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Abstract: In this paper, we propose a method to visualize large-scale colliding point clouds by
highlighting their collision areas, and apply the method to visualization of collision simulation.
Our method uses our recent work that achieved precise three-dimensional see-through imaging,
i.e., transparent visualization, of large-scale point clouds that were acquired via laser scanning of
three-dimensional objects. We apply the proposed collision visualization method to two applications:
(1) The revival of the festival float procession of the Gion Festival, Kyoto city, Japan. The city
government plans to revive the original procession route, which is narrow and not used at present.
For the revival, it is important to know whether the festival floats would collide with houses, billboards,
electric wires, or other objects along the original route. (2) Plant simulations based on laser-scanned
datasets of existing and new facilities. The advantageous features of our method are the following:
(1) A transparent visualization with a correct depth feel that is helpful to robustly determine the
collision areas; (2) the ability to visualize high collision risk areas and real collision areas; and (3) the
ability to highlight target visualized areas by increasing the corresponding point densities.

Keywords: laser-scanned point cloud; cultural heritage; plant simulation; collision visualization;
stochastic collision search

1. Introduction

The recent development of laser-scanning technology has enabled the quick and precise capture
of the three-dimensional (3D) shapes of real objects in different industries, such as smart factory [1,2],
bridge and facade measurements [3,4], heritage documentation [5], etc. In many cases, the applied
technology records the static 3D shapes of the scanned objects. These laser-scanned point data are
often used for modeling, classification, segmentation, etc. For example, in Adam et al.’s work [6],
they combined structural information originated from 3D point clouds and visual information from
two-dimensional (2D) images in processing point cloud data, which provided more features for
classification and segmentation. The technology is, however, also useful for analyzing the dynamical
behavior of scanned objects. In fact, in industrial fields, laser-scanned data are often used for collision
detection simulations in plant facilities [7]. Collision detection based on the laser-scanned data is also
useful for research concerning cultural heritage. In our previous work [8], which was a preliminary
report, we colored the results to mark the collision area in a simple way. As a new step, we make the
following contributions: (1) Refined colors and opacities that are used to highlight colliding regions;
(2) extension of the method to deep collision, in which one point-based surface is entirely inside the
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other; (3) a more detailed report on the visual simulation of the procession route of a traditional festival
float; and (4) the application of the proposed method to a plant simulation.

In this paper, we propose a high-quality and precise visualization method for the collisions of point
cloud objects, and we apply it to analyze a simulation of the collisions between laser-scanned dense
point clouds. More concretely, we apply our proposed visualization method to the collision detection
simulation of the revived route of the famous festival float “Ofune-hoko” in the Gion Festival, which is
held annually in Kyoto city, Japan (see Section 2 for the details). The simulation is executed in a virtual
space that is constructed using the point clouds of the street that was acquired by a mobile mapping
system (MMS). We create the point cloud of the Ofune-hoko float by sampling a polygon model that
was constructed using computer-aided design (CAD) software. We also apply our method to the
engineering plant for simulating whether factory equipment can be safely moved without collisions
when engineering plants are upgraded or renovated. Plant simulation is becoming more popular for
various industrial fields. Giorgini et al. proposed an immersive and interactive virtual reality system
for 3D visualization of vehicles moving in a warehouse [1]. Collision detection is also performed
between the 3D vehicle model and the point cloud model of the environment. An important purpose
of the plant simulation is to see if new plant equipment is able to be brought into the plant’s space
without a collision. Recently, 3D laser scanning has been utilized for plant simulations. Laser scanning
enables quick and accurate three-dimensional capture of the status of a plant, which consists of plant
facilities and architectural structures such as walls and ceilings.

Several methods have been proposed for collision detection of point clouds [7,9–17]. There are
methods that subdivide a 3D space into small cells using an octree or a kd-tree [10–13]. This type of
method is suitable for precise collision detection. There are also screen space methods that are suitable
for quick collision detection [6]. Probabilistic collision detection between noisy point clouds has also
been proposed [14,15]. Our proposed collision visualization is applicable to any type of collision
detection method. In the current work, we adopt a method based on the kd-tree.

