, LocationSeeds L =

{l1, l2, ..., lJ}, DataSeeds D = {d1, d2, ..., dK}
Output: CorpusSet C

1: function MFM(S, M, L, D)
2: C ← ∅
3: Sort the elements in M, L, D in decreasing order according to length separately.
4: for h = 1 to H do
5: for i = 1 to I do
6: if Mi in Sh, and the characters of Mi are unlabeled then
7: label “B-MED“ in the first character and “I-MED” in the remaining characters of Mi

in Sh.
8: end if
9: end for

10: for j = 1 to J do
11: if Lj in Sh, and the characters of Lj are unlabeled then
12: label “B-LDS” in the first character and “I-LDS” in the remaining characters of Lj in

Sh.
13: end if
14: end for
15: for k = 1 to K do
16: if Dk in Sh, and the characters of Dk are unlabeled then
17: label “B-DAT” in the first character and “I-DAT” in the remaining characters of Dk in

Sh.
18: end if
19: end for
20: label unlabeled characters in Sh as “O.”
21: C ← Sh + C
22: end for
23: return C
24: end function

4.2. The Deep Multi-Branch BiGRU-CRF Model

Given the corpus C constructed above, we proposed a deep learning-based model named the
deep, multi-branch BiGRU-CRF model, which combines neural networks and CRF for geological
hazard NER. The model is shown in Figure 3 consists of three components, which are the embedding
layer, the multi-branch BiGRU layer, and the CRF layer. The embedding layer is the first layer of the
model, which converts Chinese characters into dense vectors and passes them to the multi-branch
BiGRU layer. The multi-branch BiGRU layer learns different levels of features through a multi-branch
BiGRU layer and passes these features to the CRF layer. The CRF layer further enhances the mapping
of characters to tags and the probability of transition between tags and outputs the optimized tags as
the final output of the proposed model. We introduce these three layers in detail below.
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Figure 3. Deep, multi-branch BiGRU-CRF model.

4.2.1. Embedding Layer

Given Chinese characters w1, w2, ..., wn in sentence Si as input, where Si ∈ S = {s1, s2, ..., sH},
the first step of deep neural networks is often to refer to discrete Chinese words in sentences as
continuous vectors or a matrix. This step is called embedding. We use random 100-dimensional
vectors v1, v2, ..., vn as the initialized representation of the character w1, w2, ..., wn. v1, v2, ..., vn can be
trained to get a better representation.

In this way, the input characters w1, w2, ..., wn are embedded as 100-dimensional vectors
v1, v2, ..., vn.
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4.2.2. Multi-Branch BiGRU Layer

The output v1, v2, ..., vn of the embedding layer then passes through a multi-branch BiGRU layer.
For every branch t ∈ {1, 2, · · · , n}, n is the number of branches, the output ht =

[−→
ht ;
←−
ht

]
is the

concatenation of
−→
ht and

←−
ht where

−→
ht and

←−
ht represent the forward and inverse representation of

v1, v2, ..., vn and can be calculated by Equation (3) from two different directions of GRU. Through
this combination of the forward and reverse representations of v1, v2, ..., vn, we can fully consider the
context content of the characters, making the feature extraction more abundant. In the experiment, our
multi-branch BiGRU layer consisted of three branches with depths of 1, 2, and 3, respectively. A large
number of branches bring a lot of computational burden; too few branches cannot fully extract multiple
levels of features. We use three branches with depths of 1, 2, and 3 to extract the low-level, middle-level,
and high-level features, that is, h1, h2, and h3. Then, we use the attention mechanism to weight the
corresponding elements of h1, h2, h3 to obtain the weighted feature matrix h123 = h1 ⊗ h2 ⊗ h3, where
⊗ represents the multiplication of the corresponding elements of feature matrix. Then, the residual
structure is used to add the weighted feature matrix h123 and the low-level features h1, that is, h1⊕ h123,
to solve the problem of gradient disappearance and difficulty in training caused by increasing the
number of layers. h = h1 ⊕ h123 = h1 ⊕ (h1 ⊗ h2 ⊗ h3) is the output of the multi-branch BiGRU layer.

