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Abstract: As the world's largest crowdsourcing-based street view platform, Mapillary has received 

considerable attention in both research and practical applications. By February 2019, more than 20,000 

users worldwide contributed approximately 6.3 million kilometers of streetscape sequences. In this 

study, we attempted to get a deep insight into the Mapillary project through an exploratory analysis 

from the perspective of contributors, including the development of users, the spatiotemporal analysis 

of active users, the contribution modes (walking, cycling, and driving), and the devices used to 

contribute. It shows that inequality exists in the distribution of contributed users, similar to that in 

other volunteered geographic information (VGI) projects. However, the inequality in Mapillary 

contribution is less than in OpenStreetMap (OSM). Compared to OSM, the other main difference is 

that the data collection demonstrated obvious seasonal variation because contributions to OSM can 

be accomplished on a computer, whereas images have to be captured on the streets for Mapillary, 

and this is considerably affected by seasonal weather.  

Keywords: Mapillary; volunteered geographic information (VGI); inequality; contribution 

behaviors  

 

1. Introduction 

 The advanced technology in geographical positioning system (GPS) embedded mobile devices 

and Web 2.0 allows citizens to participate directly in the construction of geospatial data, promoting 

the development of volunteered geographic information (VGI) [1]. The VGI data sources include 

image sharing websites (e.g., Flickr and Panoramio), personal social media platforms (e.g., Weibo and 

Twitter), and interactive mapping plans (OpenStreetMap and OSM). Mapillary 

(https://www.mapillary.com), as the first crowdsourcing-based platform to provide detailed street 

images, allows contributors to capture and upload street-level images through mobile apps, 

regardless of the travel mode: Walking, cycling, or driving. Besides the supporting app upload 

provided, web interface, desktop application, and command-line tools enable the flexible upload of 

images and videos to Mapillary. The convenient contribution methods have prompted volunteers to 

participate in contribution activities since the beginning of 2014, and now Mapillary has a total of 

543.8 million images, according to the official statistics. 

 Compared to Google Street View (GSV), images on the Mapillary platform follow the Creative 

Commons Attribution-ShareAlike 4.0 International (CC BY SA 4.0) License, which everyone can use 

for free. Mapillary images have been widely applied to the construction of street-level datasets for 

detecting cars, skies, and 64 other object categories to achieve a semantic understanding of street 

scenes [2]. Since Mapillary images include information about time and geographic coordinates, social 

and physical behavior of humans can be studied on a worldwide scale through an examination of 

user contribution patterns [3]. Similar to other VGI data, user contribution patterns and the data 
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accumulation process are the fundamental differences between Mapillary and traditional street view 

data platforms [4], and these analyses can provide a basis for answering questions about the quantity, 

quality, and type of Mapillary data [5, 6]. Walden-Schreiner et al. [7] used Flickr photos to assess 

seasonal patterns of visitor use in protected mountain areas, providing a basis for the effective 

management of protected areas. Li et al. [6] conducted an exploratory analysis of the characteristics 

of the contributors using Twitter and Flickr data. However, related studies on Mapillary are lacking. 

Juhász and Hochmair [8] analyzed the early stage of Mapillary, considering the overall development 

and individual contribution behavior of Mapillary in the first year, such as days of active 

contributions. As of now, Mapillary has been under development for more than five years, but no 

recent research has examined its development status and user contribution patterns.  

 Analysis of user contribution behaviors can help us better know the data sources, and the data 

sources are closely related to the Mapillary data quality [8, 9]. In this study, we did an exploratory 

analysis of Mapillary data in order to have a deep insight into the Mapillary community. The analysis 

of changes in the number and contribution of users in different regions can help us assess user loyalty 

in data collection. In general, a user-friendly platform is attractive to users; Mapillary in particular 

provides a multi-mechanism data sharing opportunity. We assume that users continue to contribute 

images to Mapillary, which is significantly responsive to the timeliness requirements of street view 

data, while many high-end street view platforms (like GSV) data updates take a long time and a huge 

amount of resources. In addition, knowing about the user’s contribution patterns (walking, cycling, 

and driving) and the equipment used for contribution can give us a more targeted understanding of 

the data composition of Mapillary. Contribution inequality has substantial and complicated impacts 

on data quality and on the developments of the project [4]. We expect the emergence of a small set of 

users who do most of the work in the Mapillary community. That means that most data come from 

active contributors with expertise in the tools used and rich experiences, which may lead to higher 

data quality, but also means that a small number of contributors could have a huge impact on the 

project. Therefore, the analysis of these active users is more representative for us to explore the 

contribution behaviors in Mapillary. 

The rest of the paper is structured as follows: Section 2 reviews the related work. Section 3 

introduces the data sources and the current status of Mapillary. Section 4 explores the imbalances in 

Mapillary. The contribution behaviors of major users are analyzed in Section 5. Finally, the results of 

this paper are summarized in Section 6. 