Thus far, the research on the point-based collision detection of laser-scanned data has not
significantly incorporated visualization. For a laser-scanned point cloud, the most straightforward
visualization strategy is point-based rendering [18–21], in which the measured 3D points are directly
used as the rendering primitives. For example, in Discher et al.’s work [21], they present a web-based
system for the interactive exploration and inspection of arbitrary large-scale point clouds. However,
since collisions may occur inside of the examined objects, precise transparent (see-through) visualization
is appropriate to show the collisions. In this paper, we propose a visualization method that is suitable
for the detection of the collisions of point clouds. For the transparent visualization [22–24], we utilize
the stochastic point-based transparent rendering method that was recently proposed [22]. Based on
the high-quality see-through views that are realized by the rendering, we propose a method to
effectively highlight the collision areas and the high collision risk areas. Note that the collision detection
algorithm we have adopted is a very simple one. Our focus is rather on developing a comprehensible
collision visualization method by effectively utilizing our novel high-quality transparent visualization.
In fact, the visualization is executable by replacing the algorithm with any other point-based collision
detection algorithm.

The structure of the remainder of this paper is as follows. In Section 2, we explain our collision
visualization targets, which are a parading festival float and engineering plant. In Section 3, we describe
our proposed collision visualization method. In Section 4, we demonstrate our method by applying it
to an engineering plant simulation and the collision visualization of the culturally important festival
float. We discuss the limitations of the proposed method in Section 5. Section 6 presents the conclusion.

2. Collision Visualization Targets

In this section, we explain our collision visualization targets. The collision detection experiment
contains two experimental objects: (1) The parading festival float in the Gion Festival and (2) the
complex point cloud data of an engineering plant that are scanned by a laser scanner.
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2.1. Project of Reviving the Original Procession Route of the Festival Float

The Gion Festival is one of the most famous festivals in Japan. Its origin dates to the year 869,
when it was instituted as a religious ceremony to appease the gods during the outbreak of an epidemic.
The festival occurs annually in Kyoto city and spans the entire month of July. The highlight of the
festival is the Yama-Hoko float procession, which consists of parades of beautifully decorated festival
floats in mid-July. The Yama-Hoko floats are portable shrines in which go-shintai, the physical objects
in which the gods reside, have been installed. The Yama-Hoko float procession that accompanies the
opening of the festival is called the sakimatsuri, and the return procession is called the atomatsuri.
The boat-shaped Ofune-hoko float (see Figure 1), which is the focus of this paper, is an important
Yama-Hoko float that is in the final position in the atomatsuri procession every year.
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Figure 1. The Ofune-hoko float in the Gion Festival (2014).

During the period of Japan’s rapid economic growth after the Second World War, the government
wanted to more effectively foster and administer tourism and to relieve the traffic in the age of
automobiles. In 1956, the route of the sakimatsuri procession was first congested. In this period,
the route of the atomatsuri procession continued along its traditional path, but in 1966, it was combined
with the sakimatsuri procession, and on 17 July, the atomatsuri procession followed the sakimatsuri
procession. This is how things were until the year 2013. After almost half a century, the traditional
atomatsuri procession was revived in the year 2014. However, Sanjo Street and Teramachi Street,
which were once used as parts of the original procession route, are not included in the procession
path of the resurrected atomatsuri (see Figure 2), although the Kyoto city government hopes to revive
the entire original route. The reason why the original route has not been revived is that we do not
know whether the Ofune-hoko float is still capable of travelling these streets. In fact, we do not know
whether the Ofune-hoko float can travel the streets without any collisions due to major changes in the
road conditions, such as newly built houses, electric wires, and signboards.

Therefore, we execute a computer simulation to detect collisions between the Ofune-hoko float
and the original procession route in a virtual space that is constructed using laser-scanned point clouds.
To support this collision detection simulation, we develop a collision visualization method that is
explained below. The point clouds for the streets are acquired by an MMS, and the point cloud of the
Ofune-hoko float is created by sampling a polygon model that is precisely constructed using CAD
software. We used an RIEGL laser scanner (VQ-250) for laser scanning. The acquisition rate was
200 kHz and the rotation period was 100 Hz. We used Pointgrey’s omnidirectional camera (Ladybug 3)
for the texture measurement. The image acquisition interval was set to 5 frames per second. The size
of the whole Sanjo Street area used for laser scanning is 720 × 60 × 40 (m), and the total points of
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the scanned point cloud of Sanjo Street is 1.678× 108. For the purpose of visualizing faster without
affecting the accuracy, we downsampled the data of Sanjo Street. According to the order of the points
in the file, we took only one point for every three points and got a point cloud data of 5.592× 107 points
for our experiment.
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the Gion Festival.

