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Abstract: The identification of overpass structures in road networks has great significance for
multi-scale modeling of roads, congestion analysis, and vehicle navigation. The traditional
vector-based methods identify overpasses by the methodologies coming from computational geometry
and graph theory, and they overly rely on the artificially designed features and have poor adaptability
to complex scenes. This paper presents a novel method of identifying overpasses based on a
target detection model (Faster-RCNN). This method utilizes raster representation of vector data
and convolutional neural networks (CNNs) to learn task adaptive features from raster data, then
identifies the location of an overpass by a Region Proposal network (RPN). The contribution of
this paper is: (1) An overpass labelling geodatabase (OLGDB) for the OpenStreetMap (OSM) road
network data of six typical cities in China is established; (2) Three different CNNs (ZF-net, VGG-16,
Inception-ResNet V2) are integrated into Faster-RCNN and evaluated by accuracy performance;
(3) The optimal combination of learning rate and batchsize is determined by fine-tuning; and (4)
Five geometric metrics (perimeter, area, squareness, circularity, and W/L) are synthetized into image
bands to enhance the training data, and their contribution to the overpass identification task is
determined. The experimental results have shown that the proposed method has good accuracy
performance (around 90%), and could be improved with the expansion of OLGDB and switching
to more sophisticated target detection models. The deep learning target detection model has great
application potential in large-scale road network pattern recognition, it can task-adaptively learn
road structure features and easily extend to other road network patterns.
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1. Introduction

As the framework of a city, road networks have attracted the concern of scholars in all aspects
of urban research and are regarded as one of the five major elements in city construction by Lynch
(1960) [1]. The pattern of urban road network is complex and diverse, which reflects the characteristics
of road distribution and the political, economic, and cultural characteristics of a city in a particular
historical period [2–4]. It is crucial to accurately identify road patterns for road navigation, urban
planning, and functional zoning. Therefore, accurately identifying the road patterns in complex road
networks have become the focus for GIS research [5].

In urban road networks, the overpass is one of the most important road patterns. An overpass as
a three-dimensional cross bridge in a road network refers to a modern building that is built on the
intersection of two or more intersecting roads with different levels and different directions. Its main
function is to make the vehicles in all directions free from traffic lights at the crossroads so as to pass
quickly. Scheiders proposed an identification method for an overpass based on road attributes [6],
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but actual road data may have only partial or incomplete attribute information, such as OpenStreetMap
(OSM) road data [7]. In contrast to attribute information, geometric features are more essential to road
networks, so how to identify an overpass using geometric features becomes a problem.

In recent years, an overpass is mainly identified by traditional vector-based methods coming from
computational geometry and graph theory. Mackaness and Macchechnie proposed a method to identify
and simplify unstructured overpasses [8]. In their method, an overpass was firstly positioned by
searching for the denser node areas in road networks, and then the hierarchical relationship between the
sections of local road network was constructed. Finally, the structure of the overpass was simplified by
a graph simplification method. However, since the internal structure of an overpass is too complex to be
accurately identified by their method, which can generate many wrong simplified results, it is necessary
to manually judge whether the results are correct. In 2011, Xu proposed an overpass identification
method based on structural patterns [9]. In his method, the structure of the road intersection was
described using a directional attribute relationship graph, the template library of a typical structure
was established and correspond intersections were identified using a relationship graph described by
the template. Compared with the method proposed by Mackaness and Macchechnie, the accuracy
of the identification results was improved. However, this method relies too much on artificially
constructed structural templates and is hard to apply to atypical overpasses. In 2013, Qian proposed
an improved structural pattern recognition method [10]. In his method, road topological features
were used to describe an overpass, a typical quantitative expression template library was established,
and the overpass was identified by comparing the structure with quantitative expressions. In 2016,
Ma proposed a method to enrich the structure description in his previous papers [11]. An overpass
feature space was established by using six parameters, including length, area, compactness, parallelism,
symmetry, and semantic attributes. Then a support vector machine (SVM) was trained and used to
identify the main roads and auxiliary roads in each overpass. However, his method cannot identify the
overall structure of an overpass directly.