4.2.3. CRF Layer

The elements ht in h, where t represents the t-th element in h, are not completely independent.
For example, when ht is “B-MED”, the probability of ht+1 being “I-MED” is obviously much higher
than the probability of being “B-DAT”. Therefore, instead of treating h independently, we use a CRF
layer to model the relationship between h and get the enhanced results. The CRF layer is added to
calculate the conditional probability p(y|h) by Equation (9), where y = {y1, y2, · · · yT} represents the
label sequences.

p(y|h; t, s) =

T
∏
i=1

exp(
T
∑

i=1
t(yi−1, yi, h) + s(yi, h))

∑
y′∈γ(h)

T
∏
i=1

exp(
T
∑

i=1
t(y′i−1, y′i, h) + s(y′i, h))

(9)

where γ represents the sequences of all possible tags, t represents the transition probability for a given
input sequence h from yi−1 to yi, and s is the emission score of the transition from the output of BiGRU
layer to yi at time step i.

Finally, the model is trained by maximum conditional likelihood estimation [63] by Equation (10).
The sequence that enables the conditional probability p(y|h; t, s) to get the maximum value is the
output of the model.

Loss (t, s) =
T

∑
i

log p(y|h; t, s). (10)

5. Implementation

In this paper, the proposed multi-branch BiGRU-CRF model used the Python (version 3.6.3)
programming language. The deep learning library used was TensorFlow-GPU (version 1.13.1).
An NVIDIA Titan RTX GPU was used. We did not use any open APIs when obtaining the geological
hazard research literature in the Wanfang database. We used web crawler technology to crawl the title
and the abstract section of the theses related to geological disasters. The crawler used the Scrapy library
and returned a text file, each line containing only the title and abstract of a paper. The knowledge
graph was stored and visualized in the Neo4j database.
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6. Experimental Results

This section shows the statistics of the corpus constructed by pattern-based methods, the parameter
settings of training, the results of the proposed deep, multi-branch BiGRU-CRF model, and the knowledge
graph constructed in the following four parts.

6.1. Corpus Constructed

The corpus was built automatically by the method mentioned in Section 4.1, containing
536,426 characters, 4548 sentences, and seven types of tags, for which the detailed statistics are
shown in Table 5. We randomly split the data into a training set, a validation set, and a test set with a
ratio of 8:1:1.

Table 5. Statistics of the tags in corpus.

Tags “O” “B-MED” “I-MED” “B-DAT” “I-DAT” “B-LDS” “I-LDS”

The number of the tags 493,643 4230 13,682 1872 4550 6133 12,316

6.2. Training

For all the models mentioned, we update the parameters using the back-propagation algorithm
and use stochastic gradient descent (SGD) to optimize our model. Our model uses three stacked
BiGRU layers, each layer containing one forward GRU and one reverse GRU, and the number of
neurons in each GRU is set to 100. We added a Dropout [64] between the BiGRU layer and the CRF
layer to improve the model’s effectiveness and prevent overfitting. The Dropout rate was set to 0.5, as
higher rates negatively impacted our results, and lower rates led to longer training time.

6.3. Results

We used P (precision), R (recall rate), and F (F1 score), which are widely used evaluation
criteria [31–34,65] in NER, to evaluate the three mentioned models. The larger the three evaluation
criteria, the better the model’s effect. P, R, and F can be calculated by the following three formulas:

P =
np

nt
(11)

R =
np

nc
(12)

F =
2 ∗ precision ∗ recall

precision + recall
, (13)

where np denotes the number of true positive predictions; nt denotes the total positive predictions,
including both true and false; and nc denotes the total number of predictions, including both positive
and negative.

The result of our NER model is shown in Table 6.

1. The CRF model is the model proposed by Sobhana et al. [38], using CRF for NER in geosciences.
We used the CRF method as our benchmark. As can be seen in the Table 6, the CRF model could
initially identify these geological hazard named entities, achieving an average precision of 0.8210,
a recall rate of 0.7765, and an F1 score of 79.81.

2. The BiLSTM-CRF model is the state-of-the-art model in current NER tasks[31]. It has one
bidirectional LSTM layer and one CRF layer on top. As can be seen in the Table 6, the BiLSTM-CRF
model has a significant lead on all indicators compared to the CRF model, with an average
precision of 0.9205, an average recall rate of 0.9419, and an average F1 score of 93.10. It fully
demonstrated that the BiLSTM-CRF model has more efficient feature extraction and more accurate
discriminating ability after adding one bidirectional LSTM layer before the CRF layer.
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3. The deep, multi-branch BiGRU-CRF model was the proposed model with a three-branch BiGRU
layer, which consisted of three branches of stacked BiGRU layers with depths of 1, 2, and 3,
respectively, and one CRF layer on top. As can be seen in the Table 6, the deep, multi-branch
BiGRU-CRF model had a significant lead on almost all indicators (except the recall rate of methods)
compared to the CRF model and BiLSTM-CRF model above, with an average precision of 0.9413,
an average recall rate of 0.9425, and an average F1 score of 94.19. It fully demonstrated that the
proposed model has more efficient feature extraction and more accurate discriminating ability
after adding three branches of BiGRUs with depths of 1, 2, and 3, respectively.