2.2. Engineering Plants Simulation

State-of-the-art laser scanners enable us to capture the complex point clouds of an engineering
plant. Complex point clouds are useful for simulating the renovations of engineering plants. However,
the complex point clouds of an engineering plant are very large, and it is difficult to interactively
calculate collisions while the user drags objects in point clouds. We propose an efficient collision
detection method for large-scale point clouds.

However, it is not easy to realize collision detection for large-scale plant point clouds. Since the
point clouds of an engineering plant often consist of hundreds of millions of points, collision detection
methods must be able to efficiently handle very large point clouds. In addition, the point clouds of
engineering plants include many missing portions, because occlusions cannot be avoided when many
manufacturing machines are installed. Occluded regions may not be free space. Even if 3D models do
not collide with point clouds in occluded regions, they may collide in actual engineering plants.

By acquiring the internal structure of the plant and the point clouds of the equipment, a simulation
can be performed to see if the equipment can be placed at a suitable position in the plant. In this way,
it can be understood that the arrangement is possible if the equipment to be arranged does not collide
with the pillars or the inner walls of the plant or other equipment. The aim of the plant simulation is to
support objective decision making using dynamic analysis, to enable managers to safely plan their
operations, and to save costs.

3. Proposed Method

In this section, we explain our collision visualization method. The method consists of two steps:
(1) The assignment of colors and opacities to points, and (2) the execution of the stochastic point-based
transparent rendering. Below, we explain each step.
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3.1. Assignment of Color and Opacity to Points

The color and opacity of each point in two given point clouds are determined based on the nearest
neighbor search of the points in the kd-trees. For each point in a one-point cloud, we search for and
find its nearest neighbor point in the other point cloud, then we can get the inter-point distance from
its nearest neighbor point. We assign highlighted colors and highlighted opacities to the pairs of points
according to the inter-point distances. The details are summarized below.

Consider two point clouds, A and B. Let ai be the i-th point in A and bj be the j-th point in B.
A color and opacity are assigned to each point in A and B as follows:

1. For a point ai in point cloud A, perform the nearest neighbor search and find its nearest neighboring
point bj(ai) in point cloud B (see Figure 3).

2. Calculate the inter-point distance d (ai, bj(ai)) between points ai and bj(ai).
3. If d (ai, bj(ai)) is less than or equal to a threshold value, ε, then assign a proper collision area color

and collision area opacity to ai. If d (ai, bj(ai)) is larger than ε and less than or equal to a proper
non-small distance dmax, then assign a proper high collision risk area color and high collision risk
area opacity to ai. (In the current work, ε is set to 1/100 or 1/500 of the bounding-box diameter of
the scene that consists of point clouds A and B. When considering collisions with electric wires,
the smaller value of 1/500 works better. dmax is set to 1/10 of the bounding box.)

4. Execute Steps 1–3 for all points in A. Repeat the same for the points in B if the points in B should
also be assigned colors.
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Figure 3. Inter-point distance between point ai in point cloud A and its nearest neighboring point bj in
point cloud B.

When executing Step 3, we need definitions of the collision area color, the high collision risk area
color, the collision area opacity, and the high collision risk area opacity. Our definitions are as follows.

We adopt a white color for the collision area and a rainbow of colors (see Figure 4) for the high
collision risk areas. This combination of colors is useful, since the two colors never overlap. For the
case that the inter-point distance is exactly ε—that is, for the minimal non-colliding distance—the high
collision risk area color is red. Over a proper large threshold inter-point distance dmax, the point color
is blue. Below, we call the blue area the collision-free area. Figure 5 shows examples of assigning the
above-mentioned colors to colliding surfaces.
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The collision area (white area) opacity is set to 0.9. The high collision risk area opacity is dependent
on the level of collision risk. From the red area to the orange area, the opacity is set to 0.8. From the
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yellow area to the green area, the opacity is set to 0.6. For the light blue area, the opacity is set to
0.4. For the remaining blue collision-free areas, which are far from collisions, the opacity is set to
0.2. These opacities are easily realized using the stochastic point-based transparent rendering that is
explained in Section 3.3.
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In Figure 5, it is difficult to recognize the white collision line. This is because the areas are thin
loops. However, we will see that the tuning of the collision area’s opacity can improve their visibility.
We will demonstrate this in Section 4 for our target case study.