The above methods belong to the identification approach based on artificially designed features.
The overpass structure is mapped to a feature description space through spatial calculation, and then
the overpasses are identified and classified. Such methods rely too much on the design of the feature
items (such as length, angle of intersection, curvature, graph template, etc.). These artificially designed
shallow features only work well for standard overpass structures in an ideal state. However, in actual
data, an overpass is often under an unsatisfactory state, and there are many disturbing factors. In order
to identify overpasses in actual data more accurately, Qian and He proposed to solve the overpass
classification problem by a machine learning method in 2018 [12]. In their method, a convolutional
neural network (CNN) was trained with images containing overpasses to classify them into different
types. Artificially designed feature items were not needed, instead, road data was converted into raster
data as the training data for the CNN model. Their method combines vector data and raster images,
and uses the neural network learn the fuzzy characteristics of overpasses, and classifies the complex
overpass structures in OSM. As far as we know, this method is the first attempt to classify overpasses
using a CNN model. In the classification process, feature items are not needed to be given manually,
and the uncertainty of the result is reduced by the self-learning mechanism. However, his method
can only be used to classified the types of overpasses and cannot be used to identify the location of
overpasses in a large range of road networks.

In order to handle the location problem mentioned above, this paper aims to identify overpasses
in road networks using a target detection model of deep learning (Faster-Region Convolutional neural
network, Faster-RCNN). As there is no labelled data for such problem at present, an overpass labelling
geodatabase (OLGDB) for the OSM road network data of six typical cities in China was established.
The data flow chart is shown in Figure 1.
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Figure 1. Data flow chart. 

In the training data generating phase, we integrated five geometric metrics of roads into image 
bands and further compared the contribution of these metrics. Finally, three geometric metrics having 
better effects were selected to be synthetized into the RGB band values in order to use pre-trained 
CNN models. Three different CNNs (ZF-net, VGG-16, Inception-ResNet V2) were integrated into the 
Faster-RCNN model and evaluated to find the optimal one by accuracy performance. The results of 
different model parameters (such as learning rate, batchsize) were measured by fine-turning 
experiments. The experimental results showed that Faster-RCNN can be applied to the identification 
of overpasses and good results were achieved. This work can be used to evaluate and supervise the 
development of urban road networks which is significant in urban science. 

2. Research Method 

In the field of computer vision, image classification and detection are the focus for research 
[13,14]. An image classification model is used to divide each image into a single category, usually 
corresponding to the most prominent object in the image [15–17]; but in the real world, in general, 
images do not only contain one object, so it is not accurate to simply assign images to a single label. 
For such a case, a target detection model is needed and used to identify multiple objects in an image 
and to determine the position of objects in images using rectangular bounding boxes [18–20]. So, in 
this paper, Faster-RCNN, which meets the above requirement, is studied to identify overpasses in 
road networks.  

The research route is as follows, firstly, OSM road network data is preprocessed (mainly 
including data screening, data labelling, calculation of geometric metrics, data enhancement and 
conversion) in order to generate the training data needed by the model. Then, training data is used 
to train Faster-RCNN and the model parameters and structure are optimized through contrast 
experiments. Finally, the optimal model is used to detect road networks and overpasses are marked 
using a rectangular bounding box. The technical flow chart is shown in Figure 2.  

Figure 1. Data flow chart.

In the training data generating phase, we integrated five geometric metrics of roads into image
bands and further compared the contribution of these metrics. Finally, three geometric metrics having
better effects were selected to be synthetized into the RGB band values in order to use pre-trained
CNN models. Three different CNNs (ZF-net, VGG-16, Inception-ResNet V2) were integrated into the
Faster-RCNN model and evaluated to find the optimal one by accuracy performance. The results
of different model parameters (such as learning rate, batchsize) were measured by fine-turning
experiments. The experimental results showed that Faster-RCNN can be applied to the identification
of overpasses and good results were achieved. This work can be used to evaluate and supervise the
development of urban road networks which is significant in urban science.