2. Related Work 

 The contribution inequality problem is common in VGI data contributions, with research 

reported in Wikipedia [10], Flickr [3], Panoramio [3], and OSM [5]. Arazy and Nov [11] explored both 

the direct and indirect effects of contribution inequalities in Wikipedia and found that global 

inequality significantly positively impacts article quality. Yang et al. [4] conducted a temporal 

analysis of the inequality of contribution in OSM in different countries, indicating that contribution 

inequality is related to the import of data. After exploring the emergence of participation inequality 

on both temporal and spatial scales and evaluating the implications for the use of VGI, Haklay [12] 

proposed that the contribution inequality in the analysis of a VGI project must be considered. In the 

initial Mapillary research, contribution inequality was also found [8], showing that a small number 

of people have a large average contribution per week, accompanied by a longer contribution activity. 

User contribution to Mapillary has been ongoing. How will the inequality of contributions in 

Mapillary change? Analyzing the changes in contribution inequality helps in understanding the 

development of Mapillary. This was explored in this study. 

 The quality of VGI data has always been the focus of attention. Many studies have evaluated the 

data quality of OSM from different object levels such as road network [13], point [14], line [15], and 

polygonal [16]. Hagenauer and Helbich [17] mentioned, in their research, that nearly all ‘empirical 

studies have shown that urban areas are better mapped’ in OSM . Data completeness is one of the 

major data quality elements, Juhász and Hochmair [8] analyzed the completeness of Mapillary and 

believed that its data have better coverage on pedestrian and cycle paths in some cities than GSV. 
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Vladimir et al. [18] used Mapillary and GSV images to determine the geographic location of the 

detected object, and experiments showed that, as the amount of Mapillary images increased, the 

detection accuracy was closer to that of high-end street data. In many scenarios, Mapillary can already 

be used as a substitute for GSV images to some extent. The development of VGI has produced large 

amounts of related research, not only related to the quality of VGI data, but also regarding 

contributors who have participated in VGI activities. Neis and Zipf [5] divided OSM contributors into 

four categories according to the number of nodes contributed by members and analyzed the 

attributes of members, such as location and activity area. Alivand and Hochmair [3] analyzed the 

photo contribution patterns of Panoramio and Flickr in California, USA, including the type of data 

growth and the environment associated with data contribution counts. Yang et al. [19] relied on a 

behavior-based approach to assess the expertise of major contributors and judged whether they were 

professionals or amateurs. Juhász and Hochmair [8] analyzed the Mapillary user contribution 

patterns on both the country and continental level, as well as the individual level, revealing the early 

development of Mapillary. The analysis of the contribution patterns in VGI projects helps in further 

exploring people's behavior mechanisms and in evaluating the quality of VGI data. Antoniou and 

Schlieder [20] studied the spatial behavior of contributors to OpenStreetMap in the Greater London 

Area, linked it to gamification mechanisms, and found that it can help in addressing participation 

issues with spatial allocation games. Zielstra et al. [21] proposed a method to determine the home 

regions of the OSM contributors, based solely on the spatial clustering of the created nodes by 

analyzing the OSM data types contributed and the editing behaviors of users. Bégin et al. [22] 

suggested studying contributors’ mapping behavior, such as preferences for objects to map, to 

understand the characteristics and quality of the data produced. 

3. Overview of Mapillary Today 

 In this section, Mapillary data are analyzed statistically to provide an overview of the 

development in Mapillary to date.  

3.1. Data Preparation 

 Mapillary data contain images captured by GPS-embedded devices when contributors are 

driving cars, riding bicycles, or walking. When the Mapillary app is used, the device automatically 

captures street view images at regular intervals. Thus, each image can be represented by a GPS node 

with a timestamp. These consecutive nodes form a trajectory, which is called a sequence in Mapillary. 

If the app is stopped or the GPS signal is lost, then the subsequently acquired images are considered 

as another sequence.  

 Mapillary data can be accessed through its official Application Programming Interface (API), 

including images and sequences as the two main types. In this article, we use the sequence data for 

analysis. We did not consider the image content, and only accessed and downloaded the attribute 

information of the sequence. The data cover the period from January 2014 to February 2019. Mapillary 

allows developers to search for data using different Uniform Resource Locator (URL) parameters 

(Table 1), and we use the “bbox” and “end_time” as URL parameters to access data. “Bbox” means 

filtering by the bounding box, defined by four parameters, including the minimum/maximum 

longitude and latitude of the bounding box. “end_time” represents filtering sequences that are 

captured before the end time. Since Mapillary only has 1000 data per page for a particularly dense 

area, it was necessary to hierarchically partition the bounding box for iterative queries in order to 

obtain complete sequence data. We divided the bounding box containing more than 1000 sequence 

records into four equal-size blocks, and then queried and downloaded the data of each small block. 

A block was further divided until no sub-block contained more than 1000 sequences. 
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Table 1. Uniform Resource Locator (URL) Parameters used to search for data in Mapillary. 