3.2. Visualization of Deep Collisions

Usually, a raw laser-scanned point cloud does not have information of point normals. However,
if proper information is assigned to the point data, we can distinguish the inside of a point-based
surface from the outside. Thus, visualization of deep collisions can be achieved.

The outward-pointing normal is used to detect the collision areas. As a condition, it is assumed
that at least one of the point clouds for collision detection has all normals pointing outward. Therefore,
first we attempt to re-orient the point normals in a consistent way. The normal re-orientation starts
from a random point, then propagates to neighboring points one-by-one. The propagation is done with
the help of a minimum spanning tree. The procedure for visualizing the collision areas is as follows.

As it shown in Figure 6, first, we perform the nearest neighbor search for a point PA in point cloud
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After the above steps, it is assumed that outward-pointing normals are given to all the points in
point cloud A. Figure 7 shows the results between point-based surfaces.
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3.3. Realization of the Collision Area Opacity and the High Collision Risk Area Opacity Based on Stochastic
Point-Based Transparent Rendering

The precise see-through imaging of colliding point clouds with a correct depth feel and interactive
speed can be realized by using stochastic point-based transparent rendering [22], which was recently
proposed for dealing with large-scale laser-scanned point clouds. The above-mentioned collision area
opacity and the high collision risk area opacity can also be realized within the rendering framework.

Let us briefly review the algorithm of the stochastic point-based transparent rendering. When
applying the rendering to a given laser-scanned point cloud, first, we randomly divide it into statistically
independent subgroups. Here, we consider a small local surface segment with area size S parallel to
the image plane (see Figure 8). We assume that this surface segment can be approximated as a flat
plane, and the point density is uniform in this segment. Let n be the number of 3D points that are
distributed uniformly within the surface segment, and let N be the number of pixels contained in the
image of the segment. That is, each 3D point within the segment is projected onto one of these N pixels
on the image plane. To each 3D point, we assign a cross section s, which is tuned such that its image
overlaps only one pixel. Then, N is related to S and s as follows: N = S/s.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 8 of 20 
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Figure 8. Schematic illustration of a local surface element (white circle). The small squares represent
the pixels in the image of the surface segment.

Then we focus on an arbitrary pixel from among these N pixels. For the pixel of interest, let us
consider the number of projected 3D points, x. Note that x is an integer-valued random variable in the
range 0 ≤ x ≤ n. Because of the assumed uniformity, the probability that a 3D point on the surface
segment is projected onto this pixel is 1/N. Then, x should obey the following probability function in the
form of the binomial distribution: B(n, 1/N) : p(x) = (n!/x!(n− x)!)(1/N)x(1− 1/N)n−x. Therefore,
the probability that at least one 3D point is projected onto the pixel of interest is
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α ≡ 1− p(0) = 1−
(
1−

1
N

)n
= 1−

(
1−

s
S

)n
(1)

This α is the probability that the pixel of interest is assigned the color of a point, i.e., the color
of the surface segment. Conversely, 1− α = p(0) is the probability that the color of the pixel remains
identical to the background color. Thus, the α of Equation (1) functions as the opacity. We can realize a
higher opacity by increasing n or lower it by decreasing n. The increase in n is easily realized by simply
creating a proper number of copies of randomly selected points in the original point cloud. Similarly,
the decrease in n is realized by randomly eliminating points in the original point cloud. By tuning the
number of points n in S—that is, by tuning the point density in S—the probability that the local surface
segment is visible is controlled, which means that the opacity α is tuned.

It should be noted that additional new points do not need to be added to the raw point cloud
data, even when we increase n. All we have to do is simply copy points in the original data.
When stochastically calculating the pixel intensities of images based on the above-mentioned visible
probability, the point clouds are divided into statistically independent subgroups. Therefore, the copied
points are treated as independent rendering primitives. For details, see [22]. The feature that only raw
point clouds are used for visualization is advantageous for the reliable validation of the simulation
based on the data that are acquired by directly measuring the real world.