2. Research Method

In the field of computer vision, image classification and detection are the focus for research [13,14].
An image classification model is used to divide each image into a single category, usually corresponding
to the most prominent object in the image [15–17]; but in the real world, in general, images do not only
contain one object, so it is not accurate to simply assign images to a single label. For such a case, a target
detection model is needed and used to identify multiple objects in an image and to determine the
position of objects in images using rectangular bounding boxes [18–20]. So, in this paper, Faster-RCNN,
which meets the above requirement, is studied to identify overpasses in road networks.

The research route is as follows, firstly, OSM road network data is preprocessed (mainly including
data screening, data labelling, calculation of geometric metrics, data enhancement and conversion)
in order to generate the training data needed by the model. Then, training data is used to train
Faster-RCNN and the model parameters and structure are optimized through contrast experiments.
Finally, the optimal model is used to detect road networks and overpasses are marked using a
rectangular bounding box. The technical flow chart is shown in Figure 2.

2.1. Data Preprocessing

The data source for this paper is OSM road data. OSM is an online map collaboration designed to
create a free world map that everyone can edit [21,22]. So OSM data is a typical kind of volunteered
geographic information (VGI) data, which can be voluntarily contributed by anyone who wants
to: children or adults, amateurs or experts, they may have different motivations and may even be
contributing without their knowledge [23,24]. Data contributors use satellite images, GPS devices,
and traditional regional maps to ensure accuracy and timeliness.
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and the results have been promising [26,27]. Thus, OSM road data is selected as the data source for 
this paper. 
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In OSM data, road data has a type attribute (Fclass) which represents the category of roads and 
includes attribute values such as motorway and step [28]. Before an overpass is labelled, road data is 
filtered according to the Fclass attribute, which aims to eliminate some irrelevant data such as 
pedestrian bridges and tunnels. Compared with the initial data, filtered road data is more significant, 
which is beneficial to the study of Faster-RCNN on the focus of overpass structures. Parts of valid 
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Table 1. Attribute values for the Fclass attribute. 

Attribute Value Comment 

Motorway A restricted access major divided highway, normally with two or more running lanes 
plus an emergency hard shoulder. 
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Steps For flights of steps on footpaths. 

Primary The next most important road in a country’s system, often linking larger towns. 
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Figure 2. Technical flow chart.

There are many advantages of OSM, such as short update periods, convenient data acquisition
access, and good data quality [25]. These characteristics make OSM data an ideal source for many
scientific research experiments. The utility of OSM has been studied as a potential source of road data
and the results have been promising [26,27]. Thus, OSM road data is selected as the data source for
this paper.

2.1.1. Data Screening

In OSM data, road data has a type attribute (Fclass) which represents the category of roads and
includes attribute values such as motorway and step [28]. Before an overpass is labelled, road data
is filtered according to the Fclass attribute, which aims to eliminate some irrelevant data such as
pedestrian bridges and tunnels. Compared with the initial data, filtered road data is more significant,
which is beneficial to the study of Faster-RCNN on the focus of overpass structures. Parts of valid
Fclass attribute values of OSM road data are shown in Table 1:

Table 1. Attribute values for the Fclass attribute.

Attribute Value Comment

Motorway A restricted access major divided highway, normally with two or more running lanes
plus an emergency hard shoulder.

Secondary The next most important road in a country’s system, often linking towns.
Steps For flights of steps on footpaths.

Primary The next most important road in a country’s system, often linking larger towns.
Trunk_link The link road leading from a trunk road to another trunk road or a lower class highway.

Path A non-specific path.

2.1.2. Data Labelling

In this paper, an OLGDB is established to store all the labelled overpasses which were produced
by ArcGIS software on a OSM road network and confirmed by Google Maps. Overpass structures are
labelled with vector polygons rather than rectangular bounding boxes (a traditional target detection task
is to select an object in images as a positive sample using a rectangular bounding box). This facilitated
subsequent data enhancement operations:

1. Avoiding an invalid margin while using pure image enhancement;
2. Vector rotation and polygon labelling could make the minimum enclosing rectangle (MER)

recalculate correctly.
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The illustration of the above two reasons is shown in Figure 3.
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margin appears with 75◦ raster rotation; (d) an amplified overpass and its minimum enclosing rectangle
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rotation and its novel MER.