URL Parameter Type Description 

bbox Number[] Filter by the bounding box, given as minx, miny, 

maxx, maxy. 

closeto Number[] Filter by a location that images are close to, given 

as longitude, latitude. 

end_time Date Filter images that are captured before end_time. 

image_keys Key[] Filter images by a list of image keys. 

lookat Number[] Filter images that images are taken in the direction 

of the specified location (and therefore that 

location is likely to be visible in the images), given 

as longitude,latitude. Note that If lookat is 

provided without geospatial filters like closeto or 

bbox, then it will search global images that look at 

the point. 

organization_keys Key[] Filter images by organizations. 

pano Boolean Filer panoramic images (true) or not (false). 

per_page Number The number of images per page (default 200, and 

maximum 1000). 

private Boolean Filter images by private (true) or public (false). 

radius Number Filter images within the radius around the closeto 

location (default 100 meters). 

sequence_keys Key[] Filter images by sequences. 

start_time Date Filter images that are captured since start_time. 

userkeys Key[] Filter images captured by users, given as user 

keys. 

usernames String[] Filter images captured by users, given as 

usernames. 

 The downloaded sequence data were in Geojson format. In total, we acquired about 37 GB of 

data. For subsequent spatial operations and analysis, we stored the sequence data in a PostgreSQL 

database with PostGIS extensions. Each sequence had various properties, as shown in Table 2. Each 

user corresponds to a separate “user_key”, and each sequence also has its own separate “key”. In 

case of image blur and/or GPS signal loss, Mapillary prevents the device from taking images and 

closes the current sequence. However, this mechanism was not implemented in the early days of 

Mapillary. To remove these data errors in the earlier version, Juhász and Hochmair [8] removed 

straight line segments that were 1 km long or longer. Under normal circumstances, if the Mapillary 

app has a signal and works normally, the distance between the two data points uploaded by the user 

should be relatively close. If the two points are far apart, this indicates that the app is likely 

experiencing an error. In this study, we also used 1 km as the threshold to remove erroneous data to 

ensure that the sequences represented the true coverage of the captured images. 
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Table 2. Sequence properties in Mapillary. 

Property Type Description 

camera_make String Camera model name 

captured_at Date When sequence was captured 

created_at Date When sequence was uploaded 

coordinateProperties Object Properties for coordinates 

key Key Sequence key 

pano Boolean 
Whether the sequence is panorama (true), or not 

(false) 

user_key Key User who captured the sequence 

username String Username of the corresponding user. 

 On Mapillary, no information is provided about where a user is located, because users do not 

have to provide geographical profiles (i.e., country of residence) during registration or data upload. 

Therefore, identifying the country that a Mapillary user is from is difficult. In this study, we identified 

users’ countries of residence based on the common knowledge that users normally contribute in the 

areas where they live. The rules used for the identification were as follows: 

(1) Calculate the number of days the user contributes in different places, and the place with the largest 

number of contributions determines the user's country; 

(2) When the contribution days are the same, the user's country is determined according to the 

sequence length of the cumulative contribution; 

(3) When neither of the above two was able to produce an identification, the user's country was 

determined according to the location of the user's first contributed sequence. 

 It is difficult to exactly identify the user's residence area. In general, the longer a user contributes in 

a country, the more likely he or she is living here. Therefore, we first determined the country of residence 

based on the number of days that the user contributed. The length of the sequence indicates the time and 

extent of the user's contribution in the area. Usually, local users are more likely to make long-distance 

streetscape contributions. When neither of the current rules are available, we assume that the first sequence 

created by the user is located in close proximity to his or her residence. In fact, new users generally create 

their first new objects in areas that they are familiar with [5]. Notably, the country identification of users 

in this work does not mean nationality or the country to which they belong in any political sense. In 

this work, country identification is where users are living when they contribute to Mapillary, if they 

are identified with a country.  

 

Figure 1. The distribution of users in various countries. 
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 Figure 1 depicts the distribution of Mapillary users by country based on the above rules. Only 

the top 14 countries are shown here. The statistical results indicated that all identified users live in 

190 countries. We were unable to determine country information for 2.63% of users, maybe due to 

factors such as GPS positioning offset. By the end of February 2019, about 9.2% of the total users were 

identified with the United States, having the largest number of users in all countries. A significant 

number of users were concentrated in European countries. Among the top countries were Germany, 

France, Sweden, and the United Kingdom. Similar results were also reported in the OSM statistics, 

where the number of German members was also at the forefront [5]. This reflects the VGI project 

having a good development environment in Germany, and many people recognize the VGI 

development pattern and are willing to participate in the activities. Sweden, as the origin of the 

Mapillary project, also has a certain user base. Apart from the United States, the countries with a large 

number of users in the Americas are Mexico and Brazil. We found many users from China and India 

in Asia.  

3.2. Overall Mapillary Situation 

 In total, by February 2019, there were 2,609,215 sequences for the whole world, with a total length 

of 6,256,943.445 km. On some roads, the sequences contributed by users were overlapping. These 

data were contributed by 21,948 users and cover 211 countries and regions. Figure 2 depicts the 

monthly contribution in terms of the length of sequences around the world. A certain number of 

street view image sequences were uploaded to Mapillary each month since 2014, and the total length 

increases each year. In Figure 2, the user’s highest monthly sequence length contributions are 

concentrated in July or August of each year (the most contributions in 2018 were provided in May, 

and the contributions in July and August were slightly lower). This is the time when users contribute 

the most each year. The trough corresponding to the annual contribution in Figure 2 occurs in January 

or February of each year. However, the overall observations, the corresponding peaks, troughs, and 

mean values continue to grow each year, following a linear tendency. Simultaneously, the 

distribution of peaks and troughs is similar every year, showing a certain regularity, which indicates 

that the contribution of users is related to time. We discuss this in further detail in Section 5.1. 