All of the visualization experiments using stochastic point-based transparent rendering presented
in our work are based on the Mac OS environment, using existing libraries including Kyoto Visualization
System (KVS) [25], Point Cloud Library (PCL) [26], OpenGL Utility Toolkit (GLUT) [27], and OpenGL
Extension Wrangler Library (GLEW) [28]. The resolution of all experimental results is 512 × 512.
The image resolution does not affect the rendering speed if the number of rendered points is too large.
Note that this image resolution is independent of the collision detection accuracy.

4. Experimental Results

In this section, we applied the visualization method that is explained in Section 3 to our two
experiments. The collision detection simulations and visualizations were executed on an iMac with an
Intel Core i7-5960X (3.10 GHz) CPU with 16 GB of memory.

4.1. Collision Detection Simulation of the Ofune-Hoko Float Along its Original Procession Route

We applied our visualization method to the collision detection simulation of the Ofune-hoko float
along its original procession route of the Gion Festival. A point-data model of the Ofune-hoko float was
moved in a virtual space that was constructed using the point cloud of the street acquired by a MMS.
The Ofune-hoko model was constructed using CAD software. For our visualization, the triangular
polygon mesh of the model was converted into point cloud data by randomly sampling each triangle,
such that uniform point cloud describing the Ohfune-hoko float was created. The Ofune-hoko CAD
model has 41,622 triangles, and we created a point cloud data consisting of 6.74 million points.

Figure 9 shows the laser-scanned point cloud of Sanjo Street, which is a part of the original
float procession route. It is narrow compared with the current route and contains many electric
wires, billboards, and other objects, which may collide with the festival float during its procession.
Figure 9a shows the raw point cloud data, and Figure 9b shows the processed point cloud in which the
ground portion was removed to ignore the collisions of the float with the ground surface. The ground
portion was removed by simply eliminating points whose height was less than a small threshold value.
This simple way is sufficient since no collisions are expected at low-height regions in our collision
experiments. Note that it is difficult to precisely and automatically convert such a complex and large
point cloud into a polygon mesh. This means that the conventional polygon-based collision detection
algorithm is not suitable for our purposes.

Referring to the actual procession route, we moved position of the Ofune-hoko float to the
appropriate direction along the street by repeating translation in parallel to the street and rotation
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centered at the front part of the float. Although actual movement of the float is not completely
parallel to the street, our simplified movement can tell us most of the possible collisions. Based on
the knowledge acquired from the simplified movement, we can consider how to avoid collisions by
adopting additional fine-tuning of the movement. Figure 10 shows the result of placing the point
cloud of the Ofune-hoko float in the scene of Figure 9. We can clearly foresee that the float will collide
with the electric wires when moving in the street. Collisions with billboards and other objects are also
expected when turning at a street intersection.
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Figure 10. Point cloud of the Ofune-hoko float that is placed in the scene of Figure 6.

Figure 11 shows an example of the proposed see-through visualization of collisions. In addition
to the collision area (white) and high collision risk area (rainbow colors), the collision-free area (blue) is
also visualized. Sanjo Street in the background of the Ofune-hoko float is also visualized using its
original colors. As explained in Section 3, the opacity is the highest for the collision line. For the high
collision risk areas, the nearer the portion is to a collision, the higher its opacity. The opacity of the
remaining areas is the lowest. This properly colored see-through view with the correct depth feel
(see Section 3.3) enables us to clearly observe the collisions, along with the whole float and the street.



ISPRS Int. J. Geo-Inf. 2019, 8, 425 10 of 19

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 10 of 20 

 

 

Figure 10. Point cloud of the Ofune-hoko float that is placed in the scene of Figure 6. 

Figure 11 shows an example of the proposed see-through visualization of collisions. In addition 
to the collision area (white) and high collision risk area (rainbow colors), the collision-free area (blue) 
is also visualized. Sanjo Street in the background of the Ofune-hoko float is also visualized using its 
original colors. As explained in Section 3, the opacity is the highest for the collision line. For the high 
collision risk areas, the nearer the portion is to a collision, the higher its opacity. The opacity of the 
remaining areas is the lowest. This properly colored see-through view with the correct depth feel (see 
Section 3.3) enables us to clearly observe the collisions, along with the whole float and the street. 