There are 640 labelled overpasses in the OLGDB, part of them are shown in Figure 4.
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2.1.3. Calculation of Geometric Metrics

In the generation of training data, geometric information is only partially kept with the conversion
from vector to raster. So geometric metrics which measure morphology diversities in field form need to
be included to enhance the presentation ability. Five different geometric metrics, including perimeter,
area, squareness, circularity, and W/L (the width to length ratio of the circumscribed rectangle), are
calculated. Three of them with better effects are selected as the RGB band values of training data
through experiment comparison, corresponding to the 3D input variant of pre-trained CNN structures
in Faster-RCNN.

The polyline-based network skeleton model is converted to a polygon-based street block model
by ArcGIS in order to get the five geometric metrics. The perimeter and area of the block surrounded
by road sections can be obtained directly.

Rectangularity is the ratio of block area to the area of the MER, reflecting the filling degree of a
block to its MER. The formula is as shown in Equation (1):

R = Ao/AMER (1)

where R is the rectangularity of a block, AO is the block area and AMER is the MER area of a block. R is
between 0 and 1. The more curved the block, the smaller the rectangularity.

Circularity is an important geometric metric in image processing and it can be used to describe the
closeness of a polygon to a circle. The circularity of a circle is 1. The smaller the circularity, the more
irregular the image and the larger the gap with circle. The calculation formula of circularity is as shown
in Equation (2):

E = (4π ∗AO)/(P ∗ P) (2)

where AO is the block area and P is the block perimeter.
W/L is the width to length ratio of the MER. W/L is used to distinguish an elongated block from a

round or square block. The calculation is shown in Equation (3):

W/L = WMER/LMER (3)

where WMER represents the width of the MER and LMER represents the length of the MER.

2.1.4. Data Enhancement

Deep learning models require a large amount of training data to ensure accuracy, but the overpasses
in road networks are relatively sparse, so two kinds of data enhancement are employed to amplify the
training data. The first type of data enhancement is to enhance the overpass and its description polygon
by vector rotation conversion. After the overpass vector data is rotated, the relative coordinates of
positive samples will change. The coordinate variation formula of rotation conversion is shown in
Equations (4) and (5):

Xnew = x ∗ cosα+ y ∗ sinα (4)

Ynew = y ∗ cosα− x ∗ sinα (5)

where Xnew and Ynew are converted coordinates and α is the angle at which vector data rotates clockwise.
The second type of data enhancement is to enhance the converted raster data. There are eight

patterns for an image, as shown in Figure 5.
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Therefore, we rotate and flip each training image to generate eight images with different axis 
change rules. When an image undergoes the above-described rotation and transposition, the size of 
the image remains unchanged, the information in the image is not lost. This not only ensures the 
accuracy of the training data, but also increases the sample number of overpasses. After the image 
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left flip and rotate 90 degrees clockwise; (g) right left flip and rotate 180 degrees clockwise; (h) right left
flip and rotate 270 degrees clockwise.

Therefore, we rotate and flip each training image to generate eight images with different axis
change rules. When an image undergoes the above-described rotation and transposition, the size of
the image remains unchanged, the information in the image is not lost. This not only ensures the
accuracy of the training data, but also increases the sample number of overpasses. After the image
data is enhanced, the relative coordinates of overpass structure in each training image are obtained by
coordinate conversion formula. Coordinate conversion formulas are as shown in Equations (6)–(13)
(taking the form of Figure 3b,e as examples):

Xbmin = Yamin (6)

Ybmin = width−Xamax (7)

Xbmax = Yamax (8)

Ybmax = width−Xamin (9)

Xemin = width−Xamin (10)

Yemin = Yamin (11)

Xemax = width−Xamax (12)

Yemax = Yamax (13)

The boundary coordinates of the positive samples in the training image of Figure 3b are obtained by
Equations (6)–(9), Xbmin, Ybmin, Xbmax, Ybmax represent the upper-left and lower-right coordinates of the
positive sample region in Figure 3b, Xamin, Yamin, Xamax, Yamax represent the upper-left and lower-right
coordinates of the positive sample region in the initial configuration; the boundary coordinates of the
overpasses in the training image of Figure 3e are obtained by Equations (10)–(13). Width represents
the width of training image. After the above data enhancement, the problem that the training data is
rare can be solved as 12,000 training images can be provided to the learning model.
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2.1.5. Data Conversion