 

Figure 2. The length of sequences contributed by users each month. 

 To explore the differences in the development of Mapillary in different regions, we analyzed the 

changes in both the global sequence data and the number of users at the continent level. Almost no 

activity was recorded in Antarctica and thus it was not considered. The lines in Figure 3 show how 

the total length of the Mapillary sequences collected in each continent changed monthly from January 

2014 to February 2019. These histograms show the cumulative number of users participating in the 

Mapillary contribution activities for different years on each continent from 2014 to 2018. While the 

growth rates in the sequence length of various continents are different, they all show a gradual 

growth trend. As of February 2019, the total length of sequences in Europe, North America, and Asia 

ranked in the top three. Among them, Europe and North America far exceeded the length of the 

sequence in Asia, indicating that the users in these two regions are active, and the contribution to 

Mapillary is positive. The growth of Mapillary data is inseparable from the constant participation 



ISPRS Int. J. Geo-Inf. 2020, 9, 10 7 of 21 

and contribution of new and old users. By the end of 2018, the number of users in Europe was far 

ahead, followed by Asia and North America. The number of users on the other three continents was 

relatively small. The growth rate of European users far exceeded that of other continents. Considering 

the sequence length of each continent, in general, the development of Mapillary has been faster in 

Europe. A large number of users participate in Europe, and the overall amount of data is large. In 

comparison, both the total length and the growing rate of the sequences in North America are 

significantly higher than those in Asia, whereas the number of active users in Asia is higher than in 

North American every year. This means that active users in North America are more productive than 

those in Asia.  

 

Figure 3. Variations in the sequence length and number of users in each continent. 

 We divided contributors into six parts, based on the year of contribution to Mapillary since 2014. 

Figure 4 depicts the monthly composition changes in the type of contributors. A significant number 

of new users join the Mapillary data collection activity every year, and some old users still contributed. 

Some users who have contributed since the beginning of the project in 2014 are still active in 2019. 

 

Figure 4. Changes in the composition of users. 

 

 We counted the changes in the number of users who continued to contribute uninterruptedly 

each year. In Table 3, the first number in each row indicates the number of new users who started to 

contribute in year A (the listed year for that row or column). The following cell provides the number 

of users who still contributed in year B (the year listed in the corresponding column). For example, 

1740 users started to contribute in 2014, 779 of which still contributed in 2015. By February 2019, 140 

of these old users participated in the contribution for more than five years. These users are mainly 

from 40 countries around the world. The specific distribution is displayed in Figure 5. The largest 

number of users was in Germany, where 20 users contributed Mapillary data every year for more 
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than five years, followed by the United States and Japan, with 14 and 11 users, respectively. 

According to the statistics, the top three users of the total length of the contribution are among the 

140 old users. The user with the longest contributed sequences is from the United States, with a 

cumulative contribution of more than 278,000 km. The user contributing the second-most is also from 

the U.S. and the third is from Sweden. 

Table 3. Number of users who continue to contribute each year. 

Year 2014 2015 2016 2017 2018 February 

2019 

2014 1740 779 539 376 273 140 

2015 - 2924 876 455 299 115 

2016 - - 4068 1299 391 118 

2017 - - - 5190 1084 205 

2018 - - - - 7205 513 

 

Figure 5. The distribution of users who have contributed every year from 2014 to February 2019. 

 

 While the older users continue contributing for many years, the number of new users is 

increasing every year. The rapid growth of the community indicates that increasingly more people 

are supporting Mapillary, guaranteeing the follow-up development and data enrichment of 

Mapillary. The Mapillary users who have provided long-term contributions often have more 

experience and collection techniques, which, to some extent, ensure that Mapillary receives better 

quality data. The continuous contribution activities show that Mapillary provides a good user 

experience that is attractive to users. Overall, the Mapillary community is in a good state. 

 We statistically analyzed the length of the Mapillary sequence in countries. The results showed 

that the development is unbalanced between countries; the value in a small proportion of a region is 

very high, whereas the sequence length in many regions that occupy a large area of the world map is 

short. To more clearly and intuitively describe the length of the unit sequence of Mapillary in each 

region, we used an algorithm [23] to display the data (Figure 6). Figure 6 shows that regions with a 

higher sequence length per unit area are mainly concentrated in Europe. The Netherlands ranks as 

number one in the world, followed by Germany, Belgium, Denmark, and other European countries. 

In North America, the length of the sequence per unit area is higher in the United States. In Asia, 

many countries have relatively low values, so countries such as Russia and China, which occupy a 

large geographical area, are strongly distorted. Only Japan and Thailand have relatively high values. 

Many users in China and India are involved in Mapillary, but, as seen in Figure 6, the length of the 

sequence within the unit area of these two countries is small. Many users may simply attempt a single 

Mapillary data collection or contribute on a small scale. For China, Mapillary data are mainly 
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concentrated in Taiwan and Hong Kong. Overall, Mapillary's global coverage is uneven. Most 

European countries and the United States have more abundant data. 