In the street data used in this experiment, the noise of the electric wires was relatively small, so 
the data does not suffer from noise very much. However, since the electric wires are thin, the point 
density tends to be small on them, which may impair accuracy of the point-based collision detection. 
So it is better to execute upsampling by automatically finding electric wires in the point cloud data, 
which is our future work. Calculating the linearity of the point cloud should enable to detect the 
electric wires. 

 
Figure 11. Transparent visualization of the Ofune-hoko when it collides with electric wires. The total 
number of points that is used for the visualization is 1.02 × 107. The ground surface data are removed 
to avoid the intersection of the float with the ground surface. 

Figure 11. Transparent visualization of the Ofune-hoko when it collides with electric wires. The total
number of points that is used for the visualization is 1.02 × 107. The ground surface data are removed
to avoid the intersection of the float with the ground surface.

In the street data used in this experiment, the noise of the electric wires was relatively small, so the
data does not suffer from noise very much. However, since the electric wires are thin, the point density
tends to be small on them, which may impair accuracy of the point-based collision detection. So it is
better to execute upsampling by automatically finding electric wires in the point cloud data, which is
our future work. Calculating the linearity of the point cloud should enable to detect the electric wires.

Figure 12 shows the see-through viewing in which only the collision areas of the Ofune-hoko float
are highlighted by the white color. The remaining parts of the float and the street are visualized using their
original colors. By giving higher opacities to the collision areas, we can more clearly observe the areas.
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Figure 13 shows the see-though images of the Ofune-hoko float without showing the point cloud
of the street. For a detailed analysis of the collisions, this simplification is convenient. In this way,
our visualization is executable either for each constituent point cloud or for their fused data.
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Figure 13. Visualization results of the Ofune-hoko float: (a) Transparent collision visualization of the
Ofune-hoko float without showing the point cloud of the street, and (b) only the collision areas of the
float are highlighted in white.

To estimate the density of the point cloud, we first generate a minimum bounding box for each
data. The density is estimated by counting for each point the number of neighbors N (inside a
sphere of radius r—in the current work, r is set to 1/1000 of the bounding-box diameter of the scene).
Therefore, volume density is the number of neighbors divided by the neighborhood volume as, given
by Equation (2).

Volume_density = N/
(
4/3·π·r3

)
(2)

In the experiment of Ofune-hoko, we obtained a minimum bounding box of 12.97× 8.33× 3.35 (m).
The length of diameter is 15.78 (m), therefore, we set the threshold value ε to 0.03 and the spherical
neighborhood radius r to 1.578 × 10−2 (m). As shown in Figure 14, the average point density is
1.05× 106 points/m3.

As shown above, our collision simulation and collision visualization have revealed that many
collisions will occur if the Ofune-hoko float moves along its original route of Sanjo Street. No collisions
with houses or billboards are found when the float moves straight ahead, but we found that collisions
can occur when the float turns at an intersection, depending on how the float is moved and rotated.
The turning of the Ofune-hoko float at a street intersection is an important festival event called
tsuji-mawashi. Therefore, the investigation of collisions is a necessity.

Here, we consider another possible tuning of our color model to highlight collision regions. If the
colliding objects are white or nearly white, simply assigning white to their collision areas is not the best
method. In such a case, we highlight the collision areas (white) together with the narrow surrounding
areas of very high collision risks (red). In this way, the white collision areas are more apparent and are
successfully highlighted (see Figure 15). Using areas of only very high collision risks is also useful for
retaining the original colors of the colliding objects as much as possible.
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4.2. Results of the Engineering Plant Simulation

In this part, we applied our visualization method to an engineering plant simulation with a crane
vehicle. A point cloud data model of the crane vehicle was placed in a plant that is constructed with
9.05× 106 points that were acquired by a laser scanner. The crane vehicle data was constructed using
CAD software as a polygon model with 425,976 triangles. We sampled each polygon to generate
9.9× 105 points in total.