Table 6. Result of proposed models. P, R, and F indicate our evaluation criteria precision, recall, and F1
score. DAT, LDS, and MED indicate the corresponding entity categories data, location and methods.
“Avg.” represents the overall weighted average score. The best performances are shown in bold.

Model Evaluate DAT LDS MED Avg.

CRF
P 0.8697 0.8662 0.7259 0.8210

R 0.7973 0.8486 0.6648 0.7765

F 83.00 85.73 69.40 79.81

BiLSTM-CRF
P 0.9220 0.9450 0.8858 0.9205

R 0.9510 0.9527 0.9215 0.9419

F 93.63 94.89 90.33 93.10

Deep Multi-branch BiGRU-CRF model
P 0.9645 0.9519 0.9135 0.9413

R 0.9510 0.9622 0.9100 0.9425

F 95.77 95.70 91.17 94.19

6.4. Knowledge Graph Construction

We used the trained deep, multi-branch BiGRU-CRF model to perform NER on the geological
hazard related papers in the Wanfang knowledge base, and obtain the three types of named entities
(location, methods, and data) mentioned in this paper, and to construct a knowledge graph. Table 7
shows the named entities extracted from randomly selected papers. It can be seen that the proposed
method correctly extracted the relevant location and area descriptions, the data used, and the models
and methods used in these geological hazard research papers. This is very helpful for research, reuse,
and reference on the geological hazard literature.

Table 7. Entities extracted from geological hazard research papers.

Paper Name Location Entities Methods Entities Data Entities

Study on the Influence of Typical
Human Activities on Slope Deformation and Stability

Southwestern China
Slope area

Goaf

Site survey
Numerical simulation
Numerical calculation

Lagrangian difference method

Stratigraphic lithology
Rainfall

Research on rainfall induced
landslide prediction model Chongqing area

Landslide prediction model
Probabilistic prediction model

Regression model
Landslide probability model

Landslide model
Positive forecasting model

Rainfall
Rainfall data

Landslide data
Rainfall

Research on Object-Oriented Methods for
Extracting Geological Environment Information of Chengchao Iron Mine Mountain

Fuzzy classification method
Fuzzy classification

Hierarchical network

Remote sensing data
Remote sensing images

Remote sensing
Image data

Entities extracted from geological hazard research papers in Table 7 are in Chinese. Please refer to Appendix B for a detailed translation.

We used the proposed model to extract the three types of named entities from the 14,630 geological
hazard-related research papers crawled on the Wanfang knowledge base, and constructed a knowledge
graph containing 34,457 entities nodes and 84,561 relations. For the relationships (”in location,” “use
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methods,” and “use data”) that appear in the knowledge graph, in our article, we did not use any
complicated relation extraction models. When constructing the knowledge graph, we simply think that
if the paper contains an entity, it has a corresponding relationship. For example, if article A contains
data B, we generate a triple (A-> “use data”-> B) and add it to the knowledge graph. Table 8 shows
the detailed statistics of the entities of the geological hazards literature knowledge graph, and Table 9
shows the detailed statistics of the relations of the geological hazards literature knowledge graph.
Figure 4 shows an overview of the geological hazard literature knowledge graph. For convenience,
we only show 100 nodes in the knowledge graph and zoom in one of its parts in Figure 5. Obviously,
the knowledge graph constructed can clearly reflect the relationship between literature and entities
(methods, locations, and data).

Table 8. Statistics of the entities in geological hazards literature knowledge graph.

Entities Type Methods Location Data Paper

The number of the entities 8530 9123 2173 14,630

Table 9. Statistics of the relations in geological hazards literature knowledge graph.

Tags In Location Use Methods Use Data Paper Name

The number of the relations 24,934 25,364 19,633 14,630

Figure 4. Geological hazard literature knowledge graph overview. The nodes of different colors in the
figure represent different types of entities. (The blue nodes represent the name of paper, the red nodes
represent the methods entities, the green nodes represent the location entities, and the orange nodes
represent the data entities).
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Figure 5. Partial zoom of geological hazard literature knowledge graph. (A) shows 100 nodes of the
knowledge graph, and (B) is the zoom in version of the red part in (A).