 
Figure 6. Country/region unit area (100 km2) sequence length. 

 

Figure 7. User composition in selected countries. 

 We selected countries with a large number of users and rich sequence data to explore the country 

composition of users. Figure 7 shows the mutual contribution of users from eight countries, including 

Germany, the United States, and France. The different countries in the figure are represented by arcs 

of different colors, and the bands of the same color as the arcs indicate that the users of the 

corresponding countries have contributed to other countries. The wider the ribbon, the more users 

are represented. Users contributing in foreign countries is common in Mapillary. Users in countries 

with close geographical proximity contribute more to each other. Many German users have 

contributed to Mapillary in other countries. Many sequences collected by these users are found in 

many European countries such as the Netherlands and the United Kingdom. Most German users 

contributed to France. Many users in other European countries have also mapped Mapillary 

sequences in Germany. Users in the United States also have close links to the European countries and 

they contributed to each other. The user composition in Japan and Australia is diverse, but the 

number of users connected to the other six countries is relatively low. 

 From mobile phones to high-end cameras, the Mapillary platform can process images from a 

variety of devices. Therefore, the tools used by users for data collection are diverse. Figure 8 shows 
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the distribution of devices used by contributors when collecting data. Here, we only display devices 

with more than 1000 sequences. Among them, Samsung, Apple, Microsoft, Garmin, and Sony are the 

leaders. Capture settings include smartphones (Samsung, Huawei, Apple, etc.) as well as professional 

capture devices (Trimble, Garmin, etc.). Smartphones of various brands are the most widely used by 

users. The devices available are versatile and the acquisition environment is not limited, which is 

extremely user-friendly. People can use simple tools to collect street view images and contribute to 

Mapillary, which facilitates data collection for users and enhances the contribution experience of new 

users. 

 

Figure 8. Distribution of camera sensors/devices used for sequence capturing. 

 

 The camera sensors and devices used in each country to collect Mapillary sequences are diverse. 

We counted the top five equipment most used to capture Mapillary sequences in some countries, and 

found that 16 main types were used in the nine countries (Figure 9). The base graph in Figure 9 shows 

the number of street view images per unit area (1 km2) using the same algorithm as Figure 6. The 

distribution of the number of images per unit area is similar to the sequence length within the unit 

area (Figure 6), and Europe has a higher image density. We selected some countries with high density 

to count the more frequently used (top five) device types and present the results in donut charts. 

Apple was the most commonly used brand, and ranked among the top five in all the selected nine 

countries. Samsung and Sony were also popular. 

 

Figure 9. Top five camera sensors/devices most used in some countries. The base map is the number of images 

per unit area (km2) for each country. 



ISPRS Int. J. Geo-Inf. 2020, 9, 10 11 of 21 

 

 Mapillary allows people to collect street view data while walking, cycling, or driving. Various 

contribution models help people to better participate in Mapillary. We calculated the average speed 

of each sequence to determine the contribution method when the user was collecting the data. To 

reduce the impact of equipment and positioning errors, we removed the sequences with fewer than 

20 images. For the remaining sequences, we obtained the time when the first and last images in the 

sequence were captured, and used the interval between them as the total collection time. The ratio 

between the geographical distance corresponding to the sequence and the total time was taken as the 

average speed. According to the information obtained, the walking speed of most people was 5 km/h, 

whereas cycling speed was about 20 km/h. In this study, sequences with a speed below 8 km//h were 

assumed to be collected while walking. Sequences with speeds greater than 25 km/h were considered 

to be collected by driving. The other sequences were captured by the users while cycling. Figure 10 

shows the distribution of the number of sequences and images captured in different ways. The 

sequences with less than 20 images accounted for 40.9%, but the corresponding total number of 

images was very small, accounting for only 0.5% of all images. This is consistent with the relationship 

between sequence length and the number of images. That is, the shorter the sequence, the fewer the 

images. A large number of short sequences indicate that most contributors have only made simple 

attempts. In Figure 10, 72.8% of the images were collected by driving. This means that most users 

prefer to use Mapillary when driving. Generally, users travel further and more easily by driving, so 

that the number of images in distant trajectories was also large. This further explains why the images 

included in the sequences contributed by driving accounted for 72.8% of all images. 

 

Figure 10. Distribution of contribution modes used for capturing data. 

 

4. Contribution Inequality 

 Figure 11 depicts the distribution of the number of sequences and images contributed by users 

from high to low. The histograms in Figures 11a and 11c are highly right-skewed, and this 

distribution state is consistent with the form of the power law. The power law is often called a heavy 

tail or long tail distribution, indicating an imbalance in the quantity distribution [24]. In this paper, it 

indicates that many Mapillary users contributed a small number of images and sequences, whereas 

a small number of users contributed a large amount of data. Figures 11b and 11d are the 

corresponding log-log plots. As the number of sequences and images increases exponentially, the 

number of users who provide these contributions significantly decreases. Juhász and Hochmair [8] 

also found that Mapillary users have similar distribution patterns in terms of average weekly 

contribution distance, active days, and radius of gyration. 
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Figure 11. Distribution of the (a, b) number of images and (c, d) sequences; (b, d) log–log plots. 