After three geometric metrics with better effects are selected (as described in Section 2.1.3),
the values of the geometric metrics are adjusted to 0–255 space, and then, the data conversion function
of the Geospatial Data Abstraction Library (GDAL) is used to convert vector road data to raster and to
keep adjusted geometric metrics in RGB bands of raster images. GDAL is an open source raster spatial
data conversion library under the X/MIT license, which uses an abstract data model to access various
geodata file formats and also has a series of command-line tools for data conversion and processing.
The converted raster images are shown in the Figure 6.ISPRS Int. J. Geo-Inf. 2019, 7, x FOR PEER REVIEW  9 of 19 

(a) (b)

(c) (d)  
Figure 6. (a–c) the raster image with one geometric metric; (d) the raster image with three geometric 
metrics as RGB bands. 

2.2. Target Detection Model 

This paper aims to identify overpasses in road networks using a target detection model of deep 
learning (Faster-RCNN). In Faster-RCNN, a convolutional neural network (CNN) is used to extract 
road features and generate feature maps; the backend contains RPN and ROI pooling; it can generate, 
adjust, and classify regions. 

2.2.1. Convolutional Neural Networks 

A convolutional neural network (CNN) is a feedforward neural network and its artificial 
neurons can respond to a part of surrounding areas. It has excellent performance for large image 
processing [29]. A CNN consists of one or more convolutional layers, fully connected layers, and 
pooling layers. This structure enables the convolutional neural network to take advantage of the two-
dimensional structure of input data. CNNs give better results in image and speech recognition tasks 
than other deep learning structures, and can also be trained using backpropagation algorithms [30]. 
Compared with other depth and feedforward neural networks, CNNs require fewer parameters, 
making it an attractive deep learning substructure. 

CNN provides an end-to-end learning model for image feature extraction and learning. The 
parameters in the model can be trained by traditional gradient descent methods. Trained CNN can 
learn features in image and can extract and classify those features. As an important research branch 
in the field of neural networks, CNN is characterized by the features of each layer being calculated 
by the local region of the upper layer through the sharing of the convolution kernel of weight. This 
characteristic makes CNN more suitable for learning and expressing image features than any other 
neural network architectures. 

In a CNN, the convolution calculation is performed by a sliding mechanism and convolution 
kernel. The elements of a convolution kernel matrix and the elements of a covered area are multiplied 
and accumulated. Each convolution kernel is a feature extractor, and the convolution operations at 

Figure 6. (a–c) the raster image with one geometric metric; (d) the raster image with three geometric
metrics as RGB bands.

2.2. Target Detection Model

This paper aims to identify overpasses in road networks using a target detection model of deep
learning (Faster-RCNN). In Faster-RCNN, a convolutional neural network (CNN) is used to extract
road features and generate feature maps; the backend contains RPN and ROI pooling; it can generate,
adjust, and classify regions.

2.2.1. Convolutional Neural Networks

A convolutional neural network (CNN) is a feedforward neural network and its artificial neurons
can respond to a part of surrounding areas. It has excellent performance for large image processing [29].
A CNN consists of one or more convolutional layers, fully connected layers, and pooling layers.
This structure enables the convolutional neural network to take advantage of the two-dimensional
structure of input data. CNNs give better results in image and speech recognition tasks than other
deep learning structures, and can also be trained using backpropagation algorithms [30]. Compared
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with other depth and feedforward neural networks, CNNs require fewer parameters, making it an
attractive deep learning substructure.

CNN provides an end-to-end learning model for image feature extraction and learning.
The parameters in the model can be trained by traditional gradient descent methods. Trained
CNN can learn features in image and can extract and classify those features. As an important research
branch in the field of neural networks, CNN is characterized by the features of each layer being
calculated by the local region of the upper layer through the sharing of the convolution kernel of
weight. This characteristic makes CNN more suitable for learning and expressing image features than
any other neural network architectures.