At the same time, we counted the top-15 most frequently occurring entities of methods, data, and
location, in the knowledge graph, which are shown in the Figures 6–8 with the corresponding English
versions. It can be seen that in methods entities, the numerical simulation method is the most widely
used research methods, with a frequency of 4542 times, and the number of other methods shows a
smooth downward trend. In data entities, a similar phenomenon was also present. The rainfall data
and vegetation data are the most widely used research data, respectively, with a frequency of 14,539
and 13,114 times. The other types of data are not very different, showing a trend of smooth decline.
In location entities, mountainous areas, mining areas, and mountains are the most studied areas, with
frequencies of 5172, 4354, and 4023, respectively, indicating that these three types of areas are the most
significant areas of geological hazards.

Figure 6. The top 15 methods entities in the knowledge graph.
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Figure 7. The top 15 data entities in the knowledge graph.

Figure 8. The top 15 location entities in the knowledge graph.

7. Discussion

7.1. Discussions of Generalizability

In this subsection, the outcomes generalizable to other contexts (e.g., use of papers written in
English) are discussed in the following two aspects.

1. Paper structure. In our practice, we crawled the abstract parts of the articles named entity
recognition. Therefore, our method has no special requirements for the structure of the article,
so long as the article contains a complete summary section.

2. Paper language. In terms of language (in English, for example), the model needs to be adjusted as
follows: Firstly, Chinese is based on characters, while English is based on words. Therefore,
to extend our method to English papers, we need to rebuild the seed acquisition patterns
(in Section 4.1.2) to build a training corpus for the model. Secondly, when doing NER tasks
in Chinese, one character corresponds to one tag, but in English, one word corresponds to
one tag. Therefore, to extend our method to English papers, we need to change the Chinese
character vectors to the English word vectors in the embedding layer (in Section 4.2.1) of the deep,
multi-branch BiGRU-CRF Model.
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7.2. Discussions of Extensibility

In this subsection, the extensibility of the proposed methods is discussed in the following two
aspects: the flexibility to accommodate new instances and the extensibility of the type of entities
extracted from the paper.

1. The flexibility to accommodate new instances. When a new paper is added to the Wanfang
database, the newly added papers can be processed into nodes and edges the following three
steps. The first step: crawling the abstract part of the new papers from the Wanfang database
through web crawler technology; the second step: using the deep, multi-branch BiGRU-CRF
model to identify the method, data, and location entities; the third step: the entity acts as a node,
and the connections between the entities and the papers act as edges to the knowledge graph.

2. The extensibility of the types of entity. At the same time, we also discussed what adjustments
our methods need to be made if new entity types (e.g., theory) are added. If a new entity type is
added, the deep, multi-branch BiGRU-CRF model needs to be adjusted as follows: First, we need
to manually design the seed acquisition patterns (such as A) and build the training corpus using
the methods mentioned in Section 4.1.2. Second, due to the addition of new entity types, the
probability value of the softmax output of the last layer of our model needs to be changed from 7
(“O,” “I-LDS,” “I-MED,” “B-LDS,” “I-DAT,” “B-MED,” and “B-DAT”) to 9 (“O,” “I-LDS,” “I-MED,”
“B-LDS,” “I-DAT,” “B-MED,” “B-DAT,” “B-THE,” and “I-THE”) in which “THE” represents the
theory entity.

7.3. Discussions of Limitations and Future Work

This research, however, is subject to several limitations. In this subsection, some possible
limitations are discussed in the following two aspects. The first limitation is that the proposed
method involves some manual work. First of all, our approach needs to define some patterns to
obtain the initial entity seed manually. And we also need to manually check the initial entity seed to
get the correct entity seed collections in Section 4.1.2. The second limitation is that we only use the
most straightforward method to obtain the relationships in our knowledge graph. That is, if article A
contains data B, we generate a triple (A-> “use data”-> B) and add it to the knowledge graph.

Therefore, in future work, we believe that how to reduce manual costs is still an important
research topic for the geological disaster knowledge graph construction. It would be a feasible method
to reduce manual costs based on weak supervision and distant supervision strategies. At the same
time, how to extract more accurate and diverse relationships, and even the joint extraction of entities
and relationships are also important research topics.