 

 The user contributions in Mapillary are unbalanced, so we wanted to determine how the 

inequality in the Mapillary community changed over time and if any differences existed between 

different regions. Yang et al. [4] proposed a method of quantifying inequality to explore temporal 

changes in participation inequality in OSM contribution activities. In this study, we also used the Gini 

coefficient (G) to depict a quantitative measure of contribution inequality. G is a single number that 

measures the degree of inequality in a distribution. Its value ranges from zero to one, where a larger 

value indicates a higher level of inequality. G is usually defined mathematically, based on the Lorenz 

curve. As shown in Figure 12, we sorted the contribution of the users in ascending order, and set the 

cumulative share of contributors as X and the cumulative share of contributions as Y in order to obtain 

the Lorenz curve of the Mapillary contributions. The line at 45 degrees, which is called the line of 

equality, represents perfect equality of contributions (the value of G is zero). G can then be thought 

of as the ratio of the area that lies between the line of equality and the Lorenz curve (A) over the total 

area under the line of equality (A and B). That is: 

rea

rea rea

A

A A

A
G

A B
=

+
. 

 

Figure 12. The concept of the Gini coefficient (A represents the gray part of the graph, and B represents the 

blue part.). 

 

 To further explore the time and space differences in user contribution inequalities, we selected 

some countries with abundant data and extensive distribution in order to analyze the variation in G. 

Figure 13 shows that G values of the seven countries are relatively high, whereas the contribution 
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inequality from 2014 to 2018 fluctuated, but the value increased. This shows that extreme contribution 

inequality exists in all countries and the situation is still growing. In 2018, G of all countries exceeded 

0.9, of which Japan was far higher than 0.95. These values are significantly higher than Wikipedia's 

contribution inequality (0.84) [25], but most are less than OSM (more than 0.95) [4]. 

 

Figure 13. The Gini coefficient of selected countries. 

 

 We also calculated the indicator of the top X% of all contributors, accounting for Y% of all 

contributions to obtain more information in order to further illustrate the changes in contribution 

inequality by country. Figure 14 shows the changes in the selected countries every three months from 

2014 to 2019, including the percentage of top users who completed 95%, 90%, 80%, and 50% of all 

contributions. The proportion of top users required to complete the same contribution has declined 

significantly over time because most of the contributions of new volunteers are relatively few, and a 

small number of old users have contributed a large amount of data in the past and continuously 

collect images, so the cumulative contribution ratio increases. In Germany, for example, providing 

90% of contributions in March 2014 required about 40% of users, whereas by 2018, only 13% were 

required. Notably, users in Australia, the United Kingdom, and other countries in early 2014, due to 

the relatively small number of users, 90% or more contributions required all the users. However, over 

time, the difference in contributions between users increases and the number of users required to 

complete these contributions drops dramatically. 
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Figure 14. The percentage of contributors to reach a certain percentage of contributions. 

 

5. Behaviors of Major Contributors 

 A large number of users contribute only a relatively small amount of data, and the majority of 

contributed data is the result of the top users’ work, so the behavior of a small number of users can 

reflect the Mapillary community more objectively. In this study, we chose users with relatively large 

contributions as the main contributors to the analysis, primarily including top users who have 

provided more than 90% of the contributions (the length of all sequences) from 2014 to 2019. We 

called them "major contributors". According to statistics, a total of 1294 users were selected. These 

users come from 111 countries. Table 4 shows the top 15 countries with the total number of major 

contributors. Among them, the United States and Germany have the largest number, with 222 and 

143, respectively.  

Table 4. Top 15 countries with the total number of major contributors. 

Country/Region Number of Users 

United States 222 

Germany 143 

France 83 

Sweden 56 

Russia 43 

Brazil 37 

Poland 36 

United Kingdom 35 
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Country/Region Number of Users 

Netherlands 34 

Italy 30 

Spain 30 

Thailand 26 

Denmark 25 

Japan 25 

Ukraine 25 

 The data contributed by these major contributors have a wide geographical distribution. We 

calculated the proportion of each country in terms of the number of sequences and the length of the 

sequence in the total contributions as of 2019. Table 5 shows the results of user contributions in the 

top 15 countries and is ordered by the number of sequences. The major contributors in the US 

contributed nearly 30% of the total sequences length and the total number of sequences exceeded 

26%, both of which far exceeded those of other countries. Similar to Table 4, the number of sequences 

contributed by these users in Germany ranks second. We further analyzed the contribution patterns 

of these major contributors. 

Table 5. Top 15 countries with the total contributions (ordered by number of sequences). 