In a CNN, the convolution calculation is performed by a sliding mechanism and convolution
kernel. The elements of a convolution kernel matrix and the elements of a covered area are multiplied
and accumulated. Each convolution kernel is a feature extractor, and the convolution operations at all
locations in training images share the weight of convolution kernel. In general, in a target detection
model, a single convolution kernel is not sufficient, and multiple convolution kernels are needed to
extract different levels of features in training images. In a CNN, the features of training images are
stored in the form of feature maps. Assuming that the j-th feature map of the l-th layer is Xl

i, then the
convolution calculation of Xl

i is as shown in Equation (14).

Xl
i = f

(∑
i∈M j

Xl−1
i ∗ kl

i j + bl
j

)
(14)

where kl
i j is the weight parameter of convolutional layer, bl

j is the bias variable parameter, and f is the
activation function, which is used to apply nonlinear transformation on input values.

In order to reduce the size of parameters, there can be a pooling layer after convolutional layer.
The role of the pooling layer is to reduce the size of the feature map. Assumed that the feature map
after pooling is Xl+1

j , the calculation formula of pooling operation is as shown in Equation (15).

Xl+1
j = f

(
βl+1

j down
(
Xl

j

)
+ bl+1

j

)
(15)

where βl+1
j is the weight parameter of the pooling layer, bl+1

j is the bias variable parameter and down is
the pooling operation types. For example, when the size of the pooling layer is set to be 2 × 2 and the
type of pooling operation is “MAX”, it means that the pixel value in the range of 2 × 2 is replaced by
its maximum value. f is the activation function.

There are a variety of CNNs, such as the classic LeNet-5 model, which are mainly used in some
fundamental computer vision applications, such as handwritten character recognition and image
classification. The Convolutional Deep Belief Network that is generated from a CNN and Deep
Belief Network has been successfully applied to face feature extraction as an unsupervised generation
model [31–33]. A Full-convolution network (FCN) realizes end-to-end image semantic segmentation
and greatly surpasses traditional semantic segmentation algorithm in accuracy [34]. Alex Net has
achieved breakthroughs in the field of massive image classification [35]. RCNN based on region feature
extractions has achieved success in the field of target detection [36]. The target detection model used in
this paper is the Faster-RCNN model under the RCNN series model.

2.2.2. Faster-RCNN Model

The Faster-RCNN model is a deep learning target detection model [37]. It uses CNN as a
substructure and greatly improves the effect of target detection. It is a two-stage detection algorithm.
This algorithm divides the detection problem into two phases:

1. Generating candidate regions.
2. Classifying candidate regions.
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The structure of Faster-RCNN model is shown in Figure 7.
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The Faster-RCNN model is an improvement of the Fast-RCNN model. In the Fast-RCNN
model, the generation of candidate regions is realized by a selective search algorithm, which is a very
time-consuming process. The Faster-RCNN model is improved on this point and the Region Proposal
network is introduced to generate candidate regions, namely Faster-RCNN = Fast-RCNN + RPN [38].
In the Faster-RCNN model, the feature map of an image is firstly generated by CNN, and then the
generated feature map is input into the RPN network. The RPN network obtains candidate regions and
enters them into the ROI pooling layer. The ROI pooling layer receives both the optimized candidate
boxes of RPN output and feature map of convolution layer output, then the regions in the feature maps
corresponding to the optimized candidate boxes are pooled.

The corresponding features of candidate regions are extracted in feature maps. Finally, two fully
connected layers are entered, one is the classification layer (Softmax classification), which is a
multi-objective classification layer, giving each candidate region a category label, and the other is the
coordinate regression layer, which can be used to adjust the coordinates of the candidate areas.

In the RPN network, features are extracted from feature maps using a sliding window, and each
sliding window generates k candidate regions with different sizes and different aspect ratios (generally
using 3 different sizes and 3 different aspect ratios, i.e., k = 9). Next, the corresponding feature of
each candidate region is input to two fully connected layers. One is a classification layer (Softmax
classification). This classification layer performs binary predictions to determine whether each
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candidate region is an object. The other is the coordinate regression layer, which is used to adjust the
coordinates of candidate regions. The RPN network shares the same group of convolutional layers
with Fast-RCNN. This strategy can simultaneously train and adjust the RPN network and Fast-RCNN.
Therefore, the Faster-RCNN model becomes a completed end-to-end model, and the training speed
and detection accuracy of the model are greatly improved.