Figure 16 shows the laser-scanned point cloud of plant. By using these laser-scanned point cloud
data, we can directly see the internal structure of the plant on the computer. This can help engineers
plan their internal layouts. For example, in the case of moving large equipment, we can directly use
these data to conduct computer simulations to determine whether the work can be completed smoothly.
By analyzing the results of the comparison, we can verify whether the movement path is feasible.
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Figure 17 shows the result of placing the point cloud of the crane vehicle in the scene of Figure 16.
Since the data of the plant and crane vehicle in this experiment have no color information, in order to
distinguish these two objects, we directly set the color information of the crane vehicle point cloud to
red. To more clearly illustrate the collision detection results, we randomly placed the crane vehicle data
in the plant. From Figure 17, we can clearly see that the crane vehicle collides with pipes, machinery,
and walls in the plant, but it is difficult to determine where the collision occurs on the crane vehicle.
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Figure 18 shows the result of the proposed transparent visualization of the collisions. The collision
areas and the high collision risk areas are visualized using the colors that are defined in Section 3.1.
We can see that the collision with mechanical equipment is visualized using white (collision line color)
and the surrounding areas are visualized using the rainbow colors (high collision risk area colors).
With this result, we can help the technician to clearly identify the locations of specific collisions.
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Figure 19 shows the transparent visualization results of the crane vehicle without showing the
point cloud of the plant. In this case, we can analyze the problem of the crane vehicle separately and
find the specific locations of the collisions.
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cloud of the plant.

Figure 20 shows the density distribution result of the crane vehicle. In this experiment, we obtained
a minimum bounding box of 31.37 × 8.91 × 8.79 (m). The length of diameter is 33.78 (m); therefore,
we set the threshold value ε to 0.34 (m) and the spherical neighborhood radius r to 3.378× 10−2 (m).
As shown in Figure 20, the average point density is 1.02× 105 points/m3.

Finally, we comment on the performance. As shown in Table 1, our visualization method
is executable at interactive frame rates for point clouds consisting of approximately 106 points.
The computational speed of the collision detection simulation is not the focus of this paper, and, in fact,
our simulation is implemented by focusing more on the precision than the speed. However, it should
be noted here that several seconds are enough for one run of the simulation when using fundamental
acceleration techniques such as the kd-tree and the bounding box. For example, when continuously
visualizing colliding regions along the parade route, we can gradually change the position of the float,
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and repetitively apply the proposed method. Even though the proposed method is not fast enough
for real time rendering, it has achieved an interactive rendering speed, which is sufficient for the
collision investigations in many cases. In addition, because the potential colliding regions along the
whole parade route are relatively limited, collision visualization can be focused on and carried out
only around those areas.
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Table 1. The total number of points and the execution time for each experiment data.

Data Points Time for Collision
Detection [sec]

Time for
Visualization [sec]

Hub 2.5 × 105 5.03 0.68
Dragon 4.39 × 105 7.56 1.74

Sanjo Street 6.56 × 106 10.17
Sanjo Street (Ground removed) 3.49 × 106 4.16

Ofune-hoko 6.74 × 106 21.85 12.21
Plant 9.05 × 106 19.88

Crane vehicle 9.9 × 105 13.97 2.13

5. Discussion

We have successfully shown that point-based transparent visualization is useful for the
visualization of the collision simulation based on laser-scanned point data. Compared to the method
described in [1], in which a cube is colored for the collision area, our collision visualization provides a
more intuitive way to identify the locations of collisions. As a method applied to plant simulation, [2]
presents a preliminary framework prototype for performing virtual pre-retrofitting of industrial pipeline
plants using an efficient 4-in-1 alignment. However, compared to the results in [2], we can provide
more exquisite visualization results by using transparent visualization. Transparent visualization
enables us to observe the collisions and high-risk collision areas wherever they are, not occluded by
objects in the scene. What we need is to define appropriate functions to relate the degree of collision
risk; that is, the surface distance to distributions of colors and opacities. In the above sections, we have
given a possible solution of colors and opacities. However, we can think of varieties of other solutions,
depending on problems to be solved.
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We should refer to the fact that the ground removal method described in Section 4.2 would be
unsuitable in a city with varying terrain. In our experiment, where the ground in the city is almost
flat, we used parallel movement to simulate the movement of the float, which may deviate from the
movement in the real scene. The measurement error of MMS for small point density objects may affect
the accuracy of the final result. We should also consider that large-scale point cloud data often include
many missing portions because occlusions are inevitable, especially in some complex environments of
laser scanning. In the future, we expect to preprocess the data using inpainting [29,30]. Rather than
just increasing the number of points in the sparse part of the laser-scanned point cloud, we prefer to
achieve a more uniform and dense distribution of the point cloud. For the parts of the laser scanning
that are missing due to the mutual occlusion, we plan to use some technologies, such as deep learning,
to fill the vacant point cloud as much as possible.