8. Conclusions

Our work aims to extract geological hazard named entities from the considerable body of
geological hazard literature and build a geological hazard knowledge graph. In this paper, a deep
learning-based NER model, the deep, multi-branch BiGRU-CRF model, was proposed to extract the
three types of entities (location, methods, and data) in geological literature and achieved the highest
average precision of 0.9413, an average recall rate of 0.9425, and an average F1 score of 94.19. Besides,
since the proposed model is a supervised model which requires a corpus, we proposed a pattern-based
method to construct a large-scale geological hazard NER corpus. Finally, we used the proposed
model to identify the entities in the 14,630 geological hazard-related research papers crawled on
the Wanfang knowledge base and constructed a large-scale geological hazard literature knowledge
graph containing 34,457 entities nodes and 84,561 relations. The following conclusions can be drawn:
(1) The pattern-based method which uses some manually designed patterns combined with the MFM
method can build an effective corpus with little manual costs. (2) The proposed deep learning-based
NER model that combines a multi-branch BiGRU layer and a CRF model has the best results in the
NER of geological hazards literature. (3) Knowledge graph technology can show the relationship
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between papers and methods, locations, and data. It can facilitate the analysis and reuse of geological
hazard literature.
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Appendix A

Since the data used in this paper are all from Chinese literature database, phrases in Table 2
in Section 4.1 and Table 7 in Section 6.4 are all in Chinese. For express convenience, we translate these
phrases to English. In this appendices, we present the original phrases in Chinese associated with
the Table 2 in Section 4.1, the Table 7 in Section 6.4 in this paper.

Table A1 shows the original patterns (regular expressions) in Chinese used in this work
in Section 4.1. Since it is designed in Chinese, we translate it in English for better reading in Table A2.

Table A1. The original patterns (regular expressions) used.

Entity Type Patterns (Regular Expressions)

Location ‘.*(地处|位于|在|形成|处于)(了){0, 1}([\S]+)(的){0, 1}(地区|区域|山区|流域|区).*’

Methods
‘.*(提供|使用|改进|利用|运用|提出|设计|发明|建立|构造|实现|根据|以

|基于|构建|结合|采取|采用|推广|通过)
(了|的|于|对应的|出){0, 1}(及){0, 1}([\S]+)(的){0, 1}(法|模型).*’

Data
‘.*(提供|使用|利用|运用|提出|设计|发明|建立|构造

|根据|以|基于|构建|制作|结合|采取|采用|通过|构建|收集)
(了|的|于|对|及){0, 1}([\S]+)(的){0, 1}(数据|资料|数据集).*’

Table A2. English translation of the pattern (regular expressions) used.

Entity Type Patterns (Regular Expressions)

Location
‘.*(located in|located in|in|form|located in)(of){0, 1}

([\S]+)(of){0, 1}(area|region|mountain area|river basin|zone).*’

Methods

‘.*(provide|apply|improve|utilize|using|put forward|design|invente|set up
| construct|achieve |according to|take |base on|construct |produce|combine

|adopt |adopt|by|construct)(of|of|of|corresponding|of){0, 1}
(and){0, 1}([\S]+)(of) {0, 1}(method|model).*’

Data

‘.*(provide|apply|utilize|using|put forward|design|invente|set up
|construct|according to |take|base on|construct|produce|combine|adopt|adopt

|by|construct|collect) (of|of|of|corresponding|and){0, 1}
([\S]+)(of){0, 1}(data|material|data set).*’

Appendix B

Table A3 shows the Chinese translation of the entities extracted from geological hazard research
papers in Table A4 in Section 6.4.
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Table A3. Entities extracted from geological hazard research papers in Chinese.

Paper Name Location Entities Methods Entities Data Entities

典型人类活动对边坡变形及稳定性的影响研究
西南地区
边坡区
采空区

现场调查
数值模拟
数值计算

拉格朗日差分法

地层岩性
降雨

降雨诱发滑坡预测模型研究 重庆地区

滑坡预测模型
概率预测模型
回归模型

滑坡发生概率模型
滑坡模型
正预报模型

降雨
降雨资料
滑坡资料
降雨量

面向对象的程潮铁矿矿山地质环境信息提取方法研究 山地
模糊分类方法
模糊分类
层次网络

遥感数据
遥感影像
遥感
影像数据

Table A4. Entities extracted from geological hazard research papers.

Paper Name Location Entities Methods Entities Data Entities

Study on the Influence of Typical
Human Activities on Slope Deformation and Stability

Southwestern China
Slope area

Goaf

Site survey
Numerical simulation
Numerical calculation

Lagrangian difference method

Stratigraphic lithology
Rainfall

Research on rainfall induced
landslide prediction model Chongqing area

Landslide prediction model
Probabilistic prediction model

Regression model
Landslide probability model

Landslide model
Positive forecasting model

Rainfall
Rainfall data

Landslide data
Rainfall

Research on Object-Oriented Methods for
Extracting Geological Environment Information of Chengchao Iron Mine Mountain

Fuzzy classification method
Fuzzy classification

Hierarchical network

Remote sensing data
Remote sensing images

Remote sensing
Image data
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