For training RPN, if a candidate region is one of the following two cases, the label of the candidate
region is positive.

1. the candidate region with the highest Intersection-over-Union (IOU) overlap with a ground-truth box.
2. a candidate region that has an IOU overlap higher than 0.7 with any ground-truth box.

Note that a single ground-truth box may assign positive labels to multiple candidate regions.
Usually the second condition is sufficient to determine the positive samples; but the first condition
must be considered for the reason that, in some rare cases, the second condition may find no positive
sample. The label of a candidate region is negative if its IOU is lower than 0.3 for all ground-truth boxes.
Candidate regions that are neither positive nor negative do not contribute to the training objective.

In the Faster-RCNN model, the loss function is defined as shown in Equation (16).

L(
{
pi
}
{ti}) =

1
Ncls

∑
i

Lcls
(
pi, p∗i

)
+ λ

1
Nreg

∑
i

p∗i Lreg
(
ti, t∗i

)
(16)

The loss function has two parts. The classification loss Lcls is log loss over two classes (object
vs. not object), i is the index of a candidate region, pi is the predicted probability of region i being an
object. The ground-truth label p∗i is 1 if the candidate region is positive, and is 0 if the candidate region
is negative. The other one is the regression loss, ti is a vector representing the four parameterized
coordinates of the predicted bounding box, and t∗i is that of the ground-truth box associated with a
positive region. For boundary box regression, we use Equations (17)–(20) to calculate the coordinates.

tx = (x− xa)/wa, ty = (y− ya)/ha (17)

tw = log(w/wa), th = log(h/ha) (18)

t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha (19)

t∗w = log(w∗/wa), t∗h = log(h∗/ha) (20)

where x, y, w, and h denote the box’s center coordinates and its width and height. Variables x, xa, and x∗

are for the predicted box, region box, and ground truth box, respectively (likewise for y, w, h).

3. Experiment and Result Analysis

In this paper, Beijing, Shanghai, Shenzhen, Wuhan, Zhengzhou, and Lanzhou in China were
selected as the experimental research areas. Beijing, Shanghai and Shenzhen were selected as
representatives of first-tier cities. Beijing is the capital of China and its urban roads are all in a
chessboard pattern. By the end of 2018, the city’s highway mileage was 22,255.8 km. Shanghai as a
municipality directly under the Central Government of China is located in the Yangtze River Delta
with a highway mileage of over 16,000 km. Shenzhen is one of the four first-tier cities in China.
It is located in the southern Guangdong Province and is a national transportation hub city. Wuhan,
Zhengzhou, and Lanzhou were selected as representatives of second-tier cities. Wuhan is located in the
central part of China and the Jianghan Plain in eastern Hubei Province. The highway mileage exceeds
15,000 km. Zhengzhou is an important central city in central China, with a total main highway length
of approximately 12,700 km. Lanzhou is one of the important central cities in western China and a
transportation hub in the northwest. These cities, as representatives of China’s first- and second-tier
cities, are located in different parts of China, which makes research data more representative and
diverse. The road data for the selected cities are shown in Figure 8.
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In this paper, a series of comparative experiments are designed and conducted to study the
influence of different geometric metrics, model structures, and model parameters on the overpass
identification task. Experiment 1 tests the distinct effects of CNN substructure. We integrated three
different CNNs (ZF-net, VGG-16, Inception-ResNet V2) into Faster-RCNN. These convolution structures
are normally used to accomplish feature extractions. In addition, they have better performance in
feature extraction for complex structures because of their sophisticated layer design. The three CNNs
are shown in Figure 9.
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Figure 9. The three convolutional neural network (CNN) substructures.