Country/Region Number of Sequences (%) Length of Sequences (%) 

United States 26.16% 29.85% 

Germany 8.71% 10.56% 

Australia 7.78% 4.60% 

Sweden 6.93% 5.13% 

France 6.87% 5.70% 

Japan 4.73% 2.24% 

Netherlands 3.65% 5.09% 

Russia 3.30% 2.10% 

Romania 2.73% 2.77% 

Mexico 2.02% 0.87% 

Italy 1.94% 1.35% 

Belgium 1.80% 1.42% 

Brazil 1.79% 1.73% 

Denmark 1.61% 1.96% 

Thailand 1.54% 1.64% 

5.1. Temporal Pattern of Contributions 

 Each sequence has a "captured_at" attribute (Table 1) that represents the time at which the 
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corresponding street view sequence was captured. This attribute helps us explore the time 

distribution of the user's contribution activities. Due to the large time zone differences and the size 

of the global region, we selected some countries from Table 5 with different time zones and 

geographical locations for comparative analysis. Figure 15 shows the contributions of each country 

in different months. Sweden, the Netherlands, and Germany are located in the higher latitudes of the 

Northern hemisphere. The contribution trends of Germany and the Netherlands are similar for each 

month: Gradually rising from January to May and declining from August to the end of the year. 

Contributions in June and July were significantly lower compared to May and August. Sweden, 

which lies at a higher latitude than the other two countries, had a higher contribution in June, July, 

and August. This is likely mostly related to temperature and the length of daytime in different seasons. 

In hot weather in Germany in June and July, people reduce their outdoor activities and their 

contribution to Mapillary decreases accordingly. At other times, as the monthly temperature changes, 

people's contributions continue to change accordingly. Due to the high latitudes in Sweden, the 

temperature is not too high, but it is relatively warm during June, July, and August, and the main 

contributors are more active during those months. United States and Japan, which have lower 

latitudes, have no such obvious trends. Corresponding to Australia in the Southern hemisphere, the 

main contribution months were concentrated in November, December, and January, as the 

temperature is higher throughout the year. 

 
Figure 15. Monthly contribution of users. 

 

 Mapillary uses UTC format to describe the time attribute of the sequence. We converted UTC to 

the corresponding local time to explore the user's contribution at different periods during the day. 

Here, we used the above six countries as examples for analysis. For countries with a wide range of 

longitudes, such as the United States and Australia, we used the country's central time zone as the 

basis. Figure 16 depicts the time distribution of the major contributor acquisition sequences. User 

contributions are obviously tied to the time of day. Many contributions are provided during the noon 

period, and few contributions were made in the morning and evening. While the timing of the peak 

level of contributions each day varies from country to country, the overall trends are similar: They all 

rise gradually before the highest contribution and then fall. Both the rise and fall are accompanied by 

fluctuations, which is in line with our general understanding. The shooting of street view data 

requires certain lighting conditions, and better data can be obtained during the day. Japan and 

Australia still provided relatively high contributions in the middle of the night. We observed some 

corresponding images content and found that the property time of many images were wrong. We 

noticed that the image time of the Mapillary platform states that it is late at night, but the image 

content is of daytime scenes. This shows that a problem occurred with the time attribute of a batch of 

data in the Mapillary data, which may be caused by user upload, by an error when performing the 

UTC conversion. 
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Figure 16. Users’ contribution time distribution. 

5.2. Spatial Contribution Density of Major Users 

 The Mapillary contributors show a phenomenon of repeated contributions on one road. To 

analyze the repeated contribution of major users, we defined spatial density as an indicator of 

quantitative analysis. Figure 17 shows the processing steps for calculating spatial density. First, the 

minimum bounding rectangle was obtained, based on all sequence positions contributed by the user. 

Then, we divided the minimum boundary rectangle into grids of 500 × 500 m (grids with edges less 

than 500 m were extended). Subsequently, the grids that did not intersect the sequences were 

removed, and the remaining grids represented the region where the user provided contributions to 

Mapillary. These remaining grids are called “contributions grids” in this paper. Finally, we calculated 

the number of sequences that intersected with each on the contribution grids. This quantity is the 

spatial density of the corresponding grid. The higher the density, the more frequently the user is 

active in the area, and the street view data in the area are relatively rich. Figure 18 visualizes the 

partial spatial density of one of the major users. The user comes from Bangladesh and the area 

indicated in the figure is located in Dhaka. The darker the color, the more the sequences in the grids. 
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Figure 17. Spatial density calculation process: (a) Sequences, (b) grids generated based on the minimum 

bounding rectangle, and (c) actual contribution area. 

 
Figure 18. An example of user’s spatial contribution density. The base map is the OSM map somewhere in 

Dhaka. The darker the color, the more the sequences in the grids of 500 × 500 m. 
 

 When different users contribute to Mapillary, the areas of activity vary considerably. Therefore, 

the number of contribution grids corresponding to different users is also different. In the analysis, 

users were divided into three categories according to the number of grids. The proportion of users 

with a contribution area covering less than 1000 grids was 30.3%, which we called small-scale 

contributors; the medium-scale contributors, whose cumulative grid numbers were between 1000 and 

2000, occupied about 44.7% of the total users; and the proportion of large-scale contributors with 

cumulative grid numbers exceeding 2000 was 25.0%. 