The web-based visualization method proposed in [19] is a good direction to solve the limitations
of the local client for experiments. Since the rendering process is shifted from client side to server side,
the system can be easily adapted to varying network conditions and to clients with a broad range of
computing and graphics capabilities. At present, our visualization of the results is performed on the
client side and has requirements for the client’s experimental environment, the scale of point cloud
and visualization time are also limited by the client side. We expect to move the rendering process to
the server side in the future, enabling more efficient visualization, and the result will be visualizable
on multiple devices.

The visualization of the deep collision described in Section 3.2 should extend the applicability
of our method. Unfortunately, for applications in this paper, such visualization was not essentially
necessary. However, it is a useful visualization that very clearly highlights object parts in danger.
We show an example in Figure 21, which visualizes an artificial collision we made for demonstration.
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We also want to emphasize that the application of the plant simulation demonstrated in Section 4.2
is a promising example of applying our visualization method to industrial fields. Our visualization gives
a powerful visual tool to analyze plant simulation data. Since collision detection is a common problem
among a variety of areas, we can expect many kinds of applications of our method. For example,
application to traffic management is promising.

6. Conclusions

In this paper, instead of transforming point cloud data into polygon meshes, we propose a point
cloud-based method for collision visualization. The conventional point-based transparent rendering
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methods have difficulties when dealing with large-scale point clouds that are obtained using laser
scanning. In contrast, by using the proposed method, the collisions are highlighted with a correct depth
feel, which enables us to better observe the correct collision positions. Proper colors and opacities
to highlight the collisions and the high-risk collision areas are also implemented. Our visualization
provides an intuitive way to identify the locations of collisions.

In this paper, we propose a point-based method for collision visualization, which is directly
applicable to laser-scanned point clouds. The advantageous feature of our method is the comprehensible
transparent visualization of the colliding regions. The visualization is precise and realizes a correct
depth feel; therefore, it is suitable for investigating possible collisions of laser-scanned objects when
they are placed in a virtual space for various kinds of simulations. The transparent feature of the
visualization enables us to correctly and intuitively observe the colliding regions, even if they occur
deep inside the colliding objects.

We have demonstrated our proposed method by investigating the collisions between the
laser-scanned point cloud of Sanjo Street in Kyoto city and a culturally important festival float,
Ofune-hoko, precisely modeled using CAD software. We have shown that our collision visualization
enables us to investigate the possibility of reviving the original float procession route. The visual
simulation successfully shows us the possible collisions of the float with electric wires and houses
along the street. We have also demonstrated our method by applying it to a plant simulation, in which
collisions between the existing plant equipment and a crane that is virtually placed in the plant are
investigated. Our visualization can successfully show the details of every colliding region and the
surrounding dangerous regions.

The limitations of the proposed collision visualization method are as follows. The first limitation
is that the method is not available for deep collisions where one surface exists entirely inside the other,
if point normals can be assigned to points. It is because the method is designed for surface–surface
collisions. This limitation is, however, assuaged if normal vectors are assigned to each point, such that
we can distinguish inside and outside of the surfaces. The second limitation is calculation speed. In
the current work, the experiments are done by CPU-based computation. However, GPU-based parallel
processing, where the whole space is appropriately divided into multiple regions and examined
parallelly, should achieve interactive visualization speed. Point-based parallel processing is quite
suitable for such a parallelization strategy.

A possible extension of the proposed method is the collision visualization of volume datasets.
Once the volumes are converted into point clouds, we should be able to apply our collision visualization
method to them. This extension is also useful since many cultural heritage objects are scanned using
CT (computed tomography) devices and archived as volume datasets.
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