ZF-net consists of five convolution layers and two fully connected layers [39]; VGG-16 has 16 total
convolutions and fully connected layers [40]; Inception-ResNet V2 introduces two special modules:
Inception and residual [41]. In inception modules, multiple convolution branches are linked to a
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single feature map, while residual modules (those that repeat 10 or 20 times in Inception ResNet V2 in
Figure 6) add input feature maps to the convoluted output.

In order to compare the performance of the three CNNs, each model trained 20,000 iterations
under the same model parameters and the performance of each model in identifying overpasses under
the same validation data set was evaluated. The results are shown in Figure 10.
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The results showed that VGG-16 and Inception-ResNet V2 have better network performance than
ZF-Net because they have a deeper network structure. The model with integrated Inception-ResNet V2
convolution structure had the highest prediction accuracy, because Inception-ResNet V2 combines the
advantages of a residual connection and an inception module. Residual connections solve the problem
of gradient propagation in deep connected networks, and even if the network structure is deep, it can
be easily learned. Inception modules allow network extending without increasing computational cost.
At each level, the module applies convolution filters of different sizes in parallel on the same input map
and their results are connected to the same output. This strategy integrates multi-scale information to
ensure better performance. Since we take identification accuracy as the primary goal of the experiment,
Inception-ResNet V2 is used as the CNN of the final Faster-RCNN model.

Experiment 2 tests the effects of different model parameters on the detection of overpasses.
In Faster-RCNN, learning rate and batchsize are the two parameters that have the greatest impact
on model results. Learning rate is a parameter that guides the model in adjusting the weight of the
network through a loss function. The lower the learning rate, the slower the change in loss function.
Batchsize is the number of samples used in one iteration. In a CNN, increasing the value of batchsize
usually makes network converge faster, but due to the limitations of memory resources, if batchsize is
too large, memory shortage will be insufficient, and the time consumed by the model to reach same
accuracy will increase. Therefore, 12 sets of comparative experiments were performed using three
different learning rates (0.0001, 0.0005, and 0.001) and four different batch sizes (5, 10, 15, and 20).
The results of comparison experiment are shown in Figure 11:
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The results showed that when learning rate is 0.0005 and batchsize is 15, the model gives the
best identification result. When the value of batchsize increases, the accuracy of the model does not
changed substantially, and it takes too long to reach the same precision.

After training data was selected according to the method discussed in Section 2.1, Experiment 3
compared the detection effect of training data with different geometric metrics. The results reflected
the contribution of different geometric metrics to the identification of overpasses. The experiment
results are shown in Table 2.

Table 2. The results of different geometric metrics.

Geometric Metric Accuracy

perimeter 0.79
area 0.824
rectangularity 0.887
circularity 0.474
W/L 0.682
perimeter and area and rectangularity 0.902

The results showed that three geometric metrics (area, perimeter, rectangularity) have better
performance on overpass identification, therefore, these adjusted geometric metrics are selected to
synthetize the values of RGB bands in converted raster data.

After the above comparative experiments, the optimized Faster-RCNN model was established
and used to identify overpasses. The identification accuracy and the loss are shown in Figure 12.
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4. Conclusions

In this paper, Faster-RCNN was used to extract and learn the features of overpass structures in
road networks and applied to overpass identification. The OLGDB was established to store labelled
overpass data. The optimal model was obtained by evaluating the performances of various models with
different geometric metrics-based training data, CNN structures, and training parameters. The accuracy
of overpass identification reached up to more than 90%. The results showed that Faster-RCNN is
effective for overpass identification. Faster-RCNN can learn the features of road networks well and
can determine the position of overpasses in a complex road network with high accuracy. To the best of
our knowledge, this study is the first attempt to identify overpasses using Faster-RCNN. Compared
with traditional vector methods, this method does not require artificially designed features and avoids
the uncertainty of experimental results caused by human intervention. The method performs well on
actual road network data. In the future, we will expand the OLGDB, switch to more sophisticated
target detection models, and attempt to identify other road network patterns under the deep learning
framework. Also, we will continue to explore the applicability of this method in data of different scales
or different urban road networks. And, besides OSM road data, we will discuss the impact of data
from different sources on the identification results, such as road networks with more interfered road
sections or road networks with missing parts of road sections.
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