 Patterns with a measure value above given threshold are called interesting patterns with respect 

to that measure [26]. Similarly, for all contribution grids we defined a grid with a density greater than 

three as the active grid. An active grid means that users contribute at least four sequences in the grid, 

indicating that users have passed through multiple times in the corresponding area. These areas are 

usually relatively familiar or important to the user. In general, small-scale contributors are more likely 

to repeatedly contribute data in a certain area. Statistics also showed that the proportion of active 

grids of the three groups of users accounted for 24.4%, 12.3%, and 8.9% of the total contributions of 

each group, respectively. This indicates that, as the scope of user contributions expands, the 

proportion of areas where users repeatedly contribute data decreases. The area in which a person is 

constantly active is limited. When users contribute data in a wider range, many places are new to 

these users, which are passed by only occasionally, so the spatial density of many grids will be less 

than three. 

 Figure 19 displays the distribution of the number of active grids for each group of users. As the 

scope of contributions expands, the proportion of users with more than 200 active grids increases 

significantly. The proportions are 29.3%, 37.7%, and 53.7%, for small, medium, and large-scale 

contributors, respectively. When expanding the scope of contribution, users inevitably provide 

repeated contributions in the previously contributed regions. This may occur because the user's living 

environment and the surrounding road system are relatively fixed. Therefore, the user must 

repeatedly pass through some traffic and living areas when contributing street view data to new areas. 

However, the new contribution area is still much larger than the area of these repeated contribution 

areas. Thus, as the area of total contribution increases, the proportion of the area corresponding to 

the active grids decreases from 24.4% to 8.9%. 
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Figure 19. Number of active grids per contributor group. 

 

6. Conclusions and Future Work 

 In this study, we analyzed the overall situation of Mapillary from many aspects. According to 

the data collected, by February 2019, a total of 21,948 users worldwide had contributed to Mapillary. 

Among them, 140 users continuously contributed data from the beginning of 2014 to February 2019. 

Mapillary data vary widely by continent. Street view images are abundant in Europe and North 

America with many users around the world. We determined the user's country according to set rules. 

About 62% of users were from Europe, Asia, and North America. These users were mainly identified 

with the United States, Germany, China, India, and Italy. We identified 2019 users in the United States, 

the largest number of users in all countries. For all users, approximately 10% contributed to at least 

two countries. Users in countries with geographical proximity provide more mutual contributions. 

We found large differences in sequence length and the number of images in different regions. Many 

European countries and the United States had long Mapillary sequences and a large number of street 

view images. While many users were located in Asia, the overall sequence length was short. This was 

shown in the sequence length distribution within the unit area of each country. Only Japan and 

Thailand had a certain length in Asia, indicating that users in Europe and North America were more 

productive than those in Asia. The devices that users use when collecting data were diverse. 

Frequently used capture settings included smartphones (Samsung, Huawei, Apple, etc.) and 

professional capture devices (Tianbao, Garmin, etc.). Users can collect data using hand-held devices 

while walking, and can also contribute to Mapillary when cycling and driving. More than 70% of 

street view images were captured by users while driving. These analyses give us a further insight 

into the composition of Mapillary data from different perspectives. Meanwhile, our research reveals 

the true source of crowdsourced data and the quantitative distribution of Mapillary, which can help 

us understand the development of Mapillary at different stages. 

 Similar to other VGI data contribution platforms, we found inequalities in the contributions in 

Mapillary. A small percentage of users contributed most of the street view data, which indicated that 

Mapillary's data quality was closely related to a small number of users. We selected 1294 major users 

for analysis who were top users that contributed more than 90% of the cumulative sequence length 

from 2014 to 2019. We mainly analyzed the main users from two aspects: Time and space. The 

statistical results showed that the user contributions were closely related to temperature and daytime 

length in different seasons. Users contributed more data during the warmer months. The 

contributions at noon were the highest. During the hot months, people reduced their outings and 

their contributions decreased. We explored the repeated contributions of major users in certain spatial 

areas. The concept of spatial density was proposed for quantitative analysis. According to the scope 

of the users’ activities, we divided users into small, medium, and large-scale contributors. We used 

areas with a spatial density greater than three to represent where the user is most often active and 

explored the distribution of active grids for different groups of users. The results showed that, as the 
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scope of contributions expands, the scale of repetition increases. However, the proportion of the 

repeated area was much smaller than the area where users newly captured the street view images. 

This reflected that the contributions of most users were always around a specific area, which can be 

a place of residence or office space. These few contributors have a huge impact on the project and can 

most intuitively reflect the contribution behaviors of the Mapillary community.  

 The exploratory analysis in this paper provides a more intuitive understanding of the 

development process of the Mapillary community and they provide a valuable basis for answering 

questions about Mapillary's data quality [5]. The Mapillary data also include some other properties, 

such as the “edits” attribute enabling the user's further data processing. The user can be subsequently 

analyzed by combining more attributes with the quality of the user's images. In addition, we can 

aggregate contributors from different locations with similar contribution behaviors to analyze the 

group behavior characteristics of contributors [27]. 

 To date, passionate users (users who keep contributing since registration) of Mapillary increases 

steadily by more than 100 annually. This guarantees the healthy development of the project. In the 

next few years, images on Mapillary will continue to increase rapidly, and the problem of inequality 

in contributions will remain. However, the inequality in image coverage will significantly decrease, 

because people will contribute to less covered regions. At the same time, we believe that Mapillary 

will draw more attention from the research domain, especially with urban geomatics and 

autonomous driving.  
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